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A B S T R A C T

Background: Dietary assessment is a fundamental component of nutrition research and plays a pivotal role in managing chronic diseases.
Traditional dietary assessment methods, particularly in the context of Thai cuisine, often require extensive training and may lead to esti-
mation errors.
Objectives: To address these challenges, Institute of Nutrition, Mahidol University (INMU) iFood, an innovative artificial intelligence–based
Thai food dietary assessment system, allows for estimating the nutritive values of dishes from food images.
Methods: INMU iFood leverages state-of-the-art technology and integrates a validated automated Thai food analysis system. Users can use 3
distinct input methods: food image recognition, manual input, and a convenient barcode scanner. This versatility simplifies the tracking of
dietary intake while maximizing data quality at the individual level. The core improvement in INMU iFood can be attributed to 2 key factors,
namely, the replacement of Yolov4-tiny with Yolov7 and the expansion of noncarbohydrate source foods in the training image data set.
Results: This combination significantly enhances the system’s ability to identify food items, especially in scenarios with closely packed food
images, thus improving accuracy. Validation results showcase the superior performance of the INMU iFood integrated V7-based system over
its predecessor, V4-based, with notable improvements in protein and fat estimation. Furthermore, INMU iFood addresses limitations by
offering users the option to import additional food products via a barcode scanner, thus providing access to a vast database of nutritional
information through Open Food Facts. This integration ensures users can track their dietary intake effectively, with expanded access to over
3000 food items added to or updated in the Open Food Facts database covering a wide variety of dietary choices.
Conclusions: INMU iFood is a promising tool for researchers, health care professionals, and individuals seeking to monitor their dietary
intake within the context of Thai cuisine and for ultimately promoting better health outcomes and facilitating nutrition-related research.
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Introduction

Dietary assessment is a cornerstone of nutrition-related
research and plays a pivotal role in managing chronic diseases.
The acquisition of accurate dietary intake information, however,
presents a formidable challenge. In particular, demand persists
for innovative dietary assessment approaches that offer
enhanced measurement precision, ease of use, reduced work-
load, and cost efficiency [1].

Conventionally, dietary assessment has been the domain of
dietitians or nutritionists. In Thailand, dietitians usually
calculate the nutritive values of dishes based on standard
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recipes, adjusting them to account for visible or readily
known modified ingredients, often with the aid of food ex-
change lists [2,3]. This approach mitigates 2 significant is-
sues, namely, the limited coverage of prepared foods in the
latest Thai food composition tables as well as variability in
ingredient usage in Thai cuisine, as driven by individual
preferences [4,5]. An unintended consequence of this method
is the lengthy training required for effective dietary assess-
ment, particularly for individuals lacking dietary and mathe-
matical proficiency. Additionally, inherent errors in portion
size estimation are inevitable among untrained individuals
[6–8].
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Abbreviations

API An Application Programming Interface (API) is
a set of protocols, tools, and definitions that
allows different software applications to
communicate with each other. It defines the
methods and data formats that applications can
use to request and exchange information

INMU Institute of Nutrition, Mahidol University
mAP@0.5 Mean Average Precision at an Intersection over

Union (IoU) threshold of 0.5 is a metric
commonly used to evaluate the performance of
object detection algorithms. For food
recognition, when the system identifies food
and predicts bounding boxes that overlap in the
correct position by at least 50%, this is
considered as a correct identification. The
average precision is calculated across all
categories in a test dataset

MS COCO Microsoft Common Objects in Context is a large-
scale dataset designed for object recognition
and image understanding tasks in computer
vision. It contains a diverse set of images with
everyday scenes and objects including food

PWA A Progressive Web Application (PWA) is an
application built using web technologies that
can be installed on a user’s device through a
compatible web browser. It operates
dependently on its respective browser, similar
to opening a website in Fullscreen mode, and
creates a shortcut icon on the device home
screen, akin to a native application. PWAs offer
a seamless user experience, delivering
enhanced functionality beyond traditional web
applications, although not identical to native
applications, based on the functionality
supported by their respective browser.
Currently, Chromium-based browsers provide
the most comprehensive PWA support

RGB RGB stands for Red, Green, Blue and is a
standard color model in computer systems. In an
RGB image, each pixel is defined by its intensity
in these three colors. RGB images augmented
with depth information are called RGBD images

RMSE Root means square error
TOST Two one-sided test
Yolo Yolo (You Only Look Once) is an open-source

object detection model originally developed by
Joseph Redmon. It features a user-friendly
training system with pre-train and fine-tune
capabilities. Over time, newer models have
incorporated modifications to the original
algorithms, integrating advanced techniques to
enhance performance and efficiency.

P. Chotwanvirat et al. Current Developments in Nutrition 8 (2024) 102154
Taking food photographs before eating sessions could help
reduce these types of errors. However, the portion size estima-
tion from food images still relies on human estimation [9–12].
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The advent of high-performance smartphones has ushered in the
potential to estimate the nutritive values of food from images. A
set of sequentially independent algorithms, namely, food
recognition, food portion estimation, and computation of
representative nutrients using food composition tables, were
used to handle the human-dependent complexity task in esti-
mating the nutritive values of food from images [13–17]. This
norm has become the traditional approach for image-assisted
dietary assessment. The system’s overall accuracy relies on the
precision and effectiveness of algorithms responsible for each
step, which have undergone continual enhancement over time
through the contributions of numerous researchers [18–22].

Within the contemporary landscape of dietary assessment and
nutrition analysis, a notable void exists for Thai cuisine. Despite
the richness and diversity of Thai culinary offerings, only a few
dedicated systems are tailored exclusively to recognize Thai
foods [23–27], with their focus limited primarily to food
recognition rather than covering the entire dietary assessment
process. Although a few systems provide estimated nutritive
values, oftentimes, they do not include validation results in their
reports [28–30].

This deficiency poses a significant challenge for individuals
monitoring their nutritional intake, as well as for health care
professionals and researchers striving for precision in dietary
analysis within the Thai culinary realm. Recognizing this gap,
our mission has been to develop a smartphone-based dietary
assessment system as a means to address this challenge.

To meet this need, we have built on our previous work in
carbohydrate estimation from Thai food images and are now
introducing Institute of Nutrition, Mahidol University (INMU)
iFood, which is an automated artificial intelligence (AI)-inte-
grated Thai food dietary assessment system. This application
represents a versatile solution capable of delivering an accept-
able level of dietary assessment results covering a diverse array
of Thai dishes. In this report, our primary focus is to demonstrate
improvement in the automated Thai food dietary assessment
system. We compared the estimated macronutrient results pro-
duced by the system—obtained from food images, not barcode or
manual input—against those generated by the previous carbo-
hydrate estimation system [31], using measured weight as the
ground truth in this report.
Methods

System outline
INMU iFood has 2 main components: an automated Thai food

analysis system running on a server as well as a mobile web
frontend, which runs on the user’s device after complete instal-
lation. The frontend is a progressive web application (PWA)
responsible for user interaction, food image uploads, storage of
the food composition database, and calculation of representative
nutritive values, including protein, carbohydrates, and fat. The
backend is an automated Thai food analysis system, which is an
updated version of our previous work [31]. A system outline is
given in Figure 1.

For the frontend, the PWA was constructed using jQuery, with
mobile-specific modern user interface components based on the
OnsenUI library [32]. The browser’s built-in IndexedDB [33] was
used to store user-generated information and the food



FIGURE 1. System overview of INMU iFood. The client-side camera interface is displayed at the top, aiding in capturing food photographs and
measuring photograph-taking angle at the same time. Once the image is acquired successfully, it is transmitted to the Thai food analysis system
running on the server for food image analysis. On completion of the analysis, identified food objects, their estimated weights, and locations are
sent back to the client-side for the calculation of nutritive values. Est wt, estimated weight; INMU, Institute of Nutrition, Mahidol University.
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composition database on a user’s device. The INMU iFood fron-
tend was designed and tested exclusively for chromium-based
browsers (i.e., Google Chrome or Microsoft Edge for Android),
which are available for Android smartphones only. No specific
3

hardware is required for using the frontend beyond the re-
quirements of its respective browser, functional camera resolution
of>2 MP, a functional accelerometer or gyroscope, and sufficient
internal memory for storing user-created content. Additionally, an
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always-on internet connection is required during usage. After
successful installation on a supported device, the application icon
appears on the device’s home screen. On launching, the main
interface promptly engages with the user and consists of only 2
tabs: an overall tab and a food search tab. Screenshots of the INMU
iFood frontend are shown in Figure 2.

In the 'Overall' tab, there are three subsections: the food
image section (Figure 2A), the food item list section (Figure 2B),
and the macronutrients analysis section (Figure 2C). User can
initiate food image capture by tapping the 'Add Food Image'
button (Figure 2A). This action launches the built-in camera
interface designed for simultaneous food image capture and
FIGURE 2. The Institute of Nutrition, Mahidol University iFood frontend d
the figure. Key components include the following: (A) launching the built-
nutrient analysis, (C) displaying a summary table of calculated macronu
captured food image to the Thai food analysis system, (F) presenting identifi
(G) providing a search box for manual input and the 10 related food items
food item information via a barcode scanner, which retrieves nutrition da
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measures the photo-taking angle. The photo-taking angle is dis-
played in a circular label above the shutter button to ensure that
the user can capture an image at the correct degree, as shown
in Figure 1. The interface guides the user to rotate the mobile
device for capturing photos in landscape mode, aligning with the
requirements of the automated Thai food analysis system. The
built-in camera interface does not launch if the device remains in
portrait position. The app provides initial instructions for taking
photos to ensure optimal system usage, including maintaining
distances of 30 cm from the food, ensuring clear presentation
without items overlapping, placing the food item on a low-
reflective material along with a tablespoon, and capturing the
isplayed in Thai, with the main interface positioned at the top-center of
in camera interface, (B) selecting the food items listed in this area for
trients, (D) displaying the captured food image, (E) submitting the
ed food items in the analyzed food image and their estimated weights,
listed underneath for selection, and (H–K) demonstrating the import of
ta from OpenFoodFacts.org.

http://OpenFoodFacts.org
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photo within a 30� to 90� angle from the tabletop. Once the food
image is successfully captured, it is displayed in Figure 2D. The
'analyze food image' button is promptly available for the user to
decide to send the captured image to the Thai food analysis
system. After successful analysis, the detected food items, along
with their estimated weights, are automatically added to the
food item list section, as displayed in Figure 2F, and green boxes
are drawn to display the detected food items to the user for
rechecking purposes.The 'Food Search' tab offers two additional
features: a manual search box (Figure 2G) and the ability to
import additional food product information via a barcode scan-
ner. By selecting the barcode scanner option (Figure 2H), the
built-in camera screen is displayed, guiding the user to position
the food item barcode within the camera's view (Figure 2I). Once
the barcode is successfully captured, the product information,
along with its nutrients, is retrieved from the Open Food Facts
database and displayed on the screen for the user to review
(Figure 2J). Users can add the retrieved product to their personal
food database by selecting the "import to database" button
(Figure 2K).

For the backend, the automated Thai food analysis system
retains the traditional approach for image-assisted dietary
assessment that entails 3 sequential processes: food recognition,
segmentation, and food weight prediction. These are managed
by 3 independent algorithms—namely, the state-of-the-art object
detector named Yolov7 [34], GrabCut [35], and feedforward
neural networks, respectively. Nutrient calculations are
managed on the frontend. The system used only 2 input factors: a
single RGB image (representing red, green, and blue, a standard
color image format in computer systems) and a measured
photograph-taking angle to ensure convenience and broader
device support.

To achieve broader food recognition coverage, the food image
data set was expanded from 175 classes, primarily focusing on
foods contributing carbohydrates, to 400 classes of Thai food
image components. The food items were chosen based on their
frequent usage, covering ~80% of food items used in the analysis
of the previous report [36] from a Thai diabetes population and
including all solid food items in the official Thai food exchange
list [2]. The selected food items were purchased from 3 to 4 local
vendors and prepared as ready-to-eat forms. Some foods, such as
fresh vegetables and cooked meats, underwent modifications
like dicing, chopping, or grinding to alter their physical
appearance and portion size.

The food ingredients were separated following common
practices. In cases where separation was not possible, such as
fried rice with egg, it was treated as a new item (plain fried rice
and fried rice with egg). In contrast, dried tiny prawns or
chopped coriander in noodle were considered a visual variation
of the noodle, resulting in a single item (i.e., only the noodle was
annotated) owing to their providing small amounts of nutrients.
These decisions were applied during the food object annotation
in the later stage. Various styles of tablespoons were randomly
positioned alongside the foods, but only the bowl part of the
tablespoon was used as a reference object owing to its low
variation in size.

Containers were placed on an electric-powered rotating plate.
Although the rotating plate was in motion, burst shots were
taken simultaneously at 30�, 60�, and 90� angles from the
tabletop, resulting in a series of multiangle food images. These
5

methods were applied collectively to increase the variability of
food ingredients’ appearance and portion size, which is required
for training both the food recognition and portion size estimation
algorithms. Example images from the expanded data set are
shown in Figure 3.

In the new system, we used the state-of-the-art object detector
named You Only Look Once (Yolo) but switched from Yolov4-
tiny in the former system to the Yolov7 [34] standard model,
which was released 2 y later and gained improvements in
detection accuracy and computational efficiency. A Microsoft
Common Objects in Context (MS COCO) pretrained model was
retrained with the expanded food image dataset together with
1800 nonfood images. The new recognition system achieved a
mean average precision at an intersection over union threshold
of 0.5 (mAP@0.5) score of 88.3%. This metric means that, on
average, the system achieved 88.3% accuracy in recognizing
food objects across all test images in the data set. Predictions
were considered correct when the system predicted the bound-
aries of food objects overlapping the true location by �50%.

Although Yolov7 offers both object detection and segmenta-
tion, only object detection tasks were used because there was no
segmentation data set available for custom segmentation
training. The identified objects were subsequently cropped based
on their boundary boxes, which were obtained from the results
of Yolov7, whereas GrabCut [35] was used for background
subtraction. It extracted foreground objects based on the color
distribution within specific boundary boxes without requiring
any training step—a simple, yet fast and sufficient technique for
images with few objects in monotonous backgrounds. Based on
the fact that segmentation ability directly impacts food weight
prediction, it is indirectly measured through the overall perfor-
mance of the system in this report.

For food weight prediction, the same approach as in the
previous work was used with some modifications. In essence,
simple feedforward neural networks were trained to predict food
weight using input features including shooting angle, food object
areas and locations, as well as reference object area and location
when available. In the previous work, the training regimens were
considered complete when they achieved a calculated carbohy-
drate estimation error of <10 g, as measured by root mean
square error (RMSE). In this work, owing to the inclusion of more
foods with nonsignificant carbohydrate content, the training
regimens were completed when the RMSE was <0.5 units of its
exchange weight. For example, one exchange of steamed white
rice weighed 60 g, thus an estimation error of<30 g was deemed
acceptable. Although this error may seem high, it is meaningful
enough to provide clinical benefits. This level of error in carbo-
hydrate estimation, for instance, does not affect blood glucose
concentrations in children with type 1 diabetes [37].

Statistical analysis
To demonstrate overall improvement in estimation accuracy

of the new system (V7 based), we compared it with the previ-
ous carbohydrate estimation system (V4 based) using the same
set of 20 known-weight food images and performed a ground
truth comparison with measured weight. We randomly selected
20 food menus from the image data set, which included 7
mixed dishes (comprising 2 types of rice, 2 types of noodles,
pork, chicken, omelets, boiled eggs, shrimp, meatballs, and 9
vegetable components), 4 fruits, and 9 Thai traditional desserts.

mailto:mAP@0.5


FIGURE 3. Variations in food, visual style, and portion sizes for an expanded dataset. The first two rows (A1:D2) feature Thai traditional desserts,
including coconut milk pudding (Krok), fluffy cupcakes (Pui Fai), pandan layer cake (Chan), and savoury leaf wraps (Miang Kham). Additionally,
the second row includes shortbread cookies (Kleeb Lum Duen), pomelo, pumpkin custard, and rice crispy (Nang Led). In the third row (A3:D3),
variations in portion sizes of grilled pork are showcased. In the fourth row, A4 and B4 depict steamed fish curry (Homok) with and without a leaf
container, C4 represents fried fish cake (Tod Mun), and D4 illustrates mackerel in dried curry (Chuu Chee Pla Too). Finally, A5 to D5 feature deep-
fried snake-skin gourami, deep-fried battered shrimp, soft-shell crispy crab, and catfish in dried curry (Chuu Chee Pla Duk).
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These foods were obtained from local vendors and modified
into 2–3 variations in portion sizes and separated into indi-
vidual components. These foods were prepared in ready-to-eat
forms, and their ingredients were arranged according to the
common practices of Thai dietitians. Most of the food was
placed on a plate, and only noodle dishes were placed in a 6-
inch bowl without the addition of soup liquid. Food photo-
graphs were captured with a smartphone held in landscape
position, within a range of 30 cm from the food objects, at
angles of 30� to 90� from the tabletop, using a generic Android
smartphone (Samsung SM-N770F), with 10–15 images taken
per food. From this data set, 20 images were chosen randomly,
encompassing a total of 48 food items. The macronutrient
6

contents of each image could be determined by summarizing
the macronutrient contents of each detected food ingredient in
that image.

Statistical analyses were conducted to assess the accuracy of
the estimated macronutrients from both systems and compare
them with the ground truth. The accuracy of estimated macro-
nutrients from each system was evaluated using the RMSE.

The means of estimated macronutrients from each system
were compared against the ground truth using a two 1-side test
for difference in dependent means [38] to assess equivalence.
In line with the system design, equivalence bounds were
defined based on 0.5 exchange unit, resulting in �3.5 g of
protein, �8 g of carbohydrate, and �2.5 g of fat. These values



FIGURE 4. Example of the accuracy of detection of the V7-based system, in which 2 items were undetected, and the boiled morning glory was
misclassified as fresh morning glory in Figure 4D.
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approximately correspond to Cohen dz of �0.6, indicating a
medium effect size.

Additionally, the linear association and agreement between
estimated results were measured using Pearson correlation co-
efficient (r) and Lin concordance correlation coefficient (Rc). The
agreement was visualized using Bland–Altman plots, and the
limits of agreement were calculated to demonstrate the vari-
ability of these estimated results. These statistical methods
allowed us to assess accuracy and agreement between the 2
systems. A 2-sided P value of <0.05 was considered statistically
significant.
Results

For detection performance, the comparison was calculated
based on all 48 food objects contained in the validated data set.
The V7-based system demonstrated a 14.6% improvement in
correctly detecting food objects compared with the V4-based
system (V7-based: 43 of 48 items compared with V4-based: 36
of 48 items). Only 2 items were undetected, namely, white jelly
fungus and fish strips, whereas 3 items were misclassified in their
cooking variations: fresh morning glory instead of boiled
morning glory, stir-fried kale instead of boiled kale, and
blanched mung bean sprout instead of fresh mung bean sprout.
Figure 4 presents visual examples of food images along with the
corresponding system detection results from the validation set.

For the validation data set, the V7-based system could esti-
mate the sum of nutrients more accurately than the V4-based
7

system for protein (132 g compared with 94 g, ground truth
152 g) and fat (111 g compared with 86 g, ground truth 112 g),
with comparable results for carbohydrate estimation compared
with the V4-based system (622 g compared with 584 g, ground
truth 605 g).

When comparing the group means � SD of macronutrients
with the ground truth, the V7-based system demonstrated sig-
nificant equivalence for protein (6.7 � 7.2 compared with 7.6 �
8.6; P ¼ 0.002 and 0.031, respectively), carbohydrate (31.1 �
14.8 compared with 30.3 � 14.8; P ¼ 0.015 and 0.004, respec-
tively), and fat (5.6� 5.3 comparedwith 5.6� 5.1; P¼ 0.007 and
0.007, respectively). The 90% confidence interval for all macro-
nutrients fell within the lower and upper equivalence bounds as
predefined for each macronutrient. On the contrary, the V4-based
system achieved equivalent results only for carbohydrate (29.2�
15.3 compared with 30.0 � 14.8; P ¼ 0.003 and 0.019, respec-
tively) but not for protein (4.7� 4.6 comparedwith 7.6� 8.6; P<

0.0001 and P ¼ 0.302, respectively) and fat (4.3 � 4.7 compared
with 5.6 � 5.1; P < 0.0001 and P ¼ 0.158, respectively).

Moreover, the V7-based system outperformed the V4-based
system in several quality aspects. It exhibited lower estimated
variation, as evidenced by reduced RMSE values for protein (2.7
compared with 6.5), carbohydrate (7.9 compared with 9.4), and
fat (1.9 compared with 3.2). In addition, it demonstrated higher
agreement, as indicated by increased concordance correlation
coefficients (Rc), for protein (0.94 compared with 0.57), carbo-
hydrate (0.91 compared with 0.79), and fat (0.83 compared with
0.78). Furthermore, it showed stronger correlation, as deter-
mined by Pearson correlation coefficient (r), for protein (0.96



TABLE 1
Statistical results for the estimation of error, agreement, and relationship as measured by RMSE, Rc, and r between V7-based and V4-based models
against measured weight as ground truth, respectively

Nutrient Mean � SD TOST P TOST 90% CI RMSE Rc r

Protein
Ground truth 7.6 � 8.6
V7-based system 6.7 � 7.2 0.002, 0.0311 �1.139, 1.339 2.7 0.94 0.96
V4-based system 4.7 � 4.6 <0.001, 0.302 �5.226, �0.574 6.5 0.57 0.74

Carbohydrate
Ground truth 30.3 � 14.8
V7-based system 31.1 � 14.8 0.015, 0.0041 �3.287, 4.887 7.9 0.91 0.85
V4-based system 29.2 � 15.3 0.003, 0.0191 �5.260, 3.060 9.4 0.79 0.80

Fat
Ground truth 5.6 � 5.1
V7-based system 5.6 � 5.3 0.007, 0.0071 �1.438, 1.438 1.9 0.83 0.93
V4-based system 4.3 � 4.7 <0.001, 0.158 �2.661, 0.061 3.2 0.78 0.81

CI, confidence interval; Rc, Lin concordance correlation coefficient; RMSE, root mean square error; TOST, two 1-sided test.
1 A significant difference when both lower and upper P values fall within predefined equivalence bounds.
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compared with 0.74), carbohydrate (0.85 compared with 0.80),
and fat (0.93 compared with 0.81). Detailed results of all sta-
tistical analyses are presented in Table 1.

To visualize the agreement between the ground truth and the
2 system versions, Bland–Altman plots revealed that the V7-
based system demonstrated narrower limits of agreement than
the V4-based system for all macronutrients. This indicates that
the V7-based system had lower variability than the V4-based
system. Additionally, no significant outliers were observed in
the estimated protein values from the V7-based system, whereas
some outliers were found in the results from the V4-based sys-
tem. The plots are displayed in Figure 5.

Discussion

INMU iFood embodies state-of-the-art dietary assessment
technology integrated with a validated automated Thai food
image analysis system that has been tested for robustness and
accuracy in estimating nutritive values from Thai food images. It
offers 3 distinct input methods: food image recognition, manual
FIGURE 5. Bland–Altman plots demonstrate the agreement between the c
and the previous V4-based system. The green dotted lines represent the li
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input, and the convenience of a barcode scanner. This versatility
ensures that users can track their dietary intake with less effort
and provides adequate quality at the individual level.

The INMU iFood integrated V7-based system outperformed
the previous V4-based system across all measured nutrients
based on the comparison of results. The most significant
improvement was in the estimated results for protein and fat,
where the V4-based system’s outcomes were deemed unaccept-
able. Even in the case of carbohydrates, the V7-based system
demonstrated a nonsignificant modest improvement.

The primary contributors to this improvement were 2-fold: 1)
the replacement of Yolov4-tiny with Yolov7, primarily because
Yolov7 excels in detecting objects placed in closer proximity; and
2) the expansion of noncarbohydrate food images in the
expanded data set, mostly entailing a wide variety of meat and
leafy vegetables. This improvement is evident in Figure 4C, D,
which present the most challenging images in the validation set.
These images featured small food items closely packed within
the same frame. The V4-based system could only detect 2 of 4
items in Figure 4C and 3 of 9 items in Figure 4D. In contrast, the
alculated macronutrient content of ground truth, the V7-based system,
mits of agreement between the other methods and the ground truth.
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V7-based system successfully detected all items in Figure 4C and
7 of 9 items in Figure 4D. Our approach is primarily reliant on
detecting individual food ingredients within a food image, rather
than classifying the entire recipe. Thus, a higher number of
detected food ingredients results in a closer estimation.

The food recognition component can use any state-of-the-art
object detector, which works by identifying the location of its
known objects in an input image and drawing bounding boxes
that cover the identified objects as accurately as possible. How-
ever, we opted for the Yolov7 standard model owing to its
popularity among developers, ample documentation, and a
wealth of reported issues and solutions available on its GitHub
repository. The Yolov7 family applies new techniques including
Extended Efficient Layer Aggregation Networks, Model Scaling,
and Trainable bag-of-freebies, which result in a 1.5% increase in
average precision, a 75% reduction in usage parameters, and a
36% reduction of usage computation, compared with the Yolov4
family [34]. Furthermore, we noticed that although Yolov8 [39]
had been released at the time of this research study, Yolov7 was
licensed under GPL v3.0, whereas Yolov8 used AGPL-3.0.
Consequently, we made the decision to use Yolov7 based on
this consideration.

For food portion estimation, the system aimed to use only a
single RGB image in order to strike a balance between estimation
accuracy—which requires more information, that is, �2 images
or depth information from a depth sensor—and convenience
based on broader device support. The pixel-counting approach
was introduced in the early stages of image-assisted dietary
assessment owing to its straightforwardness [15,40,41]. How-
ever, this approach is susceptible to variations in
photograph-taking angle and distance between objects and
capturing devices. To address these issues, 1 common approach
involves using a physical reference object with a known exact
size to calibrate the real size of a food object. Various physical
objects have been introduced for this purpose, including a spe-
cial physical card [40,41], specific circular plate [42] or bowl
[43], and common objects found in daily life such as chopsticks
[44], a 1-yuan coin [45], a wallet [46], a user’s thumb [13], or a
grain of rice [47]. This approach uses multiple advanced equa-
tions to correct the distortion in food images and leads to a re-
ported relative error in portion estimation of approximately
<30% (ranging between 6.65% and 27.60%), which appears to
be acceptable.

This approach was selected and reimplemented through a
newer method, namely the feedforward regression model. In the
early development phase, data exploration demonstrated the
possibility of applying this method by incorporating both suit-
able intervals of food portion sizes and the use of a tablespoon for
calibration. The feedforward models were trained in terms of
shooting angles, food object areas and locations, as well as
reference object area and location. Some information for explo-
ration was provided in Supplemental Figure 1. The systems were
tested to ensure that they could produce food weight estimation
errors of <0.5 units of their exchange weight when measured by
RMSE. This approach might exhibit sensitivity to several pa-
rameters, including the distance between food objects and a
user’s phone, as well as the photograph-taking angles. Especially
when these parameters exceed the recommended range, this
error can be mitigated by providing comprehensive instructions
to the user about the system’s limitations.
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We acknowledge that the system’s validation was conducted
using specific data sets, which might not be publicly available,
making it challenging to compare with other available systems.
Although there are currently public data sets containing Thai
food images [23,48,49], unfortunately, they lack information on
food weight or calorie content. Consequently, 1 possible
approach would be to rely on human estimation of the food
weight presented in these public data sets, which makes it
difficult to define ground truth. However, at present, we have not
implemented this method. Instead, the equivalent test and other
statistical analyses were used to assess the accuracy of macro-
nutrient estimation against measured weight as ground truth for
the validation data set, which comprised 48 food items repre-
senting 20% of cumulative energy in the previous report [36].
This approach could strengthen the comparison of results.

When compared with other systems in the era of deep
learning, where AI algorithms tend to be larger in size and more
complex in their operations, our system still adheres to the
traditional approach of image-assisted dietary assessment. In this
system, all algorithms work independently, and fine-tuning is
limited to each algorithm rather than the entire process.

Recently, numerous advanced techniques have been explored
for food portion estimation, including deep learning–based vol-
ume estimation from single RGB images. The deep convolutional
neural network—considered one of the key techniques in deep
learning that is powerful in extracting features from images—has
become a fundamental component in image classification and
object detection algorithms. This technique was trained using
RGB images with depth information (RGBD images). Subse-
quently, the system was able to predict food volume directly
from RGB images. Although this method provides an error of
~50–100mL for most foods, in some cases, the error exceeds 300
mL. Another carbohydrate counting system was introduced [50]
that reported food-specific portions known as bread units (BUs),
each defined as containing 12–15 g carbohydrates. This closely
resembles the widely used carb unit in the diabetes field and is
similar to the 1 exchange of starch group in Thai exchange sys-
tem. The system was trained on an RGBD image data set con-
taining human-annotated BU information. The state-of-the-art
algorithm achieved an RMSE of 1.53 BU, whereas humans ach-
ieved an RMSE of 0.89 BU compared with the ground truth.

In addition to estimating the visible portion of food in an
image, deep learning can also reconstruct the hidden back side of
a food object that is not visible in the image owing to limited
viewing angles [51,52]. This is achieved through a combination
of deep learning and 3-dimensional reconstruction, using a
developed point completion network. This system achieved a
mean volume estimation error of 15.3% on real food. However, a
limitation in applying this system is its difficulty in obtaining
both image and 3-dimensional information of foods. Further-
more, deep learning techniques such as generative adversarial
network, a backbone of image generator AIs like DALL⋅E, can be
applied to directly estimate the energy content of food when
trained with food images together with energy distribution
mapping. This novel system has yielded a mean error of 209 kcal
in the estimated energy per eating occasion [53].

However, implementation of these techniques may not be
suitable in the Thai context for 2 interconnected reasons. First,
deep learning requires a large data set for effective training.
Second, acquiring a substantial image data set with additional
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information, such as food weight, object depth information, or
energy distribution mapping, is costly and labor-intensive work.

Given these constraints, our current approach remains useful
when users acknowledge system limitations, including taking
food photographs in a landscape view, positioning the camera
~30 cm from the food, and capturing the image at an angle
ranging from 30� to 90� from the tabletop. We also recommend
separating food ingredients when possible. Although the data set
includes several shapes of containers, we still recommend using a
plate if possible. Other containers, such as bowls or foam boxes,
resulting in food items being densely clustered in the same visual
space, caused problems even for our human annotators in indi-
cating the true area of the food objects, thus worsening the
system’s estimation accuracy.

INMU iFood primarily targets individuals concerned with a
healthy lifestyle, with a primary focus on energy, protein, car-
bohydrate, fat, and sodium. However, in the current version,
sodium content is not included owing to several reasons. Our
approach primarily relies on detecting individual food in-
gredients within a food image rather than classifying the entire
recipe. This has led to another important problem: all estimated
nutrients must be derived from visible ingredients only.
Although sodium is a significant concern for overconsumption
by individuals, it mainly comes from fish sauce, soy sauce,
shrimp paste, or salt added during cooking, which are invisible in
an image. In contrast, other micronutrients are less concerning
for individuals. Furthermore, in the current version of the Thai
food composition database, only sodium, calcium, iron, thiamin,
and riboflavin were analyzed for >80% of all food items. This
necessitates caution in interpreting the results of other micro-
nutrients. Consequently, we have decided to limit the results
from INMU iFood to only macronutrients. When users require a
comprehensive analysis of micronutrients, we recommend using
the latest version of INMUCAL-Nutrients, our standard nutrient
analysis system, instead of INMU iFood.

Although INMU iFood can recognize 400 food items from
food images, this number may not suffice for everyday scenarios
without the inclusion of substitution items. Hence, the iFood
frontend incorporates the ability to import additional food
products via a barcode scanner, with nutrition information
sourced from Open Food Facts [54], a free, crowdsourced,
open-source collaborative service that maintains a comprehen-
sive food product database.

In Thailand, the exact number of food products that have
consumption information contained in their nutritional labels
consumptions is unknown. However, based on the report from
the National Statistical Office, Ministry of Digital Economy and
Society, the consumption rates for manufactured snacks, milks
and their products, and functional food and nutritional sup-
plements are 48.3%, 70.6%, and 21.6%, respectively [55].
Consequently, these products constitute a substantial portion of
Thai people’s diets. Chemically analyzed information on
nutrition labels are required for snack foods, bakery products,
semiprocessed foods (i.e., instant noodles, instant congees, and
instant soups), chilled and frozen ready-to-eat meals, and bev-
erages, including all milk products and seasoning sauces. Pro-
ducers of other foods are only encouraged to provide this
nutrition information [56]. It seems to be reasonable to use
product-specific nutrition labeling information for tracking
personal intake. Although macronutrients, saturated fat, dietary
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fibers, added sugar, and sodium are usually present in food
products, the current version of INMU iFood supports only
macronutrient content. We have manually added and edited
food items available in Thailand continuously since 2019 until
now. More than 3000 food products that are available in the
Thai market are ready to use [57]. The labeling information is
stored within this service, and the complete information can be
accessed through the Open Food Facts Application Program-
ming Interface (API). However, this method causes another
issue as the system allows anyone to read, retrieve, or edit in-
formation on any products. To ensure data quality, the stored
information undergoes bimonthly rechecks and updates on a
regular basis.

INMU iFood represents an advancement in the field of dietary
assessment. It offers a versatile and user-friendly tool for esti-
mating the nutritional content of Thai cuisine from food images.
Through the integration of state-of-the-art technology and a
validated automated Thai food analysis system, it also offers a
reliable means for users to monitor their dietary intake. Although
it outperforms our previous system, it cannot work flawlessly
without limitations. Nevertheless, INMU iFood has the potential
to enhance dietary monitoring in the Thai context and contribute
to improved health outcomes. INMU iFood also has the potential
to serve as a model for other countries in developing similar tools
covering their specific culinary food systems.
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