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Glycine neurotransmission: Its
role in development
Rocío Salceda*

Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, Universidad Nacional
Autónoma de México, Juriquilla, Mexico

The accurate function of the central nervous system (CNS) depends of

the consonance of multiple genetic programs and external signals during

the ontogenesis. A variety of molecules including neurotransmitters, have

been implied in the regulation of proliferation, survival, and cell-fate of

neurons and glial cells. Among these, neurotransmitters may play a central

role since functional ligand-gated ionic channel receptors have been

described before the establishment of synapses. This review argues on the

function of glycine during development, and show evidence indicating it

regulates morphogenetic events by means of their transporters and receptors,

emphasizing the role of glycinergic activity in the balance of excitatory

and inhibitory signals during development. Understanding the mechanisms

involved in these processes would help us to know the etiology of cognitive

dysfunctions and lead to improve brain repair strategies.
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Introduction

The central nervous system (CNS) development is a long process that starts early
during embryogenesis and takes years to be completed in humans. The initial steps
involve precise coordination of cell proliferation, differentiation, and cell migration.
A tight control of these processes is achieved by integration of the intrinsic genetic
program with the extracellular signals present in the environment (Platel et al.,
2010; Caronia-Brown and Grove, 2011; Káradóttir and Kuo, 2018; Ali and von Gall,
2022). Many factors have been identified as regulators of neurogenesis; among these,
extracellular molecules, neurotransmitters, and their receptors have been found to be
present in the developing brain well before synaptogenesis occurs (Casanova and Trippe,
2006; Metzger, 2010; Carulli and Verhaagen, 2021), suggesting that they could mediate
signaling unrelated to classical neurotransmission.

Early neurotransmitter signaling has been implicated in a range of developmental
processes, such as differentiation, migration, neurite outgrowth, axon pathfinding,
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synaptogenesis, and survival of nascent neurons (Nguyen et al.,
2002; Heng et al., 2007; Platel et al., 2010; Spitzer, 2012).
The inhibitory neurotransmitter, glycine and its receptors are
not only present but also functional in the developing brain
before synaptogenesis occurs, suggesting their involvement in
development (Chalphin and Saha, 2010).

Adult glycinergic
neurotransmission

In addition to its role in cell metabolism, being the
structurally simplest amino acid, glycine, acting through
ionotropic receptors, also serves as an important and
widely distributed inhibitory neurotransmitter that is most
prominently expressed in adult brainstem, spinal cord, and
retina of animals from several phyla (Aprison and Werman,
1965; Werman et al., 1968).

The biosynthesis of glycine for its use in neurotransmission
is mediated by the serine hydroxymethyl transferase, which
uses pyridoxal phosphate and tetra hydrofolate as cofactors of
the reaction. In nervous system, glycine is also synthetized by
the glycine synthase (glycine cleavage, GCS) enzyme, which
catalyzes a readily reversible reaction between carbon dioxide,
ammonium ion, N5- N10-methylene tetrahydrofolate, NADH
and a proton to produce glycine, tetrahydrofolate and NAD+

(Daly and Aprison, 1974). Immunohistochemistry and in situ
hybridization studies in rats revealed that the glycine cleavage
enzyme is also expressed in embryonic neural stem/progenitor
cells, neuroepithelial cells, and astrocytes (Ichinohe et al., 2004).

Glycinergic transmission requires of high-affinity specific
transporters GlyT1 and GlyT2 for the reuptake of glycine from
the synaptic cleft into cells. These proteins are members of
the Na+/Cl− dependent neurotransmitter transporter family,
with GlyT1 expressed predominantly in glial cells and GlyT2
by neurons (Zafra and Giménez, 2008; Eulenburg and Gomeza,
2010). In addition to glycinergic transmission, GlyT1 can
modulate glutamatergic neurotransmission through NMDA
receptors, supporting its role in brain function and in various
diseases (Marques et al., 2020).

Glycine action is mediated by a strychnine-sensitive ligand
gated chloride channel glycine receptor (GlyR), which belongs
to the cys-loop ligand –gated ion channel superfamily that
are composed of five protein subunits that form homomeric
or heteromeric pentamers assemble around a central ion-
conducting pore (Langosch et al., 1988; Schmieden et al.,
1992; Betz et al., 1993; Lynch, 2004). GlyRs are anchored
postsynaptically by gephyrin, which binds to the β receptor
subunit and tubulin, resulting in the receptor clustering (Feng
et al., 1998; Kneussel and Betz, 2000). Four α subunits (1–
4) and one β subunit have been characterized to date, with a
stoichiometry reported first as 3α/2β (Becker et al., 1988; Kuhse
et al., 1993; Burzomato et al., 2003; Durisic et al., 2012) and later

as 2α/3β (Grudzinska et al., 2005); although an stoichiometry of
4α/1β was recently reported (Yu et al., 2021; Zhu and Gouaux,
2021). The α2 subunit is expressed in the immature spinal cord,
which switches to α1 in the adult, where the α1 and α3 subunits
are expressed. In the adult brain the α1 and α3 subunits are
mainly expressed; a4 has been demonstrated in mouse, chick
and zebrafish, being a pseudogene in humans (Becker et al.,
1988; Betz et al., 1993; Lynch, 2004). The adult retina expresses
the four α subunits (Grünert, 2000; Haverkamp et al., 2004;
Heinze et al., 2007; Sánchez-Chávez et al., 2017).

Role of glycine during nervous
system development

A variety of studies have focused to characterize
the developmental expression of the glycine receptor
and transporters as well as glycine immunoreactivity
as means to recognize the process whereby cells adopt a
glycinergic phenotype.

Glycine levels

In cortical neuroepithelium, levels of glycine increase by
twofold during embryogenesis, reach a peak around birth, and
gradually decrease to about 60% during the first 2 weeks of
postnatal development, time in which the GSC enzyme is highly
expressed (Ichinohe et al., 2004).

In rodents, glycinergic neurons tend to appear during
embryonic development in the rostral spinal cord, followed by
increased expression caudally in the spinal cord and rostrally
into the hindbrain, midbrain and retina (Van Den Pol and
Gorcs, 1988; Allain et al., 2006). In the mice spinal cord, glycine
immunoreactivity was found from E11.5 to E15.5 (Scain et al.,
2010). Also, glycine immunoreactivity occurs in the inner retina
since P1, and by P3-P5 in the outer retina; adult expression
was found at P11 (Fletcher and Kalloniatis, 1997; Sharma et al.,
2003).

Glycine immunoreactivity has also been examined in zebra
fish (Moly et al., 2014), and chick embryos with positive staining,
first observed at E8 in the dorsal and ventral spinal cord (Berki
et al., 1995). In Xenopus laevis the first glycine positive cells
appear in the rostral spinal cord and caudal hindbrain at stage
22, a few hours after the neural tube closes (Roberts et al., 1988).

Glycine uptake

Glycine transporters appear early during embryonic brain
development in rats. GlyT1 is predominant in the embryonic
cortex and can be detected in radial glial cells (Jursky and
Nelson, 1996).
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Immunoreactivity for GlyT 1 and GlyT 2 glycine
transporters was first observed at E10-12 in the midbrain
floor plate. By E17, GlyT 1 expression is evident at the
borders between the thalamus and hypothalamus, as well
as at the border of the dorsal thalamus. GlyT 2 staining
increases in the ventral spinal cord at E14 and in several
brain regions at E17 (Jursky and Nelson, 1995; Lall et al.,
2012). In situ hybridization studies in the zebra fish revealed
the expression of GlyT1 and GlyT 2 in the rostral spinal
cord at 18 and 20-h post-fertilization (Ganser and Dallman,
2009). Expression studies in Xenopus laevis showed the
appearance of GlyT1 first in the proliferative ventricular layer
of the hindbrain and the anterior spinal cord during early
tail bud stages (stage 24) (Wester et al., 2008). In rat retina,
pharmacological studies revealed the presence of both GlyT1
and GlyT 2 before final synaptogenesis has occurred (Salceda,
2006).

The role of GlyT 1 in glycine signaling was proved in E12.5
spinal cord cells, in which the decay rate of glycine current was
increased by the presence of the GlyT 1 ALX-5407 inhibitor
(Scain et al., 2010).

On the other hand, development of neurons in different
regions of the brain is controlled by transcription factors. In this
context, the expression of Ptf1a, Lbx1 and Pax2 transcription
factors was described to be necessary for the expression of
glycinergic phenotype in the spinal cord. Ptf1a, Lbx1, and Pax2
coordinate glycinergic and peptidergic transmitter phenotypes
in dorsal spinal inhibitory neurons (Huang et al., 2008). Even
more, transcription of GlyT 2 is activated by Pax2 (Batista and
Lewis, 2008).

Glycine receptors

During development, the GlyRs properties undergo
molecular changes resulting in modifications of their
physiological function; however, biochemical and molecular
cloning studies have indicated heterogeneity of GlyRs subunits
during development (Aguayo et al., 2004; Avila et al., 2013a).

Immunostaining for the α1 subunit is first seen in the
rat spinal cord at E14, after which time the mRNA levels
gradually increase in the ventral and dorsal horns until leveling
off at P15. In the brain, α1 is detected at near adult levels by
P5.The α2 subunit is expressed since E15 in the telencephalon,
diencephalon, midbrain and cortex, and remains through early
postnatal stages (P5) (Malosio et al., 1991; Watanabe and Akagi,
1995).

GlyRs α2 –homomers, are found throughout the CNS
during development and its expression markedly decreases after
birth (Watanabe and Akagi, 1995), switching for the expression
of the adult, α1β heteromer (Lynch, 2004). The GlyRs subunit,
α3, is observed until relatively late in development (P5), but it
remains throughout life. The β subunit of GlyRs is first expressed

at E14 in both the telencephalon and the ventral and dorsal
horns of the spinal cord.

The postnatal rat retina shows GlyRs expression in the
neuroblastic layer, while GlyR in the adults is only observed
in the inner nuclear layer (INL) (Sassoè-Pognetto and Wässle,
1997). GlyR α2 subunit was found to be expressed in retinal
progenitor cells at birth (Young and Cepko, 2004). Besides, a
continuing increase of mRNA and protein expression of α1,
α3, α4, and β subunits was found during postnatal retinal
development, while α2 showed high levels in developing and
adult retina (Sánchez-Chávez et al., 2017).

GlyRs are not only present during development but also
functional. Whole-cell patch clamp motoneurons recordings
in embryonic spinal cord show the first synaptic activity at
E12.5; and demonstrate that radial cells release glycine, being
the main source of it in the embryonic spinal cord (Scain
et al., 2010). Likewise glycine elicited currents in different
zones of the embryonic cortex were demonstrated at E19 (Flint
et al., 1998). Moreover, it was shown that glycine application
triggers a massive calcium influx in the upper-layer of pyramidal
neurons at E17, effect that was blocked by strychnine and
absent in the GlyR-knockout animals (Young-Pearse et al.,
2006).

The expression of functional α2–containing GlyRs in
cortical progenitors was demonstrated by whole-cell patch
clamp recordings, where application of glycine triggered fast-
activating currents. Moreover, Glra2-knockout mice show a
reduced number of excitatory projection neurons in deep and
upper layers of the cortex, leading to a modest reduction in brain
size (Avila et al., 2013b, 2014; Ávila et al., 2020).

Glycine signaling

It is noteworthy that during development, glycine
undergoes modifications of its kinetics and pharmacological
properties (Aguayo et al., 2004). While glycine is an inhibitor
neurotransmitter in the adult, it is excitatory in immature
tissues (Rivera et al., 1999; Kandler et al., 2002; Kilb et al., 2002).

During development, chloride gradients change according
to the expression of chloride transporters (Watanabe and
Fukuda, 2015). In embryonic neurons, the sodium-potassium-
chloride co-transporter (NKCC1) increases the intracellular
concentration of chloride, then glycine binding to GlyRs causes
a release of chloride ions and, therefore, induces a depolarization
of the cell (Avila et al., 2014; Theisen et al., 2018). The switch
from excitation to inhibition originates through the expression
of the neural-specific potassium- chloride co-transporter 2
(KCC2), which actively reduces the intracellular concentration
of chloride, transforming the opening of a chloride channel into
a hyperpolarizing stimulus (Blaesse et al., 2006; Reynolds et al.,
2008; Gonzalez-Islas et al., 2009; Liu and Wong-Riley, 2012).
In other way, blocking GlyRs by strychnine decrease expression
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of KCC2 in ventral spinal networks without interfering with
NKCC1; in addition, blockage of GlyRs led to decrease of KCC2
at the cell membrane (Allain et al., 2016), suggesting that glycine
modulates KCC2.

In consequence, GlyRs activation during embryonic and
early postnatal development induces a depolarization of the cell
membrane (Flint et al., 1998; Kilb et al., 2002, 2008) which in
turn may activate calcium influx (Platel et al., 2005). In fact, this
depolarization activates voltage-sensitive sodium channels that
subsequently activate sodium-sensitive calcium transporters,
leading to the increase in intracellular calcium, which in turn
may induce the release of glutamate (Kullmann et al., 2002;
Platel et al., 2005; Brustein et al., 2013). In accordance with that,
it was shown that applying glycine triggers a calcium influx in
pyramidal and cortical neurons at E17 and E13, respectively
(Platel et al., 2005). This effect was blocked by strychnine and
disappears in the GlyR-knockout (KO) animals (Jimmy Zhou,
2001; Young-Pearse et al., 2006), supporting the specific effect
of glycine through GlyRs.

Excitatory postsynaptic potentials produced by glycine
have been observed since fetal to P7 in gerbils and rats.
During this period neuronal growth occurs as well as
the establishment of dendritic arbors (Sanes and Friauf,
2000). Glycinergic neurotransmission has been shown to
influence neural maturation via modulating intracellular
Ca+2 concentrations in the respiratory brainstem nuclei,
hippocampus, and the lateral superior olive of the auditory
system (Ben-Ari, 2001, 2013; Soria and Valdeolmillos, 2002;
Ávila et al., 2020). In this regard, growing evidence is connecting
the glycine induced depolarization with lateral superior olive
(LSO) network maturation via modulating intracellular Ca+2

concentrations (Malenka and Nicoll, 1993; Sanes and Friauf,
2000; Kandler et al., 2002).

Similarly, the blockage of glycinergic transmission since
the beginning of development by either embryonic glycine
receptor knockdown (McDearmid et al., 2006), reversing the
depolarizing chloride gradient by over expression of human
KCC2 (Reynolds et al., 2008; Schwale et al., 2016), or by blocking
GlyRs with strychnine (Côté and Drapeau, 2012) resulted
in a selective reduction in the interneuron population with
minimal changes in motoneurons and spinal sensory neuron
populations.

This excitatory effect of glycine during embryonic
development appears to be necessary for a broad range of
neurogenic processes including formation and maturation of
neuronal circuits (Ben-Ari, 2001; Ávila et al., 2020). Evidence
indicate that GlyR α2 subunits are involved in the regulation
of interneuron differentiation during spinal cord development
(McDearmid et al., 2006) and synaptogenesis (Avila et al.,
2013a,b; Lin et al., 2017; Ávila et al., 2020).

The role of glycinergic neurotransmission in the optimal
balance of excitatory and inhibitory synaptic inputs during
development is highlighted by the increase in dendritic arbors

and dendritic spines found in motoneurons from gephyrin-
deficient mice. These increases were associated with an increase
of excitatory synaptic neurotransmission and a decrease of
inhibitory neurotransmission (Banks et al., 2005; Fogarty et al.,
2016). Also, it was demonstrated that GlyR α2 is needed for
correct maturation and function of the glutamatergic striatum
medium spiny neurons (Comhair et al., 2018).

In spite of that, glycine levels in the nervous tissue are
assumed to be too low to allow normal neurotransmission
during development (Van Den Pol and Gorcs, 1988; Zafra
and Giménez, 2008) and it is hypothesized that the amino-
sulfonic acid taurine, a partial agonist of GlyRs (Schmieden
et al., 1992; Hussy et al., 1997; Mori et al., 2002; Jiang et al.,
2004) may act as a ligand for the receptor. Supporting this
hypothesis, it was shown that taurine function as a ligand
for GlyR via non-synaptic signaling in the early neocortex
(Flint et al., 1998). However, although the concentration
of taurine progressively increases during embryogenesis
and its levels are 10–20-fold higher than the levels of
glycine and GABA (Benítez-Diaz et al., 2003), GlyRs in
the developing cortex are 10 times less sensitive to taurine
(Schmieden et al., 1992; Hussy et al., 1997; Okabe et al.,
2004), strongly suggesting that glycine is acting on its own
receptors.

On the other hand, glycine transporters may well play
an important role controlling the extracellular level of glycine
through GlyT1. In fact, it has been proposed that this could be
the primarily role of GlyT1 during the spinal cord development,
where this transporter is active in the removal of glycine
from the extracellular compartment in extra synaptic locations
(Gomeza et al., 2003).

In addition, glycine concentrations are influenced by the
GCS that catalyzes the degradation of glycine and provides
the developing brain with other metabolites, such as 5,10-
methylenetetrahydrofolate, which is essential for DNA synthesis
(Ichinohe et al., 2004).

Role of glycine in cell proliferation
and specification

Pioneering studies in the immature retina revealed a
glycinergic transmission role in directing the proliferation
of rod photoreceptor cells as well as in the light-dependent
maturation of retinal ganglion and bipolar cells. Outstanding,
overexpression of the α2 GlyR subunit leads to the development
of a high percentage of rod photoreceptors at the expense of
Muller glial cells (Young and Cepko, 2004).

Similarly, knockout of the α2 subunit at the onset of
development reduces the number as well as the differentiation
of spinal interneurons, thus affecting the formation of rhythm-
generating networks (McDearmid et al., 2006). Moreover, α2-
GlyRs were found to control the proliferation of progenitor cells
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during corticogenesis (Avila et al., 2014) and to promote the
migration of cortical interneurons (Avila et al., 2013b).

Cells may be differentially affected depending on the type of
GlyR subunit expressed as well as the cell type at different places
compared to migrating interneurons (Ávila et al., 2020). In this
context, glial cells can modulate neurotransmission by secretion
of soluble factors; in fact, microglia secrete glycine and enhance
NMDA receptor-mediated responses (Hayashi and Nakanishi,
2013).

Although glia are non-excitable, they express many of the
same receptors for neurotransmitters, and these can induce
membrane depolarization, increase in intracellular calcium,
and proliferation (Domingues et al., 2010); indeed, GlyRs
can modulate action potential conduction in white matter
(Constantinou and Fern, 2009). Therefore, glial cells may also
trough these receptors modulate synaptic development.

Remarkably, glycine has been showed to be related to the
rapid cancer cell proliferation and could reverse the expression
of aging phenotypes. This effect is thought to be related to
glycine metabolism (Pan et al., 2021); glycine biosynthesis
enzymes are more highly expressed in proliferating cells,
where they are incorporated in purine nucleotides. In addition,
depleting extracellular glycine or knocking down the SHMT2
glycine-synthesizing enzyme blocked rapid proliferation by
prolonging the G1 phase of the cell cycle (Nguyen et al., 2002;
Yang et al., 2018). Besides, α1 and α3 GlyR subunits were found
to be expressed in human brain tumor biopsies (Förstera et al.,
2014). Moreover, knockdown of α1 GlyR protein expression
impaired the self-renewal capacity and tumorigenicity of GL261
glioma cells (Förstera et al., 2014), supporting a non- synaptic
role of GlyRs. In this respect, outstandingly, α1 and α3 GlyR
subunits were found to contain a nuclear localization signal in
the large cytosolic loop domain (Melzer et al., 2010).

In addition, two inhibitors of the Wnt pathway (WIF1
and DKK1B) were upregulated upon GlyRs knockdown in
neural stem cells (NSCs), suggesting that a Wnt-dependent
neurogenic process could be silenced in NSCs when glycine
signaling is impaired (Samarut et al., 2016, 2019). Moreover,
the P53 tumor suppressor protein was upregulated upon GlyR
knockdown, suggesting that cells might die in the absence of
glycine signaling. Similarly, the activation of the Hedgehog
signaling pathway reduces GlyT 2 expression in vitro in rodent
primary spinal cord neurons or in vivo in zebrafish embryos (de
la Rocha-Muñoz et al., 2021). These results define a link between
development signaling pathways and glycine action.

Pathophysiological consequences of
glycinergic action during development

There is considerable evidence supporting the role of
glycine on the CNS development. GlyRs are expressed in dorsal

progenitors and migratory neurons, contributing to the cell
cycle control, cell migration and morphological development
(Tapia et al., 2000, 2001; Nimmervoll et al., 2011; Avila et al.,
2013b; Avila et al., 2014), which impairs the formation of cortical
circuits (Morelli et al., 2017). Therefore, the lack of GlyRs may
affect the development process, including circuit formation that
may lead to different disorders in adulthood (Ruediger and Bolz,
2007).

Indeed, defects in glycinergic signaling during neural
development can result in the neurological motor disorders
hyperekplexia, hypertonia, and episodic neonatal apnea (Lewis
et al., 1998; Lape et al., 2012; Bode and Lynch, 2013). The
hyperekplexia-causing mutations in GLRA1 and GLRB result
either in disrupted surface expression or altered glycine efficacy
(Bode and Lynch, 2013).

Likewise, mutations in genes either encoding GlyRs (Piton
et al., 2013; Pilorge et al., 2016), KCC2 (Merner et al.,
2015), or the amino methyltransferase enzyme (AMT) involved
in glycine degradation (Yu et al., 2013), were reported in
patients affected by autism, supporting the glycine role in
neurogenesis. Furthermore, recently Chen et al. (2022) using
a combination of molecular modeling and electrophysiology
recordings for four novel missense variants in GLRA2
associated with autism spectrum disorder (ASD), identified
GLRA2 as the cause of autism spectrum neurodevelopmental
phenotypes. The missense variants cause either loss, gain
or altered function of GlyR α2 subunit, enlightening the
clinical forms associated with human ASD (Chen et al.,
2022).

Similarly, failure in GCS activity leads to serious
malformations, such as agenesis of the corpus callosum,
gyral malformation, and cerebellar hypoplasia. Moreover,
alternative splicing variants of GlyRs have been detected
in patients suffering from temporal lobe epilepsy (Eichler
et al., 2008). Also, GLRA2 knockout mice showed disruption
of the excitation/inhibition balance, resulting in enhanced
susceptibility to epileptic seizures (Morelli et al., 2017).
Remarkably, pharmacological inhibition of GlyR α2 decreased
the proliferation of hippocampal adult NSCs, and its genetic
deletion leads to impaired and spatial memory in the adult mice
(Lin et al., 2017).

Furthermore, the alpha-4 subunit and the β subunit were
recently found to be expressed in mouse embryos, where were
implicated in the regulation of embryo implantation (Nishizono
et al., 2020).

Conclusion

CNS development involved precise coordination of
cell proliferation, differentiation and cell migration; in
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addition to an intrinsic genetic program, these processes
are controlled by extracellular signals. Among these,
neurotransmitters have been found to have an important role.
In the adulthood, glycinergic neurotransmission is limited to
the spinal cord, retina and few brain areas; however, functional
GlyRs have been found almost everywhere in the developing
brain.

Moreover a variety of evidence strongly support a relevant
role of glycine signaling during development; even more,
alterations in this signaling has been associated to pathologies
in the adulthood (Eichler et al., 2008; Bode and Lynch,
2013; Piton et al., 2013; Pilorge et al., 2016; Morelli et al.,
2017; Chen et al., 2022) supporting glycinergic function in
proliferation and cell specification and circuit formation.
Though, few studies have been carried out to analyze the
mechanisms involved. Although these findings should be
extended, they open new insights to understand the role
of glycine during early neural development and its role in
different pathologies, information which will improve adult
brain healing.
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