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The process through which neurons are labeled is a key methodological choice in

measuring neuron morphology. However, little is known about how this choice may bias

measurements. To quantify this bias we compare the extracted morphology of neurons

collected from the same rodent species, experimental condition, gender distribution,

age distribution, brain region and putative cell type, but obtained with 19 distinct

staining methods. We found strong biases on measured features of morphology. These

were largest in features related to the coverage of the dendritic tree (e.g., the total

dendritic tree length). Understanding measurement biases is crucial for interpreting

morphological data.

Keywords: dendritic morphology, staining method, rodent neuroanatomy, neuroinformatics, golgi method,
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1. INTRODUCTION

There are many techniques through which neuron morphologies may be imaged. These techniques
can be classified based on two factors: how they target neurons for imaging, and how the
axons and dendrites of the probed neurons are labeled so they are visible for imaging. Neurons
may be targeted through their propensity to take up heavy metals or genetic markers, through
immunohistochemistry or by direct injection (Elston et al., 1999; Jacobs et al., 2001; Travis et al.,
2005; Donohue and Ascoli, 2011; Parekh and Ascoli, 2013, 2015; Carter and Shieh, 2015). Neurons
may be labeled using a variety of heavy metals, fluorescent or chromogenic labels are used to allow
imaging. We may expect that both targeting and labeling aspects will introduce biases upon the
resulting reconstructions of morphology.

Staining with heavy metals remains one of the key imaging techniques. Golgi staining is
the oldest such method. In Golgi staining, silver nitrate is introduced to fixed tissue, and the
metal is taken up by a sub-population of neurons through a mechanism that remains largely
uncharacterized. Neurons are stained in their entirety and then imaged with light microscopy
(Koyama, 2013). The method can be subdivided into Rapid Golgi, Golgi-Kopsch, and Golgi-Cox
(Koyama, 2013) and each version labels a subset of neurons. Other heavy metals such as osmium
and lead can instead be used for dense labeling, which is popular for EM data (Watson, 1958; Tapia
et al., 2012). Or, alternatively, lipophilic dyes such as DiOlistics can be introduced ballistically
to neurons and allow for Golgi-like staining (Staffend and Meisel, 2011). Since the biological
mechanism of heavy staining method is mainly unknown, the extract morphology may be subject
to selection bias (Staffend and Meisel, 2011). Because it is relatively simple to perform compared to
other methods, heavy metals are a popular staining method for fixed tissues.
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A more recent approach is to target neurons through genetic
markers. Fluorescent proteins such as green fluorescent protein
(GFP), red fluorescent protein (RFP), and yellow fluorescent
protein (YFP) can be introduced transgenically to be expressed
in neurons, and then imaged through fluorescent microscopy
to reveal morphology (Marshall et al., 1995). The use of
fluorescent proteins may be limited to animals for which
good genetic tools exist. Fluorescent proteins are introduced
under the control of promoter regions that are active for
known cell-type markers. They target specific populations of
neurons, which may differ from those neurons targeted by
other methods. The size of these potential selection biases again
remains relatively uncharacterized. Fluorescent techniques are
popular because they readily integrate both into genetic and
physiological approaches.

Immunostaining has advanced to be a leading staining
technique. Immunostaining uses antibodies to target neuronal
molecular markers, which can be labeled with fluorescent or
chromogenic tags for imaging (Chen et al., 2010; Tanapat, 2013).
A common approach relies on biotin variants, such as biocytin
or neurobiotin, being conjugated to an antibody (Swietek et al.,
2016). A complex of biocytin and its binding partner, avidin,
are tagged with a fluorescent or colored label that can then be
imaged. The avidin-biotin complex allows imaging through light,
fluorescent, or EMmicroscopy depending on the label. Common
fluorescent dyes used with immunostaining include Alexa Fluor
(AF) (Carter and Shieh, 2015). Immunostaining targets neurons
based on particular molecular markers which allows a broad
range of targets. Immunostaining is particularly popular as it
readily integrates into the modern molecular approaches.

Finally, neurons can be directly injected (Vaney, 2002; Elston,
2003). Direct injection allows neurons to be labeled in vivo
or in slice samples and later imaged in a fixed preparation,
meaning electrophysiology can be related to morphology. It is
common to directly inject fluorescent dyes such as Lucifer Yellow
(Hanani, 2012) or biotin variants such as biocytin or neurobiotin
(Klenowski et al., 2017).

Each method comes with idiosyncrasies and methodological
steps that can vary across laboratories. For instance, in
immunostaining the antibody concentration, length of
incubation time, and accessibility to the antigen all must be
balanced to produce a good result (Paavilainen et al., 2010;
Carter and Shieh, 2015). All these factors may vary from lab
to lab and are a known source of variability. For example, it
has been shown that hippocampal CA1 neurons measured in
rats housed in different labs are not consistent in terms of their
morphometry (Scorcioni et al., 2004). Tripathy et al. (2015) have
shown similar biases in electrophysiology (Tripathy et al., 2015;
Tebaykin et al., 2017). Understanding the effects of staining is
thus crucial for the interpretation of downstream analyses.

Each method also targets different neurons and operates
through different biochemical processes such that, even if
performed within the same lab, morphology measurements can
differ by staining method. For instance, during dehydration it
is well-known that incubation with different dyes can affect
tissue shrinkage which in turn can affect morphology (Grace
and Llinás, 1985). Neurobiotin staining is known to affect

both electrophysiology and morphology (Xi and Xu, 1996).
In comparing morphology obtained by Golgi-Cox staining
and neurobiotin electroporation, it has been shown that
neurobiotin-filling revealed significantly larger dendritic arbors
and different spine densities compared to GolgiCox-stained
neurons (Klenowski et al., 2017). Despite these known issues,
there are few systematic studies that examine the size and
nature of these biases across the many methods used to
quantify morphology.

Large databases of neuron morphologies (Ascoli, 2006) collect
data from many labs, each employing different methods. This
allows the comparison of data across distinct staining methods.
While many experimental aspects of neuron quantification will
differ, the staining method is a central experimental choice. As
such, it is important to ask what large databases can tell us about
the biases induced by staining methods.

Here we quantify the variation in measured neuron
morphology related to the staining or the fluorescent labeling
method used, though we will refer to both of these as
staining method. We analyze rodent data that has been
uploaded by various labs to the public morphology repository
neuromorpho.org (Ascoli, 2006). We group them based on the
biological attributes and the staining methods. By matching on
biological attributes and comparing the morphometry of each
group we identify the variation that can be explained by different
staining methods.

2. METHODS

2.1. Data Acquisition
We used dendrite morphologies submitted to neuromorpho.org
(version 7.4), a publicly available database of morphology. We
performed a careful search of neuromoropho.org to identify
populations of neurons that allow for an appropriate study of
the effect of staining method. We describe the search criteria
used below.

To ensure that dendrites were traced completely, we filtered
out neurons in the database whose physical integrity of
their dendritic reconstructions was labeled as incomplete. We
analyzed neurons that are extracted from a healthy animal,
by considering only the neurons whose experimental condition
were labeled as control. These steps prevent our analysis from
including unwanted effects due to poor reconstruction and
experimental condition.

We identified populations of neurons sampled from a
specific species, age, gender distribution, region, laminar location
obtained with a least two staining methods. To do this we
restricted our analysis to the neurons from rat to mouse. We
grouped neurons into three age classes: young (more than
a month and <2 months), young adult (between 2 and 6
months) and adult (more than 6 months). To match the
gender distribution, we grouped the neurons into three classes:
male, female, and male/female. The latter class was used when
labs deposited the equal number of neurons from male and
female in the same experiment. We matched the cell types
as follows. First, we grouped the neurons into two primary
cell types: principal cell and interneurons. Then we grouped
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FIGURE 1 | The spatial distribution of the 22 groups analyzed are from

multiple brain regions in rodents. The number of comparison groups in each

region are listed in parentheses.

each primary cell types into secondary cell type (including
pyramidal, granule, mitral, GABAergic). Finally, we grouped
them into territory cell type (including Aspiny, spiny, adult-
born, newborn) if such information was provided. Similarly, we
matched the brain regions as follows. We first grouped them by
primary brain regions (neocortex, cerebellum, hippocampus,main
olfactory bulb, retina, amygdala, brainstem, entorhinal cortex,
spinal cord, protocerebrum). Then we grouped each primary
brain regions into secondary brain regions (including primary
somatosensory, somatosensory, primary visual, CA1, CA, CA3,
dentate gyrus, striatum, anterior cingulate, prelimbic, thalamus,
hypothalamus, basolateral amygdala). Then, if each region has
a laminar structure (for example somatosensory cortex), we
grouped the neurons by their layer [laminar structure contains
six distinctive layers (1–6) and three shared layers (2–3, 3–
4, 5–6)]. Similarly if the regions had sagittal structure (left,
right), or coronal structure (occipital, medial, prefrontal, frontal)
or ventral/dorsal structure then we grouped them accordingly.
Brain region definitions and nomenclature are taken from the
Allen Institute for Brain Science mouse brain atlas, for both the
mouse and rat data (Jones et al., 2009). We use it to normalize
neuron assignment at the coarse layer (e.g., CA1 = subregion
of hippocampus), as the fine structure of the neuron locations is
typically not reported. We omitted neurons for which at least one
of the above labels was not reported in the database. Using these
criteria we grouped the neurons into classes.

If there were at least two different staining methods in a
matched group (same brain region, gender distribution, age,
species, cell-type) and each staining method has at least five
samples in the set, the group was chosen for comparison. In this
way we identified 22 matched sets of neurons sourced frommore
than 60 papers (Figure 1, Tables 1, 2).

In these 22 matched groups of neurons are 19 distinct
staining methods, labeled by neuromorpho.org. We grouped
these into three types: staining with heavy metals, genetic
markers, and immunostaining and direct injection. In the heavy
metals group: Golgi, and Golgi-Cox. In the genetic markers
group: green fluorescent protein, red fluorescent protein, enhanced
green fluorescent protein, and Tag red fluorescent protein. In the
immunostaining group: immunostaining, horseradish peroxidase,

neurobiotin, biocytin, biocytin & betaIV-spectrin, Alexa Fluor 488,
Alexa 647-dextrane,Alexa Fluor 594,OGB-1, biotinylated dextran
amine, lucifer yellow, green fluorescent protein, Alexa Fluor 488,
immunostaining, green fluorescent protein, immunostaining.

2.2. Morphological Features
To compare neuronmorphologies we need to quantify them. The
morphology of a neuron is described by a set of points each with
a coordinate, diameter and index of its parent point. And a set of
edges connecting parent points to their children (Stockley et al.,
1993).We used six features to measure the effect of staining. Four
features are defined in previous publications and are parts of the
L-measure (Scorcioni et al., 2008). Two features are unique to this
paper. We classed each feature as either global or local.

Three global features are used. First, the number of branching
points in the neuron, or how many times the morphology
branched. This feature is defined previously in L-measure.
Second, the total length of the dendritic tree. This feature is
defined previously in L-measure. Third, the global angle. This
measures the angle between the dendritic segment and the vector
pointing toward the soma. It provides a measure of how much
dendrites point away from the soma (Figure 2). This feature is
defined in this paper for the first time.

Three local features are used. First, the branching angle. This
is the angle between two edges that branch from a common
parent. This feature is defined previously in L-measure. Second,
the length of segments. This is the length of dendrite between two
consecutive branching nodes. This feature is defined previously
in L-measure. Third, the local angle. The local angle measures
the angles between the vector connecting the node to its parent
and the vector connecting the node to its child. We only consider
nodes that have one child. This measures how straight the
neurites of the neurons are. This feature is defined for the
first time.

For features that are measured per dendrite segment (e.g.,
branching angle, global angle, local angle), data are pooled
over all neurons in the group. In order to avoid artifacts due
to software reconstruction of the neuron, we resampled the
morphology such that the distance between each consecutive
node was equal. To do this we preserved the terminals and
branching nodes and selected one node every 10 micrometers
(but we suppress the last point if it is within 10 micrometers of
the terminal or branch node). This way we obtain a normalized
representation that can be compared.

2.3. Statistical Testing
We tested for an effect of the staining method on each
morphological feature, above effects explained through
biological attributes. Our morphological features are generally
continuous valued, while neuron classes are categorical. Further,
the morphological features generally follow a non-Gaussian
distribution (Figure 2). This requires using non-parametric
tests. We thus used the Wilcoxon rank-sum test. That is, for each
group b ∈ B, we tested:

H0(B = b) :µ1/2(M|B = b, S = s1) = µ1/2(M|B = b, S = s0),
(1)
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TABLE 1 | Details of groups used in analysis.

Index Primary

brain region

Secondary brain

region

Tertiary brain region Primary cell type Secondary cell type Tertiary cell type Species Sex Age #samples

1 N SS L 2/3 p py - m m a 67

2 N SSp L 2/3 p py - r m/f y 29

3 N SSp L 5 p py - r m a 36

4 N SSp L 5 p py Thick-tufted r m y-a 43

5 N VIS L 2/3 p py - m m/f a 57

6 HIP CA1 - p py - r m a 89

7 HIP CA1 - p py - r m y 24

8 HIP CA1 - p py - m m y 41

9 HIP CA1 - p py - m m/f a 60

10 HIP CA1 - p py - r m/f y 33

11 HIP CA1 - p py - m m/f y 43

12 HIP DG gL p gr - r m y 80

13 HIP DG gL p gr adult-born r m a 35

14 HIP DG gL p gr - m m a 63

15 HIP DG gL p gr new-born m m a 122

16 AMC BLA - p py - r m a 102

17 BG STR - p medium spiny - m m a 139

18 MOB mL - p m - m m/f y-a 20

19 MOB gL - i g adult-born m f a 55

20 MOB gL - i g - m m/f y-a 21

21 Retina gL - p g - m m/f a 402

22 N PL L 2/3 p py - r m a 74

For brain regions, N, neocortex; SSp, Primary Somatosensory areas; VIS, Primary visual area; HIP, Hippocampal regions; CA, Ammon’s horn; DG, Dentate gyrus; AMC, Amygdalar

capsule; BLA, basolateral amygdala; STR, Striatum; PL, prelimbic; BG, basal ganglia; L, layer; gL, ganglion layer; mL, mitral layer. For cell type: p, principal; i, interneuron; py, pyramidal;

gr, granule; g, ganglion; m, mitral. For species, m, mice; r, rats. For gender distribution, m, male; f, female; m/f, male/female. For Age, a, adult, y, young; y-a, young-adult.

for all b ∈ B, where µ1/2 represents the median, S the staining
method, and M the morphological feature. The hypothesis that
no overall effect exists for a given morphological feature is

H0 :∩
|B|

i=1H0(B = bi), (2)

for the N levels in B. To correct for multiple testing we used
Bonferroni correction.

2.3.1. Average Effects

The differences in morphology between staining methods can
also be quantified over groups by considering the difference in
means:

βj = E
(

E
(

Mj|B, S = S1
)

− E
(

Mj|B, S = S0
))

, (3)

which summarizes the average difference in morphological
feature Mj. This corresponds to the average treatment effect in
the causal inference literature (Pearl, 2009), although we can not
(and do not)make claims about causality here. A null distribution
for each βj is generated by repeated permutation of staining label,
allowing us to determine significance levels.

3. RESULTS

We first asked if neurons obtained by distinct staining methods
are distinguishable. Within each group, we compared the

distribution of each morphological feature between a pair
of staining methods (Figure 2). To do this we tested the
hypothesis that the reconstructed morphologies are statistically
similar within each group. We observed that, for each pairwise
comparison between two staining methods, there is at least
one group which shows significant differences in at least one
morphological feature (Figure 3, Wilcoxon rank-sum test, p <

0.05, corrected). In fact, for most of the pairwise comparisons
between staining methods we observed a large proportion of
highly significant differences (Figure 3, Wilcoxon rank-sum test,
p < 0.001, corrected). This suggests that morphologies obtained
by different staining methods seldom agree with each other.

We wondered if the biases in neuronal morphology between
staining methods of the same type (e.g., Golgi vs. Golgi-Cox)
were less than the biases in morphology between methods
of a different type (e.g., Golgi vs. GFP). In fact comparisons
between staining methods of the same class showed just as
high a proportion of statistically significant differences as
comparisons betweenmethods of a different class: in both within-
class and between-class comparisons 90% of tests performed
were statistically significant (Figure 3). Thus, even morphologies
obtained by similar methods can show strong biases due to
experimental choices.

Given this preponderance of variability related to the staining
method, we sought to understand which morphological features
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FIGURE 2 | Sample neuron morphologies and features. (A) Sample morphologies from two groups of neurons, comparing two distinct staining methods. (B)

Geometrical features of neuron morphology. Local angle represents the angle between adjacent edges not at a branch point. The global angle represents the angle

between an edge and the vector pointing toward the soma. The branch angle represents the angle between two edges that branch from a common node. (C)

Histograms for the two sample groups of the six morphological features used in analysis.

in particular had the strongest biases. In order to examine this
we computed the average difference in each feature between
each pair of staining methods, averaged over all groups for
that comparison. This analysis shows that in general the total
length, number of branches, and the length of segments show the
strongest biases related to the staining method (Figure 4). Using
a permutation test to determine the statistical significance of the
average effect, we observed that 76% of average effects within
these three features were significant. While features related to
angles of the dendritic tree show weaker effects—only 32% of
average effects in these features were significant. This suggests

that features related to the coverage of the dendritic tree are most
affected by the choice of staining method.

An omission from these analyses is the possible confounding
effect that the rodent strain may have on neuron morphology
(Rodriguez et al., 1999; Routh et al., 2009). There is less
available data that we could use for matching. Nonetheless,
we also analyzed the effect of the staining method on data
matched also by strain. This resulted in six comparison groups.
In this analysis the staining method biases are of similar
significance and size in comparison to the analysis presented
above (Supplementary Figures 1, 2). Thus, the biases we observe
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FIGURE 3 | Proportion of significant differences between pairs of staining methods over all groups and morphological features. Zero means there is not any difference

between the staining methods among the groups and one means all the groups are different. Computed using the Wilcoxon rank-sum test, corrected (Equation 2).

Significant means p < 0.05, highly significant means p < 0.001.

in morphology due to the staining method do not appear to be
explained by reported differences in neuronmorphology between
rodent strains.

A caveat of the available data for our analysis is that it
cannot fully separate the effect of the staining method from other
laboratory-fixed effects. The ideal dataset to uniquely identify the
effect of the staining method would be to have one lab perform
the same experiments but with different staining methods. There
are a few instances in which such a comparison was made.
However, while the data we have thus exhibits a threat to causal
validity (Pearl, 2009), we do have sufficient data to estimate how
many neurons would be required to estimate such an artifact. To
do this we performed a power analysis of the Wilcoxon rank-
sum test through resampling. For most morphological features,
we found that an effect size of d = 0.5 required 50 neurons/data
points to detect the effect with probability 0.9 (1 − β), assuming
a type I error rate (α) of 0.05. For features that are defined for
each dendrite segment, a single neuron would generally provide
this much data. However, to ensure neuron-neuron variability
is taken into account, a safer estimate is to assume at least 50
neurons are required. Thus, it seems likely that future versions
of neuromorpho.org will soon be able to answer these questions
with more precision.

4. DISCUSSION

It is important to accurately characterize neuron morphology
for a number of reasons. Dendritic morphology determines
the computations a neuron can perform, and has a role in

circuit function and neurological disease (Agmon-Snir et al.,
1998; Elston and Fujita, 2014; Šišková et al., 2014; Yang et al.,
2017). Morphology varies by brain region, cell layer, species,
and age (Scheibel and Jacobs, 2003; Elston, 2007; Spruston,
2008; Elston and Fujita, 2014). It thus may provide clues as
to the function of the region. For instance, Purkinje cells in
the cerebellum and pyramidal cells in cortex may provide
striking examples of a structure-function relation (Stein and
Glickstein, 1992; Körding and König, 2001; Guerguiev et al.,
2017). And distinct morphological features affect functional
properties differently. For instance, features to do with dendrite
diameter may affect electrophysiological properties more than
branching angle. Characterizing the morphology specific to brain
region, species, etc. is thus important. This is most cleanly
identified when the same experimental methodology is used
over different brain regions. For instance, Jacobs and Scheibel
studied dendritic variation in primate cortical pyramidal cells
with the Golgi technique (Scheibel and Jacobs, 2003). Elston and
colleagues studied thousands of individually injected cells from
multiple cortical areas in a singe hemisphere, replicating the
studies in age/sex/hemisphere matched brains within a species
and across species (Elston et al., 2001; Elston, 2007). Yet many
brain regions and cell types have not been analyzed in this
form. Studying variability in morphology by brain region and cell
type must typically be performed with data collected from many
different methods. Before conclusions can be made, the bias of
the methodology must therefore be established.

Here we focused on the correlation of staining methods
on measured neuron morphology. We showed a significant
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FIGURE 4 | Pairwise average effect sizes for six morphological features. Upper right entries show statistical significance of differences (Equation 3). White squares

represent no comparison, light gray squares represent a non-significant difference, gray squares represent a significant difference (p < 0.05), and black squares

represent a highly significant difference (p < 0.001). To compute the significance level the average absolute difference in morphological features is compared with a

null-distribution generated through permutation. Lower left entries show average difference in each feature between the two corresponding methods.

difference between neurons that were extracted from the same
region, species, gender distribution, and age but with different
staining methods. Although this analysis was focused on the
staining method, a similar approach could be taken to study the
effect of other methodological details such as the reconstruction
software or microscopy method. Understanding the source of
these artifacts is necessary for us to have an accurate picture of
the variation of neurons in the brain.

There are a number of explanations for biases in morphology
related to staining methods. First, there may be procedural
differences between laboratories, coming from preferences for
particular sub-regions or cell types or other preparation details
not reported. Indeed previous studies show this is a large
source of variability (Scorcioni et al., 2004). Large differences
in morphology can exist within a small region, e.g., visuotopic
variation within visual cortex and age (Elston, 2003, 2007; Elston

and Fujita, 2014). As such, we may expect significant biases to be
related to non-staining related signals.

Second, there are methodological biases related to the 3D
or planar reconstruction of neuron morphology. To produce a
3D reconstruction of a neuron, we need to fix a direction for
the slicing the specimen and choose the thickness of the slices.
The staining methods may set a limit on the slice thickness. For
instance, when using GFP, neurons are often imaged through
confocal microscopy. This sets a bound for the slice thickness,
whichmay affect morphometrics (Rodriguez et al., 2003; Ke et al.,
2013). Shrinkage of the neuron during the fixation can also affect
measured morphology (Grace and Llinás, 1985). These biases
most likely affect the local morphological features, such as angles;
the global features, such as total length, are likely less affected. Yet
we observed larger biases in global features. This may suggest that
biases related to 3D reconstruction are minimal.
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TABLE 2 | Source references for each comparison group.

Index References

1 Benavides-Piccione et al., 2005; Alpar et al., 2006; Cohen et al.,

2013

2 Carrel et al., 2015; Hoffmann et al., 2015

3 Kole et al., 2007; Chen et al., 2014

4 Kole et al., 2006; Kole, 2011; Hamada et al., 2016

5 Longordo et al., 2013; Jiang et al., 2015; D’Souza et al., 2016;

Vannini et al., 2016

6 Bannister and Larkman, 1995; Carnevale et al., 1997; Megias

et al., 2001; Kole et al., 2004; Dougherty et al., 2012; Chen et al.,

2014; Malik et al., 2016; Bezchlibnyk et al., 2017

7 Pyapali et al., 1998; Golding et al., 2005; Scorza et al., 2011;

Groen et al., 2014

8 Suo et al., 2012; Beguin et al., 2013

9 Druckmann et al., 2014; Lee et al., 2014; Tyan et al., 2014

10 Pyapali et al., 1998; Mulholland et al., 2015

11 Michaelsen et al., 2010; Mendez et al., 2012; Ster et al., 2014;

Tripathy et al., 2015; Zhou et al., 2015; Anstotz et al., 2016; Boillot

et al., 2016

12 Arisi and Garcia-Cairasco, 2007; Beining et al., 2017

13 Rihn and Claiborne, 1990; Carnevale et al., 1997; Beining et al.,

2017

14 Revest et al., 2009; Winkle et al., 2016

15 Carim-Todd et al., 2009; Qin et al., 2014; Platschek et al., 2016

16 Bergstrom et al., 2010; Padival et al., 2013; Henckens et al., 2015

17 Martone et al., 2003; Cazorla et al., 2012; Qin et al., 2014; Nato

et al., 2015

18 Fukunaga et al., 2012; Ke et al., 2013

19 Belnoue et al., 2016; Sailor et al., 2016

20 Burton and Urban, 2015; Quast et al., 2017

21 Chen and Chiao, 2014; Sumbul et al., 2014; Krishnaswamy et al.,

2015; Poria and Dhingra, 2015

22 Soares-Cunha et al., 2014; Henckens et al., 2015

Third, there may exist differences caused by other
methodological details that happen to be correlated with
the staining method, not because the method goes in hand
with the staining method itself, but just by chance (or
cultural heritage) in the data we analyzed. For example if
the objective type used in the microscopy correlates with
different staining methods then that would be a potential
confound. However, by performing the same comparison over
lab groups and brain regions, we mitigate these confounding
effects to some extent, and thus better measure differences
that are particular to the staining method. But these other
explanations can not be ruled out entirely without more
controlled comparisons. This is challenging, even with a
large database such as neuromorpho.org. Our power analysis
demonstrates how much data would be needed to cleanly
address these questions. Ultimately, only a clean experiment
with a proper random assignment strategy could produce
causal certainty.

Our results are consistent with one mechanistic account by
which biases are created from the staining method, and not
other potential confounds: different molecule size of agents

used in different staining methods target different parts of a
neuron. If different staining methods capture different parts of
the morphology then we would expect strongest artifacts to be
observed between features to do with the amount of dendritic
tree described, e.g., total length, dimension, number of branches,
etc, and smaller artifacts for more local geometric properties
like the branching angles. If, alternatively, the biases observed
in morphology were due to staining methods/labs targeting
different neuronal subpopulations within a given brain region,
then we may expect stronger artifacts to also be observed in local
parameters such as branching angle. We do not observe strong
artifacts in these parameters. A more careful modeling approach
that takes generated neuron morphologies and subsamples them
according to a staining model may be able to give a more
precise account of the type of biases we may expect due to
the staining method, and thus this interpretation could be
better tested.

The feature set used here is often used as a basis of
cell classification (Vasques et al., 2016). In this regard,
our results suggest the need to standardize and carefully
characterize these artifacts–after all, such biases could have
massive effects on the results of clustering methods used
for cell type identification. Alternatively, although some
features are affected by different staining method, there are
some features that are only weakly affected by the method
(Figure 4). It would thus be possible to use features that
vary most by cell type and least by staining method as
the basis of classification or clustering. This should allow
combining our findings with those of previous classification
approaches to make the procedures robust to the details of the
staining method.

Our analysis tells a cautionary tale about the progressively
more popular combination of data sets across labs. Fully
characterizing neuronal morphology and its relation to function
relies on the generation and analysis of vast amounts of data.
Across neuroscience, collaborative efforts across institutions
are studying morphology (e.g., Churchland, 2017). Amongst
the wealth of datasets available, the need for understanding
variability due to the data generation process is important
for drawing inferences and analyzing data across disparate
sources. This problem is becoming widespread in neuroscience
where electrophysiological, molecular, and morphological data
are now routinely shared.
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