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Aims: Design to develop an artificial intelligence (AI) algorithm to accurately

predict the pulmonary artery pressure (PAP) waveform using non-invasive

signal inputs.

Methods and results: We randomly sampled training, validation, and testing

datasets from a waveform database containing 180 patients with pulmonary

atrial catheters (PACs) placed for PAP waves collection. The waveform

database consisted of six hemodynamic parameters from bedside monitoring

machines, including PAP, artery blood pressure (ABP), central venous

pressure (CVP), respiration waveform (RESP), photoplethysmogram (PPG), and

electrocardiogram (ECG). We trained a Residual Convolutional Network using

a training dataset containing 144 (80%) patients, tuned learning parameters

using a validation set including 18 (10%) patients, and tested the performance

of the method using 18 (10%) patients, respectively. After comparing all multi-

stage algorithms on the testing cohort, the combination of the residual neural

network model and wavelet scattering transform data preprocessing method

attained the highest coefficient of determination R2 of 90.78% as well as

the following other performance metrics and corresponding 95% confidence

intervals (CIs): mean square error of 11.55 (10.22–13.5), mean absolute error

of 2.42 (2.06–2.85), mean absolute percentage error of 0.91 (0.76–1.13), and

explained variance score of 90.87 (85.32–93.31).

Conclusion: The proposed analytical approach that combines data

preprocessing, sampling method, and AI algorithm can precisely predict PAP

waveform using three input signals obtained by noninvasive approaches.
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GRAPHICAL ABSTRACT

Central illustration figure.

Highlights

- A pioneering study proposes a novel high accuracy
algorithm to estimate pulmonary blood pressure from
noninvasive data sources.

- The accurate prediction of pulmonary blood pressure
presents a promising breakthrough in improving heart
failure management using a noninvasive approach.

- Reveal a new connection between hemodynamic
parameters attained by pulmonary atrial catheterization
and biosignals collected from the body surface.

Introduction

Pulmonary artery pressure (PAP) indicates the blood
pressure in the pulmonary artery (PA), which can be measured
by the right heart catheterization (1). Pulmonary artery
hypertension is defined by a mean pulmonary artery pressure

≥25 mmHg at rest. Elevated PAP can be caused by abnormalities
in the precapillary pulmonary arterioles or by abnormalities
that increase left atrial pressure resulting in back pressure on
the pulmonary circulation, inevitably leading to ventricular
dilation and remodeling, then heart failure (HF) and death.
The particularly pernicious effect of HF is that patients
usually progress to a state of excess intravascular volume and
congestion, which leads to hospitalization and intravenous
medical treatment to optimize the intravascular volume state
(2–4). Newly developed and effective strategies to reduce
hospitalizations in patients with persistent symptoms after
previous HF hospitalization are based on periodic assessment
of hemodynamics and PAPs (5–7). Currently, PAPs can
be acquired through implantable hemodynamic monitoring
devices such as CardioMEMS (St. Jude Medical, Inc., Atlanta,
GA, United States) or pulmonary artery catheterizations (PACs)
using Swan-Ganz catheterization (1). However, these devices
are expensive, invasive, and inevitably increase the risk of
complications that include abnormal heart rhythms, rupture of
the pulmonary artery, severely reduced blood flow to parts of
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the lung, blood clots causing a stroke, infection of the heart
valves, etc. In experienced centers, the incremental risk of PAC
placement is low in patients who already have central venous
access, as the biggest risk (bleeding and infection) stems from
central access itself. While highly helpful in the inpatient setting,
the best utilization for Swan-Ganz catheterization and other
PACs has been the subject of multiple discussions over the
years. A study showed that PAC procedures may increase the
risk of death for critically ill patients (8). Therefore, a precise
and noninvasive PAP monitoring method is demanded, which
would preferably apply to patients before they reach a state
that necessitates inpatient intervention. This work introduced
a pioneering system to estimate pulmonary blood pressure from
noninvasive data sources, a genuinely transformative result that
will benefit patients and reduce hospitalization.

Materials and methods

Study design

The institutional review board of Chapman University has
approved this retrospective observational study. The study was
conducted in accordance with the Declaration of Helsinki.

Five hemodynamic parameters, including artery blood
pressure (ABP), central venous pressure (CVP), respiration
waveform (RESP), photoplethysmogram (PPG), and
electrocardiogram (ECG), were used as the input variables,
and PAP is the outcome variable designated for prediction.
Although ABP and CVP in this study were acquired by invasive
catheter, it is valuable to evaluate the influence of ABP and
CVP for PAP prediction since the surrogate variable for ABP
and CVP are available (9, 10). Thus, we built two models to
explore optimal approaches for predicting PAP values based on
the different combinations of input variables mentioned above,
one with all five hemodynamic parameters as inputs and the
other harnessing three non-invasive variables RESP, PPG, and
ECG. We carried out the same study design protocol and the
analytical methods mentioned below to build these two models.
Since the artificial intelligence (AI) model’s performance mainly
depends on the input features and learning parameters, we
designed a wide-scale comparison (shown in Figure 1) to detect
the best combination of AI model, input features, and learning
parameters. We carried out a large-scale comparison among
all competing approaches using a training-validation-testing
design. The study encompassed five phases (presented in the
central illustration figure): (1) data preprocessing phase to
choose the waveform record and carry out noise reduction; (2)
data preparation phase to fragment the waveform record to
multiple sample windows; (3) feature extraction phase via the
wavelet scattering transform method; (4) model tunning and
comparison phase to find the optimal learning parameters and
input features; and (5) evaluation phase to evaluate, interpret

and report the model performances. Eleven models (shown
in Supplementary Table 2) were trained and tested using the
scheme mentioned above. Similar to previous studies (11), the
R2 statistic was used to select the optimal model.

Patient selection

The MIMIC-III Waveform Database Matched Subset (12)
contains 22,317 waveform records from 10,282 distinct patients
admitted to the Beth Israel Deaconess Medical Center in
Boston, MA, United States. This database is a subset of
the MIMIC-III Waveform Database, representing the records
associated with patients who have identified clinical notes
available in the MIMIC-III Clinical Database. These recordings
typically include digitized signals such as ECG, ABP, CVP, PAP,
respiration, and PPG, but not every record simultaneously has
six signals. Thus, according to the study design, we selected
all possible samples in the database from 180 patients who
had experienced PAC procedures and had complete waveform
records that included the following six signals, PAP, ABP, CVP,
respiration, PPG, and ECG lead II. An example of a waveform
record segment is presented in Figure 2A.

Data preprocessing protocol and
segmentation

All six signals were synchronized to a 125 Hz sampling
rate when the waveform database was digitalized. The bandpass
filters with highpass at 50 Hz and lowpass filter at 0.5 Hz
were applied to the waveform records of 180 patients. This
digital filter has been successfully applied to prior advanced
ECG data analysis (13, 14). In this work, we employed a sliding
window method to create model input samples of distinct
sizes. Windows with a specified length moved continuously by
a predetermined step over the entire length of the waveform
record. The data values within these windows were the input
samples supplied as input to the AI models. We deployed a large
scale comparison based on the performance of the AI models
to find the optimal window size and step length. The analyzed
values of the window size ranged from 0.5 to 5 s, and the step
sizes ranged from 0.1 s to the value of the window size. An
example of the segmentation of waveform records is shown in
Figure 2B.

Wavelet scattering network and
wavelet analysis

Fourier analysis was used to reveal the frequency domain
information. However, this method cannot accurately track
frequency changes precisely aligned with the time-domain
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FIGURE 1

Comparison design. Each model is configured by a set of learning parameters and supplied features, either raw signal or wavelet scattering
features that were generated from waveform records with different window sizes and step lengths. The analyzed values of the window size
ranged from 0.5 to 5 s, and the step sizes ranged from 0.1 s to the value of the window size. An example of the segmentation of waveform
records is shown in Figure 2B. A total of 11 models were compared, including generalized linear regression, ridge regression, lasso regression,
stochastic gradient descent regression, support vector machine regression, nearest neighbors regression, Gaussian process regression, random
forest regression, extremely randomized trees regression, extreme gradient boosting tree regression, and residual convolutional neural network.

even though fast Fourier transform and windowed Fourier
transform can tackle this problem. Wavelet transform (15) can
also address this problem and presents frequency distribution
on any time scale. For example, a maximal overlap discrete
symlet4 wavelet transform of a PAP signal was shown in
Figure 3A. Moreover, the wavelet scattering network (16, 17)
proposed by Mallet was developed to present the frequency
spectrum on multiscale contractions. The more essential
characteristics of wavelet scattering transform favored by the
AI models are the linearization of hierarchical symmetries
and sparse representations. An example of wavelet scattering
transform of a segment of ECG signal is presented in
Figure 3B.

Since the performance of features extracted from raw signals
is not necessarily better than raw signal signals, for example,
a convolutional neural network model that has convolution
operations inside of the model to extract features, we compared
the performance of models using raw signals and ones taking
input features of wavelet coefficients. In the comparison
configuration, if input features are wavelet coefficients, the
learning output will be wavelet coefficients transformed from
the PAP signal; if input features are raw signals, the model will
directly predict the PAP waveform signal. For example, if three

raw signals (ECG, PPG, and respiration) are input data, the
wavelet scattering transform will generate a wavelet coefficient
matrix with a size of m × n × 3. m is the number of scattering
paths, n is the number of scattering coefficients in each path, and
3 is the number of signals. The wavelet coefficient matrix will be
directly supplied to a neural network model that can take multi-
dimensional input. In contrast, the wavelet coefficient matrix
will be converted into a long vector to provide the other AI
models that only can take one-dimensional input. The output
of the model will be wavelet decomposition efficients from a
maximal overlap discrete symlet4 wavelet transform of a PAP
signal (shown in Figure 3A).

Convolutional neural network with
residual block structure

Residual neural network (18) was initially proposed to solve
classification problems, especially for image classification and
segmentation tasks. One big problem of a deep learning neural
network is the vanishing gradient problem (19). The deeper the
network is, the harder it is to be trained. In the residual neural
network (shown in Figure 4), the output from the previous layer,
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FIGURE 2

Demonstration of six signals and segmentation method. (A) ABP, CVP, respiration, PPG, and ECG are input predictors, and PAP is the outcome
variable. (B) The sliding window method was adopted in this study to generate input samples.

called residual, is added to the production of the current layer.
Therefore, the vital information was carried from top to bottom,
which addressed the gradient vanishing problem. We used the
mean square error loss function in this work as the models
predict continuous outcomes.

The resNet50 neural network architecture (shown in
Figure 4) achieved the highest R2 value adopted and used the
wavelet scattering features as input. The model contains 50
embedded convolutional layers. The network input shape was
5 × 1,008 × 4 that comprised of five signals, 1,008 features,
and four channels (resolution scales defined in wavelet scatter
transformation). Each input sample that consists of five signals
over 2 s window length was transferred into a matrix of size
5 × 1,008 × 4. The signal decomposition into four spectrum
pictures is shown in Figure 3B. The output is a linear layer
with 1,750 nodes (250 × 7), a vector of wavelet coefficients

transformed from a segment of PAP single with a window size
of 2 s. We carried out a grid search to find optimal hyper
parameters to tune the model, including dropout value with (10,
20, 30, 40, and 50%), learning rate with range (0.0001–0.001),
batch size with (8, 16, 32, 64, and 128), and epoch number with
(1, 2, 3, 4, and 5).

Systolic and diastolic blood pressure
computation

Systolic blood pressure (SBP) is the pressure caused by
the heart contracting and pushing out blood. Diastolic blood
pressure (DBP) presents the pressure when the heart relaxes and
fills with blood. These two parameters give a straightforward
understanding of hemodynamics. Thus, we developed an
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FIGURE 3

Wavelet scattering transform and wavelet decomposition. (A) A segment of PAP signal was decomposed to seven level components by a
symlet4 wavelet function, representing the frequency from high to low. (B) Four spectrumgrams present a segment of ECG signals after wavelet
scattering transformation in which the four filter banks and the Gabor wavelet function were used.

approach to extract systolic and DBP from a continuous PAP
waveform. At first, a Matlab (The MathWorks, Inc.) program
was employed to find all peaks and valleys in a segment of
the PAP waveform. The function named findpeaks was used
in the program. Secondly, a QRS detection algorithm (20) was
implemented by Python to detect how many heartbeats are in

a segment of the ECG waveform. The number of heartbeats in
the ECG signal equals the number of SBP and diastolic pressure
values in the PAP signal. Finally, we extract the highest peaks
and valleys according to the number attained from the second
step. The amplitudes of peaks and valleys are the SBP and
diastolic pressure values during each circulation cycle.
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FIGURE 4

Network architecture. The resNet50 design structure has 16 residual blocks, presenting 50 convolutional layers.

Statistical analysis

For the continuous and categorical variables, we calculated
means and standard deviations and frequency counts and
percentages, respectively. An asymptotic two-sample test for
proportions and Fisher’s exact test were used to test for
differences in gender distributions and mortality rates in
the training and test groups. A two-sample t-test was also
used to test for differences in the average hospital stay
times, ICU stay times, and waveform record times between
training and testing cohorts. Statistical optimization of the
gradient boosting tree model was done through iterative
training using the XGBoost package. The following measures
for diagnostic performance were formally analyzed, including
the R2 score, mean square error, mean absolute error, mean
absolute percentage error, and explained variance score. The
mathematical implementation of all measurement scores is
presented in Supplementary material. A two-sided 95% CIs
reflect the sample variability of the corresponding population

parameter estimates. CIs for the above measures were obtained
via bootstrapping with 20,000 replications. All analyses were
carried out using R version 3.5.3.

Results

We analyzed data from 180 patients that underwent PAC.
Summary of patient demographics and clinical characteristics
variables are shown in Table 1. We compared the distributions
of these background characteristics in the training and testing
groups and listed the associated p-values in the table. Since the
data were collected from observational study, the p-values for
hospital stay time, ICU stay time, and waveform record time
presents that these variables are not likely to have a similar
distribution between training and testing group. Graphical
representations of the distributions of ethnicity, religion, ICU
unit, marital status, insurance, language, and ICD-9 diagnosis
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TABLE 1 Summary statistics of demographic data and clinical characteristics of all patients.

Total Training + validation Testing p-Value

Age, mean ± SD, year 63.06 ± 14.57 61.21 ± 13.44 63.15 ± 15.21 <0.0001

Male, n (%) 118 (66.56) 60 (33.33) 58 (32.22) <0.0001

Hospital stay time, mean ± SD, hour 950.39 ± 1,954.36 921.39 ± 1,333.39 985.9 ± 1,900.06 0.25

ICU stay time, mean ± SD, hour 11.62 ± 15.97 15.3 ± 20.35 8.22 ± 19.99 0.63

Waveform record time, mean ± SD, hour 2.07 ± 2.97 4.51 ± 6.32 3.01 ± 4.38 0.72

Mortality, n (%) 37 (20.56) 20 (11.11) 17 (9.44) <0.0001

Heart rate, mean ± SD 89.2 ± 17.42 87.61 ± 18.02 89.31 ± 15.29 <0.0001

Heart rate variability, mean ± SD 31.43 ± 39.12 28.53 ± 37.65 30.65 ± 42.55 <0.0001

ABP systolic, mean ± SD 116.95 ± 22.7 118.66 ± 25.61 114.2 ± 23.5 <0.0001

ABP diastolic, mean ± SD 59.91 ± 14.8 61.47 ± 14.22 59.38 ± 12.68 <0.0001

ABP mean, mean ± SD 79.68 ± 16.47 79.98 ± 16.24 79.1 ± 16.33 <0.0001

PAP systolic, mean ± SD 42.25 ± 13.24 42.81 ± 13.56 41.9 ± 13.4 <0.0001

PAP diastolic, mean ± SD 22.15 ± 7.76 23.62 ± 7.14 22.06 ± 7.9 <0.0001

PAP mean, mean ± SD 29.9 ± 9.47 31.52 ± 8.88 28.9 ± 8.69 <0.0001

NBP systolic, mean ± SD 117.13 ± 20.09 116.91 ± 19.19 117.88 ± 22.39 <0.0001

NBP diastolic, mean ± SD 59.83 ± 15.65 59.6 ± 17.55 59.91 ± 16.66 <0.0001

NBP mean, mean ± SD 73.25 ± 14.86 75.17 ± 16.89 72.38 ± 14.1 <0.0001

Respiration rate, mean ± SD 19.79 ± 6.8 21.09 ± 7.1 18.99 ± 6.21 <0.0001

SPO2, mean ± SD 97.25 ± 2.81 97.11 ± 2.98 97.34 ± 2.76 <0.0001

Cardiac output, mean ± SD 5.27 ± 1.53 5.18 ± 1.69 5.29 ± 1.8 <0.0001

Ectopic BPM, mean ± SD 4.66 ± 6.3 4.3 ± 7.25 4.72 ± 6.89 <0.0001

Paced BPM, mean ± SD 6.11 ± 21.68 5.54 ± 20.9 6.6 ± 24.34 <0.0001

Normal BPM, mean ± SD 73.89 ± 26.88 72.12 ± 27.65 74.26 ± 27.55 <0.0001

PVC BPM, mean ± SD 0.61 ± 2.19 0.67 ± 2.87 0.6 ± 2.44 <0.0001

SD, standard deviation; ICU, intensive care unit; PVC, premature ventricular contraction; BPM, beat per minute.

code are shown in Supplementary Figure 1. A total of 924 ICD-
9 diagnosis codes were assigned when patients were discharged
from the ICU or died. Supplementary Figure 1G shows that the
top three ICD-9 codes for these 180 patients were hypertension,
HF, and coronary heart disease, respectively.

Based on two different input groups, one with three
non-invasive signal inputs and the other containing all
five available in the dataset, a total of 11 models, including
generalized linear regression, ridge regression, lasso regression,
stochastic gradient descent regression, support vector machine
regression, nearest neighbors regression, Gaussian process
regression, random forest regression, extremely randomized
trees regression, extreme gradient boosting tree regression,
and residual convolutional neural network with different
learning parameters, feature extraction methods and sampling
parameters (shown in Figure 1) were compared. The
comparison results show that the residual convolutional
neural network consisting of 50 convolutional layers, a window
size of 1 s, a step size of 0.2 s (presented in Figure 2B), and
wavelet scatter transform features attained the highest R2

scores of 97.17 and 90.78% for five and three signal input
groups, respectively. The performance metrics and 95% CIs
of neural network models with five input variables and three

ones are presented in Table 2. The performance metrics for
the left teen models compared in the study are reported in
Supplementary Table 2. The performance of wavelet transform
feature extraction exceeded that of raw signals with respect to
all performance measures. A segment of predicted and observed
PAP waveforms are presented in Figure 5. The comparison
testing result indicates that ABP and CVP signals improve the
prediction by an increase of 6.39% of the R2 scores. Moreover,
the performance analysis based on SBP and DBP is presented in
Table 3.

Discussion

A primary focus of the Cardiogenic Shock (CS) workgroup
recently has been in the field of mechanical support. The
protocols include using PA catheters in the acute phase
after insertion of such devices. It has a significantly different
population from the one we target as the utility of the
proposed algorithm is in obtaining PAP Non-invasively. The
CS research demonstrated improved outcomes with a complete
PA pressure assessment (21). Further, a meta-analysis of shock
literature shows lower in-hospital mortality for shock patients
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TABLE 2 The prediction performance comparison for two input groups with 95% CI.

R2 MSE MAE MAPE EV score

Five signal inputs + ResNet + wavelet
scatter transform features

97.17% (95.36–99.01) 2.52 (1.42–2.63) 1.14 (1.06–1.19) 0.043 (0.029–0.048) 97.11% (96.29–98.53)

Five signal inputs + ResNet + raw signal
feature

91.62% (89.78–93) 12.6 (8.64–18.99) 5.31 (3.86–9.45) 0.116 (0.62–0.186) 90.86% (80.35–98.85)

Three signal inputs + ResNet + wavelet
scatter transform features

90.78% (89.16–94.35) 11.55 (10.22–13.5) 2.42 (2.06–2.85) 0.91 (0.76–1.13) 90.87% (85.32–93.31)

Three signal inputs + ResNet + raw signal
features

85.02% (82.18–91) 14.23 (10.34–16.9) 9.31 (6.6–11.25) 1.33 (0.72–1.65) 83.22% (80.35–85.59)

Comparison between two input groups shows that ABP and CVP signals improved the prediction result 6.39% regarding R2 scores. Comparison between wavelet scatter transform
features and raw signals shows that the wavelet method yields better performance scores in all aspects. Five signal inputs include ABP, CVP, respiration, PPG, and ECG. Three signal inputs
encompass respiration, PPG, and ECG. MSE, mean of square error; MAE, mean of absolute error; MAPE, mean of absolute percentage error; EV score, explained variance score.

FIGURE 5

Prediction result compared with observational data. To inspect the prediction result visually, a randomly selected segment of observational PAP
signal was compared with prediction ones given by AI model with five input signals and three ones, respectively. The red line presents the
observational PAP signal collected by the catheter procedure; the green line indicates the prediction results using five input signals; the blue line
shows the prediction results using three input signals. On average, the estimation by five input signals is higher than that by three input signals.

TABLE 3 Assessment results through systolic and diastolic blood pressure.

MAD MAPD MD SD CP5

Duration = 250 samples (2 s)

Five signal inputs SBP 1.3 1% −0.05 0.8 99.21%

DBP 1.0 0.86% 0.1 0.45 99.45%

Three non-invasive signal inputs SBP 2.5 1.3% 1 0.77 96.9%

DBP 2.21 1.3% 0.81 0.41 95.2%

MAD, mean absolute difference; MAPD, mean absolute percentage difference; MD, mean difference; SD, standard deviation of difference; CP5 , cumulative percentage within a difference
of 5 mmHg; SBP, systolic blood pressure; DBP, diastolic blood pressure.

when PA pressures are obtained (22). In addition, Ranka
et al. presented a validated real-world analysis, although not
randomized (23).

The PAP-guided HF management entails a significant
reduction in HF hospitalization rates, more days alive, and
improved quality of life compared with guideline directed
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standard of care HF management only (24–26). Continuous
monitoring of daily PAP is a successful strategy to minimize
hospitalization risk (27, 28). The utility of PAP has been
validated through several outpatient implementations for the
management and tracking of HF. A reliable PAP assessment
has not been hitherto possible in the outpatient setting. Its
utility has been limited to inpatient assessment of cariogenic
shock, pulmonary artery hypertension, significant HF (typically
due to systolic dysfunction), and in evaluating congenital heart
disease conditions, especially for those on the transplant service.
Furthermore, it has brought about an interest in the outpatient
cohort where the prevention of readmissions is a priority.
Invasive devices such as the CardiomemsTM, HeartLogicTM,
and OptivolTM were introduced and well studied to manage
such a population. Using different approaches, including
assessing PAP, these technologies aim to assess volume status
and worsening congestion before overt clinical deterioration
that requires inpatient intervention. However, noninvasive
alternative measurements of PAP provide enormous advantages
for managing HF from compliance, safety, and cost-effectiveness
perspectives. This may also afford the opportunity to both
monitor such patients and intervene in the outpatient setting
before clinical deterioration requires inpatient treatment. Thus,
this study aimed to evaluate how well the machine learning
algorithm output matched the invasive PAP output. As the
patient population was a mix of different etiologies (myocardial
infarction, shock, HF, etc.), it would be a more accurate real-
world analysis as the algorithm would not be biased base on
the medical diagnosis. The current methodology would be
predictive for any of the etiologies or in cases of mixed diagnosis,
which is common.

Only using three non-invasive signals exclusively, the R2

score of 90.78% achieved on the test data by the proposed
method indicates the extremely high prediction accuracy and is
interpretable as the ability of the model explains approximately
91% of the variability of future data since R2 represents the
proportion of the variance for an output variable that is
explained by independent variables in a regression model (29,
30). In addition, a higher accuracy of prediction 97.17% is
expected if ABP and CVP signals are put into the model.
After PAP waveforms were estimated, SBP and DBP were
computed using the method introduced in the Method section.
The performance analysis based on SBP and DBP (presented
in Table 3) reports that the proposed model has a low mean
absolute difference (1.3), mean absolute percentage difference
(1%), mean difference (−0.05), standard deviation of difference
(0.8), and cumulative percentage within a difference of 5 mmHg
(99.21%). These two parameters given by proposed model, SBP
and DBP, can give clinical experts a reliable and straightforward
understanding of PAP.

The one major obstacle to block AI model applications
in the medical field is the feasibility of a complex application
environment caused by sample bias. For example, it will not

yield ideal outcomes if we apply a model trained by data
collected from healthy subjects to patients with cardiovascular
diseases. However, in this study, the ICD-9 code distribution
(Supplementary Figure 1G) shows that the top 20 conditions
of ICU admission were all cardiovascular diseases. Thus,
data used to train the model in this work and data on
which the model can be applied will potentially come from
similar populations. Thus, the exceptional model performance
discussed above will likely not decrease due to the sample bias
when deployed on new samples.

Finally, given the benefit of PAC management protocols
involving PAP (31), the proposed approach can be an
advantageous alternative to gain PAP by noninvasive
measurement modalities that avoid the risks and cost
inherent to PAC.

Study limitations

The input variables ABP and CVP were collected through
catheters. The prospective study based on noninvasive ABP and
CVP measurement can enhance the applicability of this work.
The influence of valve diseases, structural heart disease, and
congenital heart disease need to be studied further to confirm
the adoption condition spectrum of the proposed algorithm.
Furthermore, a concern could arise as the input variables ABP
and CVP were collected by catheter (an invasive modality).
Nevertheless, prior studies have already demonstrated that the
peripheral artery pressure waveform could be used to derive
ABP (9), and the peripheral venous waveform is reliable to
calculate CVP (10). Therefore, all input signals for the model
can be obtained through entirely non-invasive methods.

Conclusion

After a great scale comparison study regarding models,
parameters, and input features, the proposed AI algorithm
attained an exceptionally high prediction accuracy of PAP using
five or three signal inputs. The proposed solution can be a
non-invasive alternative to existing PAP measuring methods
and has high compliance, low risk of complications, and
medical expenditures. For future work, noninvasive ABP and
CVP signals can replace the invasive ones used in this study,
and a highly accurate non-invasive PAP prediction model
can be implemented.
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