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Abstract: Background: General severity of illness scores are not well calibrated to predict mortality
among patients receiving renal replacement therapy (RRT) for acute kidney injury (AKI). We devel-
oped machine learning models to make mortality prediction and compared their performance to that
of the Sequential Organ Failure Assessment (SOFA) and HEpatic failure, LactatE, NorepInephrine,
medical Condition, and Creatinine (HELENICC) scores. Methods: We extracted routinely collected
clinical data for AKI patients requiring RRT in the MIMIC and eICU databases. The development
models were trained in 80% of the pooled dataset and tested in the rest of the pooled dataset. We
compared the area under the receiver operating characteristic curves (AUCs) of four machine learning
models (multilayer perceptron [MLP], logistic regression, XGBoost, and random forest [RF]) to that
of the SOFA, nonrenal SOFA, and HELENICC scores and assessed calibration, sensitivity, specificity,
positive (PPV) and negative (NPV) predicted values, and accuracy. Results: The mortality AUC of
machine learning models was highest for XGBoost (0.823; 95% confidence interval [CI], 0.791–0.854) in
the testing dataset, and it had the highest accuracy (0.758). The XGBoost model showed no evidence
of lack of fit with the Hosmer–Lemeshow test (p > 0.05). Conclusion: XGBoost provided the highest
performance of mortality prediction for patients with AKI requiring RRT compared with previous
scoring systems.

Keywords: machine learning algorithm; mortality; acute kidney injury; renal replacement therapy

1. Introduction

Acute kidney injury (AKI) is a common and significant problem in intensive care
units (ICU), with incidence rates reportedly as high as 50% of patients admitted [1]. Up
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to 25% of AKI patients in the ICU require renal replacement therapy (RRT) [1,2]. Despite
advancements in the performance and technology of RRT, the mortality rate of those
patients remains 30% to 50% [3,4]. Although the outcomes of these patients are likely related
partly to the severity of their underlying diseases, having clinical tools that can accurately
and reliably provide prognostic predictions is important to aid in clinical decision-making.

General severity of illness scores have been used to predict ICU mortality. For example,
the Acute Physiology And Chronic Health Evaluation (APACHE) and Simplified Acute
Physiology Score (SAPS) have been developed since the 1980s. They provide adequate
prediction of in-hospital and ICU mortality of all ICU patients regardless of ICU type [5–8].
The Sequential Organ Failure Assessment (SOFA) score is also used for hospital and ICU
mortality prediction [9]. However, studies have suggested that these traditional models are
not reliable for the AKI populations who need RRT in ICU [10–12]. Instead, models using
data at RRT initiation have performed better at mortality prediction. Some of these models
have shown good performance for mortality prediction but have limited results during
external validation [13–16].

Recently, machine learning models have been broadly applied from disease diagnosis
to mortality prediction. They are expected to capture nonlinear interactions from high com-
plexity data and consider all data points for continuous data, thus providing more accurate
risk prediction than traditional models. We developed machine learning algorithms using
data collected from the Medical Information Mart for Intensive Care (MIMIC-III) [17] and
eICU Collaborative Research (eICU-CRD) databases [18] and compared the performance
of the results to that of the SOFA [19]; nonrenal SOFA [20]; and HEpatic failure, LactatE,
NorepInephrine, medical Condition, and Creatinine (HELENICC) [16] scores in 30-day
mortality prediction for AKI patients requiring RRT.

2. Materials and Methods
Data Sources

This retrospective observational cohort study was performed using two publicly avail-
able ICU datasets (MIMIC-III and eICU-CRD). MIMIC-III (53,423 ICU admissions between
2001 and 2012) was released by the Massachusetts Institute of Technology Laboratory
for Computational Physiology (MIT-LCP) from a single tertiary care hospital (Beth Israel
Deaconess Medical Center) in 2016 [17]. eICU-CRD (approximately 200,000 ICU admissions
between 2014 and 2015) is a multicenter critical care database from rural/nonacademic
hospitals across the United States made available by Philips Healthcare with the help of
researchers from MIT-LCP in 2018 [18]. There is no overlap of patients included in these
two databases [18].

We included adults ≥18 years old who received RRT (intermittent hemodialysis or
continuous RRT [CRRT]) for AKI in the ICU. AKI was defined by the creatinine change level
and diagnosis codes in this study. We only used creatinine criteria due to the unreliable
urine data in the retrospective databases. Patients were included when they did not have
at least 2 creatinine data but had AKI as a diagnosis using ICD-9 codes (Supplementary
Table S1) or by maxium–miminum change of creatinine ≥ 0.3 mg/dL from ICU admission
to RRT. If a patient had been admitted to the ICU multiple times during one hospitalization
course, data from the first ICU admission were extracted for study. Patients with a history of
end-stage kidney disease who underwent chronic peritoneal dialysis (PD) or hemodialysis
(HD) were excluded from the study, as were those with chronic kidney disease (CKD)
stages 4 and 5 based on ICD-9 codes (Supplementary Table S1), because advanced CKD
patients who develop AKI are more likely to survive the episode of AKI [21]. Patients with
a history of any organ transplant were also excluded, as they may have other confounding
risk variables that affect mortality.
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3. Model Development
3.1. Predictors

The variables of our models consisted of demographics, medical history, mechanical
ventilation use, FiO2, vital signs, laboratory tests, and medications (diuretics, vasopressors).
The mechanical ventilation, vital signs, lab tests, and medications were recorded within
24 h before RRT initiation. Relevant past medical history, extracted from database records
using ICD-9 codes (Supplementary Table S1), included diabetes mellitus (DM), CKD,
hypertension (HTN), congestive heart failure (CHF), liver cirrhosis (LC), and cancer. We
used mean values of lab tests, FiO2, Glasgow Coma Scales (GCS), mean arterial pressure
(MAP), and respiratory and heart rates (HR). FiO2 was from a laboratory test in MIMIC
and from a respiratory chart in eICU.

For laboratory tests, we used mean values of all variables recorded within 24 h before
the first dialysis therapy initiation date, because some laboratory data values would have
been influenced by dialysis. Supplementary Table S2 reveals the percentage of missing data
in laboratory tests. We excluded variables with >30% missing values. Multiple imputation
by chained equations (MICE) with five imputed datasets was used to derive the missing
values of the laboratory tests and vital signs, and the results were pooled using the MICE
package [22]. The missing values were completed, handled by MICE, and then the imputed
data were used to build models.

We modified the codes found in the public domain at https://github.com/nus-mornin-
lab/oxygenation_kc (accessed on 5 February 2020) and https://github.com/MIT-LCP/
mimic-code/tree/master/concepts/severityscores (accessed on 5 February 2020) to calcu-
late a SOFA score using variables collected within 24 h before RRT start in eICU and MIMIC
based on methods in the original study [19]. We also calculated the nonrenal SOFA score,
which was calculated by the total SOFA score minus the points for the renal system [20].
For patients with missing variables, SOFA and nonrenal SOFA scores were imputed using
MICE, as described above.

The primary outcome was all-cause mortality within 30 days of RRT initiation.

3.2. Prediction Machine Learning Algorithms

Predicting mortality problem belongs to a classification topic in supervised machine
learning. Four machine learning classification methods were applied in this study: logistic
regression (LR), XGBoost, random forest (RF), and multilayer perceptron (MLP). We used
grid search with tenfold cross-validation to find the best hyperparameters for all models.
Our machine learning modeling strategy followed TRIPOD statement recommendations
for the reporting of predictive models [23].

1. LR is the fundamental algorithm for machine learning development. In scikit-learn,
the LR uses regularization by default. The advantage of regularization is to improve
numerical stability.

2. XGBoost [24] is an implementation of the gradient-boosted decision trees ensemble
algorithm. The implementation of XGBoost is optimized for performance and pro-
vides the best available solutions in many fields. It reduces variance and bias by
using multiple models and adjusting the subsequent trees by the errors the previous
trees made.

3. RF [25] is a bagging ensemble machine learning model that also includes several
decision trees, but decisions made among trees are independent. It chooses the final
model by voting for the most common class that reduces variance in decision trees.
The advantages of RF are as follows: it is robust to overfitting and is more stable in
high-dimensional data than other machine learning algorithms [26].

4. MLP [27] is a well known supervised learning implementation in artificial neural
networks. Typically, it consists of one input layer, one or more hidden layers, and one
output layer. It solves high-dimensional classification problems by dealing with the
interactions among variables.

https://github.com/nus-mornin-lab/oxygenation_kc
https://github.com/nus-mornin-lab/oxygenation_kc
https://github.com/MIT-LCP/mimic-code/tree/master/concepts/severityscores
https://github.com/MIT-LCP/mimic-code/tree/master/concepts/severityscores
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4. Model Validation

Models were validated using two strategies (Figure 1): Using the first strategy to assess
validation, we used the MIMIC dataset as a development model and assessed external
validity using the eICU dataset, which was based on the higher severity of comorbidities
and more complete records. Using the second strategy to build more robust models that
could be applied across institutions, we pooled eICU and MIMIC datasets containing
more diverse and heterogeneous data so that the trained models would generalize across
different hospitals and then randomly split them into training and testing datasets at
a ratio of 8:2. We performed grid searches with tenfold cross-validation to obtain the
best parameters using the training dataset and then tested models on the independent
testing dataset.
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5. Statistical Analyses

We compared the baseline characteristics between the survival and death groups.
Categorical variables were presented as proportions, and the mean with standard deviation
or median with interquartile range was used to summarize the results for continuous
variables. Numeric variables of clinical characteristics with normal distribution tested by
the Kolmogorov–Smirnov test between the two groups were compared using the Student’s
t-test. Non-normally distributed continuous variables were tested by a Mann–Whitney U
test. A Chi-squared test was used to compare the differences in categorical variables.

The overall performance of the prediction models on validation was assessed by the
calculation of the area under the receiver operating characteristic curve (AUC) and the
associated 95% confidence interval (CI) using the roc_auc_score function of scikit-learn.
Calibration was assessed using the Hosmer–Lemeshow test and by constructing calibration
curves. The differences between model AUCs were pairwise-compared using the DeLong
test (p < 0.05 was considered statistically significant). Sensitivity, specificity, positive (PPV)
and negative (NPV) predicted values, and accuracy were calculated for evaluation of
model performance. To evaluate the impact of features on our best model, we used the
SHAP framework (available in the public domain at https://github.com/slundberg/shap
(accessed on 5 February 2020) [28]. We used decision curve analysis to assess the net benefits

https://github.com/slundberg/shap
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of our best machine learning model, SOFA, nonrenal SOFA, and HELENICC scores. In the
decision curve analysis, SOFA, nonrenal SOFA, and HELENICC scores were converted to
a logistic regression using probability theory [12].

Machine learning algorithms and statistical analyses were performed using Python
version 3.6, scikit-learn version 0.22.1, keras version 2.3.1, and R version 3.6.1.

6. Results
6.1. General Demographics

Of 3357 patients in the MIMIC and 8201 patients in the eICU databases who required
dialysis therapy, 1129 and 2283, respectively, met the criteria for study inclusion (Figure 2).
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Baseline demographics, comorbidities, vital signs, and laboratory values for patients
in the two datasets are grouped by survival status (Supplement Tables S3 and S4). Overall,
the cohorts from the group who died were older and had a lower percentage of black race,
a longer ICU stay before dialysis therapy initiation, and a higher percentage of mechanical
ventilation use. Supplementary Table S5 reveals that the mortality rate and comorbidity are
significantly different between the eICU and MIMIC datasets. The 30-day ICU mortality
rate was 42.9% and 32.7% in the MIMIC and eICU datasets, respectively.

Table 1 shows the differences between the training and testing datasets of the pooled
dataset. Regarding BUN, hemoglobin, and glucose, other variables were similar between
the training and testing datasets.
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Table 1. Baseline characteristics of the patients requiring renal replacement therapy between the
training and testing datasets of pooled data.

Variables Training Dataset Testing Dataset p Value

Number of patients 2729 683
Death % 35.8% 37.8% 0.369

Demographics
Age, years 62.9 ± 15.0 62.7 ± 14.9 0.793

Male sex, % 59.5% 59.7% 0.962
Black race, % 16.8% 18% 0.149

Comorbidities (%)
Diabetes mellitus 21.6% 21.1% 0.800

Hypertension 25.9% 25.0% 0.677
CHF 24.8% 26.4% 0.445
CKD 17.5% 16.7% 0.667

Malignancy 6.7% 6.9% 0.910
Liver cirrhosis 10.6% 9.7% 0.523

Days of ICU stay before RRT initiation 2.9 ± 4.8 3.1 ± 5.1 0.223
Diuretics, % 14.4% 12.0% 0.126

Vasopressor, % 36.5% 38.4% 0.381
Mechanical ventilation, % 72.4% 74.7% <0.254

Laboratory variables
BUN (mg/dL) 56.0 (36.0–84.0) 61.0 (38.0–89.0) 0.01 *

FiO2 (%) 49.5 ± 26.8 48.7 ± 26.3 0.501
HCO3 (mmol/L) 20.5 ± 5.7 20.3 ± 5.8 0.464

Hgb (mg/dL) 9.6 (8.5–10.8) 9.8 (8.6–11.1) 0.02 *
O2 Sat (%) 93.7 ± 8.0 93.6 ± 8.0 0.767

WBC count (×1000/µL) 15.8 ± 26.2 15.8 ± 14.6 0.976
Anion gap (mmol/L) 16.5 ± 6.7 16.9 ± 6.4 0.155

Calcium (mg/dL) 8.2 ± 1.1 8.2 ± 1.1 0.959
Creatinine (mg/dL) 4.6 ± 3.2 4.6 ± 2.9 0.713

Glucose (mg/dL) 146.0 ± 65.1 152.8 ± 87.7 0.024
Platelet count (×1000/µL) 182.1 ± 115.1 175.7 ± 106 0.193

Potassium (mmol/L) 4.7 ± 1.0 4.7 ± 1.0 0.349
Sodium (mmol/L) 137.4 ± 6.1 137.5 ± 6.1 0.537

GCS score 11.1 ± 4.1 11.0 ± 4.0 0.381
MAP (mmHg) 76.2 ± 15.0 75.3 ± 14.6 0.170

HR (beats per minute) 89.4 ± 18.4 90.0 ± 18.7 0.444
RR (breaths per minute) 20.9 ± 5.6 21.1 ± 5.4 0.374

Abbreviations: CHF, congestive heart failure; CKD, chronic kidney disease; BUN, blood urea nitrogen; FiO2,
fraction of inspired oxygen; Hgb, hemoglobin; WBC, white blood cell; GCS, Glasgow Coma Scale; HR, heart rate;
MAP, mean arterial pressure; RR, respiratory rate; SI, shock index; ICU, intensive care unit; RRT, renal replacement
therapy; CRRT, continuous renal replacement therapy; IHD, intermittent hemodialysis; MV, mechanical ventilation.
Data are expressed as n (%) for categorical data and as mean ± standard deviation or median (interquartile range)
for continuous data. * Mann–Whitney U test.

6.2. SOFA, Nonrenal SOFA, and HELENICC Scores Performance in the MIMIC and eICU Datasets

The SOFA scores of the survival/death groups in the MIMIC and eICU cohorts were
8.7 ± 3.4/11.5 ± 3.6 (p < 0.001) and 10.6 ± 3.1/13.6 ± 3.2 (p < 0.001), respectively. The
nonrenal SOFA scores of the survival/death groups in the MIMIC and eICU cohorts
were 5.7 ± 3.3/8.8 ± 3.6 (p < 0.001) and 7.7 ± 3.2/11.1 ± 3.3 (p < 0.001), respectively.
The performance of SOFA, nonrenal SOFA, and HELENICC scores in 30-day mortality
prediction was modest in both datasets (Table 2). The nonrenal SOFA score performed
better than the SOFA and HELENICC scores (0.728; 95% CI, 0.699–0.758 and 0.769; 95% CI,
0.749–0.789 in the MIMIC and eICU cohorts, respectively).

6.3. Machine Learning Algorithm Performance and Comparison with Other Predictive Models in
the First Strategy

In the eICU (testing) dataset, the RF model achieved the highest AUC (0.816;
95% CI, 0.798–0.834) (Table 3), but there were no significant differences between those
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models (Supplementary Table S6). All four models performed significantly better than the
SOFA, nonrenal SOFA, and HELENICC scores (p < 0.001). The Hosmer–Lemeshow test
showed a poor model fit, except the MLP model. Figure 3 illustrates the ROC curves for our
models, as well as for the SOFA, nonrenal SOFA, and HELENICC scores. Supplementary
Figures S1 and S2 demonstrate the calibration curves of all models in the training and
testing datasets.

Table 2. Performance of the SOFA, nonrenal SOFA, and HELENICC scores 1 day before the beginning
of dialysis in the MIMIC and eICU datasets.

Dataset MIMIC eICU

Model SOFA Nonrenal SOFA HELENICC SOFA Nonrenal SOFA HELENICC

AUC 0.717 0.728 0.694 0.749 0.769 0.756
95% CI 0.687–0.747 0.699–0.758 0.664–0.752 0.728–0.770 0.749–0.789 0.735–0.776

Sensitivity 0.514 0.528 0.401 0.372 0.446 0.341
Specificity 0.798 0.792 0.845 0.884 0.868 0.914

PPV 0.656 0.656 0.659 0.612 0.625 0.662
NPV 0.687 0.691 0.653 0.741 0.761 0.738

Accuracy 0.676 0.679 0.654 0.715 0.729 0.725

Abbreviations: PPV, positive predictive value; NPV, negative predictive value.

Table 3. Model performance measures in the MIMIC and eICU datasets.

Training Dataset MIMIC

Model LR XGBoost RF MLP
AUC 0.786 0.793 0.783 0.785

95% CI 0.752–0.820 0.760–0.826 0.743–0.822 0.752–0.819
Sensitivity 0.578 0.619 0.621 0.617
Specificity 0.809 0.803 0.800 0.779

PPV 0.694 0.702 0.700 0.678
NPV 0.719 0.737 0.738 0.731

Accuracy 0.710 0.724 0.723 0.710
Hosmer-Lemeshow test <0.05 0.02 <0.05 0.44

Testing Dataset eICU

Model LR XGBoost RF MLP
AUC 0.815 0.812 0.816 0.810

95% CI 0.797–0.833 0.794–0.830 0.798–0.834 0.792–0.828
Sensitivity 0.440 0.488 0.595 0.489
Specificity 0.905 0.892 0.837 0.885

PPV 0.695 0.691 0.642 0.677
NPV 0.767 0.780 0.808 0.779

Accuracy 0.752 0.759 0.757 0.755
Hosmer-Lemeshow test <0.05 <0.05 <0.05 0.29

6.4. Machine Learning Algorithm Performance and Comparison with Other Predictive Models in
the Secondary Strategy

In the pooled dataset, there were 978 and 258 deaths in the training and testing datasets,
respectively. The XGBoost model achieved the highest AUC value and accuracy (0.823;
95% CI, 0.791–0.854; 0.758) (Table 4). The MLP model performed worse than the other three
models (Supplement Table S7). The XGBoost, LR, and RF models showed no evidence of
lack of fit with a Hosmer–Lemeshow test (p > 0.05) in the testing dataset. All four models
performed significantly better than the SOFA, nonrenal SOFA, and HELENICC scores
(p < 0.001). Figure 4 shows the ROC curves for all models. Supplementary Figures S3 and S4
demonstrate the calibration curves of all models in the training and testing datasets. The
decision curve analysis showed that the net benefit of the XGBoost model was superior to
the previous scoring systems (Figure 5).
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(a) and tested in eICU (b). Red, RF (0.783, 0.816); Green, XGBoost (0.793, 0.812); Blue, MLP (0.785,
0.810); Orange, LR (0.786, 0.815); Brown, nonrenal SOFA score (0.728, 0.769); Purple, SOFA score
(0.717, 0.749); Pink, HELENICC score (0.694, 0.756).

Table 4. Model performance measures in the pooled dataset.

Training Dataset 80% Pooled Data

Model LR XGBoost RF MLP
AUC 0.814 0.814 0.809 0.818

95% CI 0.797–0.831 0.800–0.828 0.796–0.822 0.802–0.833
Sensitivity 0.574 0.584 0.556 0.644
Specificity 0.845 0.833 0.853 0.825

PPV 0.674 0.662 0.679 0.672
NPV 0.780 0.782 0.774 0.805

Accuracy 0.748 0.744 0.746 0.760
Hosmer-Lemeshow test <0.05 0.02 0.08 <0.05

Testing Dataset 20% Pooled Data

Model LR XGBoost RF MLP
AUC 0.819 0.823 0.821 0.784

95% CI 0.787–0.851 0.791–0.854 0.790–0.852 0.750–0.817
Sensitivity 0.620 0.635 0.562 0.662
Specificity 0.804 0.832 0.863 0.785

PPV 0.658 0.697 0.714 0.652
NPV 0.777 0.790 0.764 0.793

Accuracy 0.734 0.758 0.749 0.739
Hosmer-Lemeshow test 0.11 0.22 0.17 <0.05

6.5. Important Features of Machine Learning Algorithm and Results of Multivariable Logistic
Regression Analysis

Figure 6a shows the top 10 important features of the XGBoost model that were calcu-
lated by SHAP value in the training datasets. In the 80% pooled dataset, older age, higher
FiO2 and RR, lower creatinine and HCO3, increased anion gap, lower GCS, lower BP, vaso-
pressor use, and decreased platelet count were associated with an increased mortality rate.
The predictor ranks of all the models by the mean absolute value of SHAP are shown in
Figure 6b. The results of multivariable logistic regression analysis using stepwise variable
selection are shown in Table S8 and were similar to those of the XGBoost model.
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0.726); Purple, SOFA score (0.718, 0.710); Pink, HELENICC score (0.735, 0.752).
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7. Discussion

SOFA, nonrenal SOFA, and HELENICC scores have only modest predictive value of
30-day mortality for ICU patients with AKI requiring RRT. In the first strategy, we found that
the machine learning models performed better than SOFA, nonrenal SOFA, and HELENICC
scores when validating models using an external validation dataset (eICU dataset). In the
second strategy, the XGBoost model showed reasonable performance and a sufficiently
good fit (p = 0.22) in the heterogenous dataset. Decision curve analysis indicated that the
XGBoost model improved the net benefit for predicting the 30-day mortality compared with
SOFA, nonrenal SOFA, and HELENICC scores. The reasons for why the XGBoost model
performed better may be related to the application of regularization and high flexibility to
tune hyperparameters.

General severity of illness scores, which use clinical and laboratory variables at ICU
admission or even sequential data, predict mortality well for all ICU patients, like APACHE,
SAPS, and SOFA scores. However, they showed poor mortality prediction for AKI patients
requiring RRT [10–13]. The models targeted specifically at this population including the
HELENICC score, ATN study, and Cleveland Clinic score revealed good performance in
predicting mortality (AUC = 0.82, 0.85, 0.81, respectively) [13,16,29]. Those models either
lacked external validation, did not perform well during external validation [15], or focused
on patients with specific conditions. Notably, some variables were not readily available in
the clinical datasets we used, thus limiting our ability to make a direct comparison of ML
models with these scores. Prior studies have predicted mortality using machine learning
algorithms, although these did not center on RRT. Brajer et al. [30] revealed excellent
performance using XGBoost to predict the in-hospital mortality of adults (AUC~0.85).
Another study developed models for patients with influenza infection requiring ICU
admission and found that XGBoost achieved the highest AUC (0.842) [31]. Kang et al. [12]
applied machine learning algorithms to predict mortality in patients requiring CRRT and
found that the RF model achieved the highest AUC (0.768). This was a retrospective study
in one hospital (n = 1094) and lacked external validation. The performance of our models
was reasonable high for all AKI patients requiring RRT, either using the eICU dataset as
an external validation dataset or using the independent part of the pooled dataset as
a testing dataset to provide results that are more generalizable.

In this study, we found that the performance of validating models was better when
using the eICU dataset. This may be related to the patient characteristics of the two datasets.
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Patients in the MIMIC dataset had a higher mortality rate and more severe comorbidities
than those in the eICU dataset (Supplementary Table S5). We speculate that this could be
due to demographic differences, as the eICU dataset included data from multiple ICUs in
rural areas while the MIMIC dataset contained data from a single ICU in an urban medical
center. Another reason may be that the data distribution of MIMIC was more complicated
to classify than that of eICU (Supplementary Figure S5) using principal component analysis.

One challenge for medical researchers using machine learning algorithms is that it is
difficult to assess or explain the individual contributing factors [32]. However, scientists
are creating many advanced ways to make machine learning more transparent. We used
the SHAP value to visualize the feature importance and determine the effect of different
variables on the final output. SHAP offers not only the rank order of importance of variables
but also how the variables impact the outcome, such as low creatinine associated with
death risk. The results highly correlated with clinical outcome. Overall, the features
generated by SHAP could be classified into hemodynamic status, central nerve system,
coagulation, respiratory systems, kidney-related features, and age. The SHAP results were
like the SOFA score parameters, but the performance of our models outperformed the SOFA
score. That may be related to the loss of information when categorizing data, inaccurately
allocating creatinine score for those AKI patients using the SOFA score, and capturing
nonlinear interactions from high complexity data using machine learning algorithms. In
this study, the XGBoost model used more and different variables, such as age and anion
gap, which may lead to better performance than the SOFA and HELENICC scores. Besides,
we retrained a new XGBoost model only using the top 10 features generated by SHAP
and still achieved a good AUC (0.818; 95% CI: 0.786–0.849) in the testing dataset, which
allows clinical physicians to use the model by inputting only 10 data points, can minimize
the burden on them, and limit non-use in the case of missing data on a larger number
of variables.

Given its improved performance over traditional severity-of-illness scoring measures,
such a model or tool could potentially be used and further refined for several potential
applications. For example, given its relatively high negative predictive value, it might help
to enrich clinical trials for a targeted risk profile of patients. Another potential advantage
of our model is that utilizes data that is easily available and routinely collected in clinical
practice. This is a distinct advantage over some other prior risk scores, such as ATN score,
that have been used in this population, as those included data collected as part of a research
study and may not be available clinically. Having a model that can be calculated in real-
time will allow clinicians to have prognostic data and help them have informed shared
decision-making with the patient and their caregivers to decide whether to initiate RRT.
This will also allow physicians to discuss the overall aggressiveness of care and help with
medical decision-making

The strengths of the study include large sample size, external validation, curated
datasets representing heterogeneous ICU populations, and the use of routinely collected
clinical data. This study has several limitations. The MIMIC III dataset is old, and practice
patterns may have changed. This dataset is only limited to labs when the patient is in
the ICU, so it is possible that we may have missed AKI by creatinine values if they were
admitted to the hospital in a non-ICU setting prior to their ICU admission. Although our
datasets included a large amount of collected clinical data, some data had to be excluded
due to poor-quality data recording or missing data. Using MICE to impute data may reduce
predictive power. Due to many missing values, we were unable to calculate SAPS and
APACHE at RTT start time. Thus, we could not make a head-to-head comparison of the
performance of SAPS or APACHE with our models. In addition, the datasets did not have
variables to allow for comparison with other scores that have looked specifically at this
population, such as the ATN study score, which included research data. Moreover, the
variables only capture data collected in the hospitals, and we are unable to capture patient
mortality out of the hospitals in the eICU dataset. Our sample size may not be large enough
for machine learning to have better performance. The interpretation of results should only



J. Clin. Med. 2022, 11, 5289 12 of 14

focus on specific patients, since we excluded all transplant and advanced CKD patients
in the United States. Finally, the causal relationship between the top 10 features of the
XGBoost model and 30-day mortality was not clearly explored.

8. Conclusions

All machine learning models had a reasonable performance and were superior to
the SOFA, nonrenal SOFA, and HELENICC scores in predicting 30-day mortality for AKI
patients requiring RRT. XGBoost provided the highest performance in this study. Further
prospective research is needed to validate these results prospectively and explore how they
can be integrated into clinical decision-making.
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patients requiring renal replacement therapy in the eICU and MIMIC datasets; Table S6: Pairwise
p value of area under ROC curves (AUROCs) of prediction models using the Delong test in the eICU
dataset; Table S7: Pairwise p value of area under ROC curves (AUROCs) of prediction models using
the Delong test in the 20% pooled dataset; Table S8: Significant variables in multivariate logistic
regression model; Figure S1: Calibration curves of all models using MIMIC dataset as a training
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