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Abstract
More than any other organ, the heart is particularly sensitive to gene expression deregulation, often leading in the
long run to impaired contractile performances and excessive fibrosis deposition progressing to heart failure. Recent
investigations provide evidences that the protein phosphatases (PPs), as their counterpart protein kinases, are impor-
tant regulators of cardiac physiology and development. Two main groups, the protein serine/threonine phosphatases
and the protein tyrosine phosphatases (PTPs), constitute the PPs family. Here, we provide an overview of the role of
PTP subfamily in the development of the heart and in cardiac pathophysiology. Based on recent in silico studies, we
highlight the importance of PTPs as therapeutic targets for the development of new drugs to restore PTPs signaling
in the early and late events of heart failure.
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Introduction

Cardiac physiology is heavily dependent on the intracellu-
lar signaling balance between protein kinases (PKs) and
their counterparts, the protein phosphatases (PPs). Not sur-
prisingly, the deregulation of such balance in the adult
heart leads in most cases to heart dysfunction associated
with impaired contractile performances and fibrosis depo-
sition often leading to heart failure [1–4]. In the past de-
cade, the signaling cascades of numerous PKs and their
partners in mediating pathological cardiac hypertrophy
and heart failure have been extensively studied and
reviewed from investigations performed in cellular models
and in genetically modified mice (reviewed in [5–7]).
However, proportionally, the role of PPs in the develop-
ment of myocardial disorders has been much less

documented [8, 9]. This is mostly due to historical reasons
as PPs were discovered 10 years after PKs [10, 11]. Over
the past decades however, it has become clear that PPs are
specific regulators that play active roles in coordinating
with PKs the regulation of many physiological processes.
The PPs can be divided into two main groups, which are
the protein serine/threonine phosphatases (PPPs) and the
protein tyrosine phosphatases (PTPs). The PPPs constitute
the majority of the PPs and target phosphoproteins on their
serine and/or threonine residues. The three most document-
ed PPPs in the heart are protein phosphatase 1 (PP1), pro-
tein phosphatase 2A (PP2A), and protein phosphatase 2B
(PP2B) also known as calcineurin. Mechanisms by which
PPPs regulate Ca2+ homeostasis and cardiac function are
well documented in human and animal models of heart
failure [12–14]. Since PPPs have been the topic of many
excellent reviews, they will not be discussed in this review
[9, 15, 16]. The PTPs dephosphorylate tyrosyl residues in
proteins [17, 18] with the majority of PTPs being active
enzymes and as abundant as protein tyrosine kinases
(PTKs) [10]. Here, we summarize the role of the PTPs in
heart development and cardiovascular diseases, particular-
ly their effect on cardiac hypertrophy and how their dys-
regulation progresses to heart failure. Finally, we discuss
the inhibitors of PTPs and their therapeutic potential for the
treatment of heart disease in human.
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Protein tyrosine phosphatase family
and substrate specificity

In human, more than 100 genes encode for the PTPs among
which 81 are active phosphatases [10, 19, 20]. The PTPs con-
stitute a large family of enzymes, many of which harbor a
transmembrane domain and a variable ectodomain (for re-
view, see [21–23]). All PTPs share a common signature motif
(HCXXGXXR) responsible for the enzyme activity. The PTP
superfamily can be divided into four classes based on their
cellular localization/catalytic domains: the receptor-like
PTPs (rPTPs), the non-receptor PTPs (nrPTPs), the low mo-
lecular weight PTP (LMWPTP), and the VH-1 and CDC-25
groups [10, 24–27]. A different classification of PTPs exists
based on their amino acid sequence and catalytic domain,
which groups them into four classes (reviewed in [10]).
Class I includes rPTPs and nrPTPs also known as Bclassical^
pTyr-specific PTPs. These comprise 38 PTPs, and VH1-like
Bdual-specificity^ PTPs (DUSPs) which are very divers with
61 members able to dephosphorylate pTyr and pSer/pThr res-
idues. Class II PTP has a single member, the LMWPTP that
targets substrates specifically on their Tyr residues. Class III
PTPs include three Bdual-specific^ Cdc25 enzymes, while
class IV is represented by Eya proteins with pTyr or dual
pTyr/pSer activity.

Tyrosine phosphorylation process mediates most if not all
cell signaling processes including growth, differentiation, sur-
vival, and death [28]. In the early 1990s, the PTPs were main-
ly considered as housekeepers or passive players in the cell
[10, 11]. After considerable efforts in the field, it is now rec-
ognized that PTPs are critical regulators of cell signaling.
Deregulation of their expression or activity can compromise
cell physiology and hence lead to diseases [29]. The
importance of PTPs in regulating signaling pathways was first
illustrated by the discovery of CD25, (a DUSP) and SHP2,
which can positively regulate signaling by increasing the
phosphorylated level of a tyrosyl site of PTK [30–33]. PTPs
act as important regulators of tyrosine phosphorylation in
many cell types including cardiac cells [34, 35].

Role of PTPs in cardiac development
and diseases

Out of the 107 human genes encoding PTPs, very few have
been reported to have a role in the cardiovascular system. Up
to this date, the PTPs implicated in cardiac development and
disease include the protein-tyrosine phosphatase 1B (PTP1B),
the Scr homology-2 (SH2) domain-bearing non-transmem-
brane protein tyrosine phosphatase (SHP2), and the
LMWPTP (Fig. 1). Recent studies used genome-wide
siRNA/shRNA screening and proteomics approach to identify
novel roles and substrates of PTPs in human pathologies [36].

This powerful technology will be useful and adaptable for
investigators to discover new PTPs implicated in human car-
diovascular diseases. Below, we summarize mechanisms by
which these PTPs regulate cardiac contractility and their role
in heart development and disease (Table 1).

PTP1B

The protein-tyrosine phosphatase 1B (PTP1B) is a non-
transmembrane PTP with a wide tissue distribution and
expressed mainly in the endoplasmic reticulum (ER) via its
C-terminal domain [49]. PTP1B binds directly to PTK recep-
tors including the insulin receptor (IR) and epidermal growth
factor (EGF) receptor [50–53]. PTP1B is a key negative regu-
lator of both insulin and leptin pathways ([54, 55] for review).
Genetic deletion of PTP1B in mice results in insulin sensitivity
and protects mice against high-fat diet-induced obesity [52, 56,
57]. High-fat diet-induced obesity increases the risk of hyper-
tension and cardiovascular disorders, although the mechanism
of action is unknown [58, 59]. Insulin resistance is strongly
associated with oxidative stress, cardiac aging, and cardiomyo-
cyte contractile dysfunction. Consistent with the effects of obe-
sity and insulin on the cardiovascular system, PTP1B has
emerged as a key regulator of obesity-induced cardiovascular
disorders (recently reviewed in [39]).

Early studies using cardiac overexpression of antioxidant
enzymes and dietary models documented reduced Akt expres-
sion and phosphorylation associated with increased PTP1B
cardiac expression, suggesting a role of PTP1B in cardiac
function [60, 61]. Enhancement of PTP1B was associated
with impaired cardiac contractile and intracellular Ca2+ dys-
function [52, 60, 61]. As expected, PTP1B overexpression
correlated with decreased phosphorylation of the IR
(Tyr1146) and Akt after insulin stimulation in advanced car-
diac aging and pre-diabetic insulin resistant hearts [60, 61].
Gomez and colleagues established the role of PTP1B in heart
failure when they showed that mice with gene deletion or
specific inhibition of PTP1B are protected against cardiac
contractile dysfunction and heart failure after myocardial in-
farction. Improved heart function correlated with reduced fi-
brosis and hypertrophy while infarct size did not appear to
change [38] (Table 1). In line with this study, recent findings
showed that mice genetically lacking PTP1B resisted against
chronic afterload-induced heart failure via a cardiac improve-
ment of VEGF and angiogenesis signaling [39, 40].
Interestingly, eNOS, which modulates insulin secretion, was
reduced in insulin resistant hearts or increased in PTP1B-
deficient mouse hearts [38, 61]. Whether eNOS is directly
associated with the insulin signaling is unclear, however the
reduction of ROS generation alleviated insulin resistance-
induced contractile dysfunction. PTP1B deletion enhanced
capillary density and myocardial perfusion in mice 8-day
post-myocardial infarction associated with increased
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VEGFR2 activity, although no reduction of infarct size was
observed. This suggests that the beneficial effect of PTP1B
ablation is mostly due to improved vascular remodeling pos-
sibly through nitric oxide (NO) [41]. Consistent with this,
Panzhinskiy and collaborators reported that ER stress acti-
vates PTP1B via ROS-NFkB signaling resulting in insulin
resistant in skeletal muscles under high-fat diet condition
[52]. Also, endothelial dysfunction associated with diabetes
did not occur in PTP1B-deficient mice mostly due to in-
creased cyclooxygenase 2 expression [62]. Collectively, these
studies are consistent with a protective role of PTP1B deletion
against pathological cardiac and vascular remodeling. This is
in contrast with the study by Belin de Chantemele and col-
leagues, where PTP1B knockout mice exhibited high blood
pressure in response to leptin infusion [37]. This study indi-
cates that PTP1B is a modulator of cardiovascular function
through its capacity to negatively regulate leptin-induced hy-
pertension possibly through the sympathetic nervous system.
Overall, there is clear-cut evidence for a role of PTP1B in
heart physiology and pathophysiology. More investigations

are needed to define the underlying mechanisms by which
PTP1B affects cardiovascular function. In this regard, a sig-
naling of interest not yet elucidated is the alteration of Ca2+

handling through modulation of SERCA2a and NCX1 by
PTP1B in the heart. Dysregulation of the sarco/endoplasmic
reticulum Ca2+-ATPase (SERCA2a) and NCX1 expression
impair cardiac contractility. In cancer, targeting of Ca2+

signaling has been proposed as an alternative therapy to treat
human cancer patients [63]. The use of animal models lacking
or overexpressing PTP1B and cellular models with genetic
siRNA targeting of PTP1B could be a starting point to
decipher the SERCA2a-NCX1-PTP1B axis in altered Ca2+

signaling-driven heart failure.

SHP2

The Scr homology-2 (SH2) domain-bearing non-transmem-
brane protein tyrosine phosphatase SHP2 also known as
protein-tyrosine phosphatase non-receptor type 11 (PTPN11)
or protein tyrosine phosphatase 2C (PTP-2C) is encoded by

Fig. 1 Protein tyrosine
phosphatases (PTPs) playing a
role in the cardiovascular system.
Among the PTPs, three non-
transmembrane PTPs have been
described with roles in the
cardiovascular system: protein
tyrosine phosphatase 1B (PTP1B)
and Scr-homology 2 domain
containing phosphatase 2 (SHP2)
belonging to class PTPs, and low
molecular weight protein tyrosine
phosphatase (LMWPTP), the sole
member of class II PTPs
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the PTPN11 gene. SHP2 is ubiquitously expressed [64] and is
important for the full activation of downstream partners (Ras/
ERK/MEK) for most if not all the PTKs and cytokine recep-
tors. SHP2 regulates important cellular events including dif-
ferentiation, proliferation, and survival [64]. Key signaling
pathways affected by SHP2 dysregulation include ERK1/2,
insulin, AKT/GSK-3β, and mTOR pathways [3, 18, 44–46,
65] (Table 1). Not surprisingly, aberrant expression of SHP2
or changes within SHP2 activity are associated with human
diseases and experimental animal models.

SHP2 is a key PTP required for early development. To
avoid the embryonic lethality associated with SHP2 ablation,
the role of SHP2 in early heart development was first ad-
dressed using Xenopus cardiac explants treated with the
SHP-2-specific inhibitor NSC-87877 [42]. Results showed a
reduction of myosin heavy chain expression, a lack of early
cardiac markers of differentiation and of pharyngeal meso-
derm. SHP2 interacted with FRS2 and that effect was associ-
ated with increased phosphorylation of SHP2 at both tyrosine
542 and 580. Collectively, this study positioned SHP2 down-
stream of FGF and showed that SHP2 is required for the
maintenance of cardiac progenitors and survival in Xenopus
embryonic hearts. Additional studies support the direct role of
SHP2 in cell development and survival through the FGF sig-
naling pathway [42, 66, 67]. Deletion of SHP2 in skeletal and
cardiac muscle also causes cardiac dysfunction leading to di-
lated cardiomyopathy and premature death [46].

Germline mutations in SHP2 cause Noonan syndrome
(NS) in human. This relatively common condition affects 1
in 1000–2000 children born with heart malformations includ-
ing pulmonary valvular stenosis, septal defect, hypertrophic
cardiomyopathy, and also abnormal facial characteristics and
developmental delays [68, 69]. SHP2 mutations are also im-
plicated in NS with multiple lentigines known as LEOPARD
syndrome (LS). This rare genetic condition is associated with
congenital heart malformations and also sensorineural deaf-
ness, growth retardation, and skin, craniofacial, and genital
abnormalities [70, 71] (for reviews). Although NS and LS
share common clinical features, SHP2 mutations are activat-
ing in NS due to increased phosphatase activity and
inactivating in LS because of an inhibition of the catalytic
activity of the phosphatase [72, 73]. However, while the ma-
jority of NS mutations have a gain-of-function phenotype,
there is also documentation that LS-causing mutations reduce
SHP2 phosphatase activity but prolong substrate turnover to
produce a loss-of-function phenotype [74].

The effects of NS- and LS-associated SHP2 mutations on
cardiac morphogenesis can be recapitulated in mice and are
due to increasedMAPK signaling. Indeed, independent inves-
tigations demonstrated that both Q79R SHP2 gain of function
and lack of SHP2-induced hyperactivation of ERK1/2 and
RhoA signaling, leading to impaired heart function and dilated
cardiomyopathy [44, 45]. Expression of the LSmutant Q510ET
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causing severe hypertrophic cardiomyopathy in infants in-
hibits the differentiation of P19CL6 cells in cardiomyocytes
mostly due to increased Akt/GSK3β/β-catenin activity [3, 18,
44–46, 65], and induces hypertrophic cardiomyopathy inmice
through mTOR pathway [3].

Gain-of-function SHP2 mutants (R465M, E76A, D61G)
enhanced Ca2+ response in cardiomyocytes through RTKs
mediated Ca2+ signaling pathway but not upon activation of
G protein-coupled receptor [43], further supporting the re-
quirement of SHP2 in the activation of most RTK signaling.
Consistent with these findings, more recent data indicate that
NS and LS SHP2 variants significantly enhanced ERK activ-
ity, which partly mediated defective early cardiac develop-
ment in zebrafish [47]. Furthermore, expression of Shp2-
Y279C, a mutation causing LS in human, recapitulated the
phenotypic abnormalities seen in LS patients with signs of
hypertrophic cardiomyopathy progressing to dilated cardio-
myopathy and enhanced interaction of Shp2 with IRS1, and
increased Akt/mTOR activity. These cardiac defects were to-
tally reversed by treatment with the mTOR inhibitor
rapamycin [18]. The developmental defects and adult-onset
hypertrophic cardiomyopathy in Shp2-Y279C mutant mice
correlated with increased AKT activity, inhibition of
FOXP1/NOTCH1 pathways, and upregulation of NFATactiv-
ity. Dysregulated signaling originated from the endocardium
indicating a reciprocal cross-talk between the endocardium
and the myocardium, which is essential for heart development
[48]. Such non-cell-autonomous mechanism was also trig-
gered by overexpression of the related transcription enhancer
factor-1 RTEF1 in endothelial cells, which induced cardiac
hypertrophy in response to aortic constriction through an in-
crease of VEGFB protein level [75]. Although studies of
Lauriol and colleagues did not reveal enhanced expression
of VEGFB mRNA level, they did not exclude a possible im-
plication of SHP2 in NSML cardiac hypertrophy that employs
this RTEF1-VEGF signaling mechanism [48].

LMWPTP

LMWPTP is a class 2 cys-based PTP encoded by the ACP1
gene located on the short arm of chromosome 2 (2p25) in the
human genome and widely distributed within various tissues
and organs including the heart [10, 76, 77]. LMWPTP con-
trols a number of essential processes in mammalian cell phys-
iology [10]. This 18 kDa protein tyrosine phosphatase has
three isoforms generated by alternative splicing. The first
two isoforms produce functional proteins while the third iso-
form is considered a pseudogene [76, 78–80]. A decrease of
both LMWPTP isoforms leads to increase in phosphorylation
of the insulin receptor, Akt and PI3-K activity in the liver [81].

LMWPTP has five tyrosine residues and can be phosphor-
ylated by tyrosine kinases such as V-src, Lck, and Fyn.
Depending on the tyrosine residue phosphorylated,

LMWPTP has different phenotypes. The phosphorylation of
Tyr131 residue leads to a 25-fold increase of LMWPTP level
while the phosphorylation of Tyr132 mediates the recruitment
of Grb2 protein [82]. On the other hand, like other PTPs,
LMWPTP can be dephosphorylated by tyrosine phosphatases,
and can by itself dephosphorylate various tyrosine kinases and
their respective substrates [24, 76].

Studies suggested that its overexpression causes increased
dephosphorylation of phosphotyrosine, which may repress tyro-
sine kinase oncogene malignant transformation and growth fac-
tor receptor signaling [10]. LMWPTP also modulates the JAK-
STAT pathway by binding and dephosphorylating STAT5 [83].
Furthermore, LMWPTP oxidation prevents dephosphorylation
and inactivation of STAT2 and JAK5 [83]. In addition,
LMWPTP is regulated by ROS mediated oxidation [84].
LMWPTP tyrosine residues can be oxidized by exogenous oxi-
dative stress by glucose oxidase or sodium pervanadate in vivo
[24]. Alteration of LMWPTP levels causes a reduction in enzy-
matic binding, glycolysis, and erythrocyte plasticity in T cell
signaling [76]. Furthermore, an increase in LMWPTP levels
was associated with protection against several conditions such
as allergy, asthma, and abortion [76].

LMWPTP also acts as a negative regulator of EphA2 tyro-
sine phosphorylation, which regulates tumor cell growth and
survival [83, 85]. LMWPTP affects cellular proliferation
through reduction of FGFR tyrosine phosphorylation [24,
82, 86] and modulates PDGF expression through its phospha-
tase activity [84]. Overexpression of LMWPTP markedly de-
creases cell growth rate as a secondary effect of PDGF reduc-
tion [24]. LMWPTP also acts as a negative regulator of insulin
signaling as shown by the improved glucose and insulin tol-
erance of diet-induced obese mice injected with an LMWPTP
antisense oligonucleotide [81].

Examination of genetic variations in the ACP1 gene re-
vealed the presence of single-nucleotide polymorphisms
(SNPs) that alter the enzyme activity and the ratio of the two
main protein isoforms LMPTP-A and LMPTP-B [87].
Association studies in various populations indicated a role of
ACP1 in metabolic syndrome and coronary artery disease
[88–91]. In particular, the hypertrophic response of the myo-
cardial wall is regulated by LMWPTP through activation of
growth factors such as PDGF, IGF1, and insulin [76].
Moreover, increased LMWPTP activity reduces the metabolic
rate and subsequently enhanced the demand of the hypertro-
phic response [76]. Consistent with this report, deletion of
LMWPTP in mice confers a cardio-protective phenotype after
long-term pressure overload hypertrophy [4]. The striking re-
duction of fibrosis and sustained cardiac function of
LMWPTP knockout mice subjected to pathological stress
are associated with upregulation of fetal cardiac genes, in-
creased insulin receptor phosphorylation, and inactivation of
Gαq/11/PLCβ/CaMKII pathways. LMWPTP levels are also
high in the fetal murine heart, reduced in the post-natal heart,
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and increased in patients with end-stage heart failure indicat-
ing that LMWPTP is a positive regulator of pathological car-
diac hypertrophy [4].

PTP inhibitors as potential new therapeutic
for cardiac diseases

PTPs play a central role in modulating physiological cardiac
development [35]. Hyper-activation of the catalytic domain of
PTPs initiates cardiomyopathy through the deregulation of cel-
lular processes like proliferation [43]. Therefore, the implication
of PTPs in the development of cardiomyopathies supports PTPs
as potential targets for signaling-based therapeutics for these dis-
eases. Two decades ago, vanadate and pervanadate were widely
used to inhibit PTPs including PTP1B [92] (Table 2). This inhi-
bition revealed potent and selective to PTPs but unfortunately
non-specific. Subsequently, several small molecules targeting
PTPs have been developed or testedwith the hope to treat human
pathologies including heart failure, diabetes, and cancers. Among
those, vanadyl sulfate protected against ischemia-reperfusion in
rats via increased FLIP and decreased Fas ligand and Bim ex-
pression secondary to AKTactivation [93]. However, when test-
ed in diabetic patients, vanadyl sulfate altered the expression of
proteins involved in early insulin signaling in skeletal muscle,
with no effect on protein phosphatase activity [94]. Endothelial
dysfunction of peripheral arteries after short-term ischemia-in-
duced heart failure was improved in mice after administration
of AS279, AS098, and AS713 PTP1B inhibitors [95].
Compound inhibitors of PTP1B have being developed in aca-
demic laboratories and by the pharmaceutical industry and tested
in animal models of obesity. Some like trodusquemine and
ertiprotafib have reached phase 2 clinical trials to treat obesity
and diabetes, although ertiprotafib was discontinued for lack of
efficacy [55, 99]. It remains to be seen whether PTP1B inhibition
has long-term beneficial effects for the treatment of cardiovascu-
lar disorders such as congestive heart failure.

Chromones, which are derivatives of benzopyran, are a class
of highly active inhibitors of LMWPTP. They also have selective
inhibition towards PTP1B [97]. The findings that LMWPTP
plays a role in cancer and heart failure and alters insulin signaling
prompted interest to develop inhibitors of LMWPTP with high
activity. A series of compounds were discovered which inhibit
LMWPTP and also PTP1B [97]. Recently, several novel small-
molecule inhibitors of LMWPTP with potency and strong selec-
tivity were discovered [100]. Also, a non-competitive small-mol-
ecule inhibitor of LMWPTP with high selectivity over other
phosphatase with the ability to reverse high-fat diet-induced obe-
sity has been reported [98]. This new inhibitor is viewed as
promising for the treatment of human diseases including type 2
diabetes and heart failure. Numerous efforts have been made to
identify inhibitors of SHP2 since missense mutations cause NS
and LS in human. High-throughput screening identified a small

molecular weight compound PHPS1 with high specificity and
cell permeability [101]. PHPS1 inhibits SHP2 catalytic domain
and was found to prevent the hypertrophic effect of mutant
SHP2-Q510E in isolated cardiomyocytes and in mice expressing
the mutant protein [96, 101]. Since the SHP2-Q510E mutation
causes an aggressive form of LS in human, it would be of interest
to test whether the PHPS1 inhibitor confers cardioprotective ef-
fects in clinical settings. Compound inhibitors of SHP2 have also
been identified using a computational approach [102]. One com-
pound #220–324 proved efficient in inhibiting SHP2-mediated
signaling and proliferation of cancer cells, but whether it is an
ideal inhibitor to treat the cardiomyopathy associated with SHP2
mutations remains to be seen.

Challenges with PTP inhibitors

Although recent advances are encouraging, the use of PTP in-
hibitors faced significant technical challenges in the early days.
These were mostly due to the lack of PTP inhibitors with both
specificity and strong binding activity. This was in part due to
the small size of PTPs in addition to sharing a common catalytic
signature motif (HCXXGXXR) responsible for the enzyme ac-
tivity. For instance, NSC-87877 inhibited both Shp2 and Shp1
in vitro with the same efficacy [103]. Another important chal-
lenge still remaining today is the need to optimize and develop
safer PTP inhibitors for heart failure treatment avoiding undesir-
able effects, in particular, cardiotoxicity. Thus, solving these
technical challenges is critical before PTP inhibitors enter exten-
sive preclinical trials to treat human heart failure.

Complementary concepts from computer-aided drug design
(CADD) to 3DQSAR/structure-based design have been used in
experimental assays to identify potential drugs targeting the cat-
alytic pocket of PTPs, ligand binding, and conformational
change during inhibitor interactions [104–106]. Information on
the 3D crystal structure on PTPs is a key step for in silico
screening of abundant inhibitors available in databases. SHP2
and PTP-1B are shown to be Bdruggable^molecules for treating
cardiac diseases and other pathologies. However, few 3D crystal
structure PTPs are currently available, thusmaking the computer
search approach to find PTP inhibitors difficult [107–109]. PTP-
targeted therapy is still in its early phase, although novel drugs
are emerging for cancer treatment [75, 110, 111]. Further testing
is needed to determine whether these new compounds can be
used for pharmacological treatment of cardiomyopathies.

Conclusion

Growing experimental data support the role of PTPs as activators
of cardiac diseases that operate through different mechanisms.
This extensive work led to consider PTP family as drug targets to
treat the diverse forms of cardiomyopathies. Few PTP inhibitors
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are known compared to the number of existing compounds for
the treatment of such diseases. With the discovery of new com-
pounds based on new screening strategies combined with the
information on the 3D crystal structure on PTPs, one hopes that
the design of drugs targeting PTPs will open a door of opportu-
nity to treat human heart failure.
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