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Abstract 27 

People living with HIV (PLWH) have an increased risk of severe COVID-19, including prolonged 28 

viral shedding and emergence of mutations. To investigate the simian immunodeficiency virus 29 

(SIV) macaque model for HIV/SARS-CoV-2 co-infection, seven SIV+ rhesus macaques were 30 

co-infected with SARS-CoV-2. COVID-19 in all macaques was mild. SARS-CoV-2 replication 31 

persisted in the upper, but not the lower respiratory tract for 14 days post-infection. Animals 32 

showed impaired generation of anti-SARS-CoV-2 antibodies and T-cells. Animals also displayed 33 

transient changes in microbial communities in the upper airway and gastrointestinal tract. 34 

Evidence of SARS-CoV-2 evolution was observed in the upper respiratory tract. This study 35 

demonstrates that SIV/SARS-CoV-2 co-infection in rhesus macaques recapitulates aspects of 36 

COVID-19 in PLWH. We show that SIV impairs anti-SARS-CoV-2 immunity, potentially leading 37 

to prolonged viral shedding, altered pathogenesis, and viral evolution. This highlights the 38 

importance of HIV status in COVID-19 and supports the use of this model for HIV/SARS-CoV-2 39 

co-infection. 40 

 41 

Introduction 42 

HIV infection is a risk factor for complications of SARS-CoV-2 infection, including severe 43 

COVID-19, post-acute sequelae of SARS-CoV-2 infection (PASC), and increased mortality1, 2. 44 

Additionally, immunosuppressed or untreated HIV infection is shown to contribute to SARS-45 

CoV-2 viral persistence and intrahost evolution3, which likely extends the viral transmission 46 

window and may serve as a potential source for the emergence of variants of concern (VOC). 47 

Furthermore, individuals with low CD4 counts or unsuppressed HIV have weaker immune 48 

responses to COVID-19 vaccination and to natural SARS-CoV-2 infection4, 5. As a result, nearly 49 

half of hospitalized breakthrough cases occur in immunocompromised individuals6. The risk of 50 

COVID-19 related hospitalization and death is consistently higher in those with low CD4 counts 51 

and in those with unsuppressed HIV due to drug resistance, or in PLWH not taking antiretroviral 52 
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therapy (ART). Furthermore, in resource-limited settings access to ART is often limited, with 53 

approximately 25% of PLWH not receiving ART. Many studies evaluating COVID-19 in PLWH 54 

exclude individuals who are immunosuppressed or not on ART, which limits the generalizability 55 

of these findings. Developing a model to understand SARS-CoV-2 pathogenesis during 56 

uncontrolled HIV infection is crucial to gain insight into host immune factors involved in SARS-57 

CoV-2 viral pathogenesis during immunosuppression. 58 

There are several challenges in studying SARS-CoV-2 pathogenesis and COVID-19 in 59 

humans that can be addressed using animal models. SARS-CoV-2 infection in humans causes 60 

a wide range of physiological outcomes and capturing early virological and immunological 61 

events is challenging especially in asymptomatic individuals, those with mild symptoms, or 62 

vulnerable individuals with limited access to medical care. Additionally, many clinical studies are 63 

restricted to measurements in the blood and upper respiratory tract (e.g., nasal swabs). 64 

Although these sites are useful for detecting viral replication, they limit our ability to fully 65 

understand persistence at primary (e.g., lung) and secondary (e.g., gut mucosa) tissue sites of 66 

pathogenesis, which may harbor distinct viral populations7. Because the initial immune 67 

responses to COVID-19 primarily occur in tissue, the lack of paired tissue and blood sampling in 68 

humans limits our understanding of the complexities of SARS-CoV-2 infection, evolution, and 69 

the host immune response. Animal models overcome this limitation by allowing longitudinal 70 

sampling from multiple tissue sites throughout infection.  71 

Here, we established a rhesus macaque model of SARS-CoV-2 infection during 72 

untreated simian immunodeficiency virus (SIV)-induced immunosuppression. Using this model, 73 

we provide evidence for persistent SARS-CoV-2 infection, impaired anti-viral immunity, 74 

alterations to the microbiome, and intrahost SARS-CoV-2 viral evolution in 75 

immunocompromised rhesus macaques. 76 

 77 

Methods 78 
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Rhesus macaques and study design  79 

Seven female rhesus macaques (aged 7-10 years, 5.9-9.9kg) were used. All animals were 80 

experimentally infected with SIVmac251 and subsequentially experimentally infected with 81 

SARS-CoV-2 (WA-1). Animals were housed at BIOQUAL, Inc. (Rockville, MD), an American 82 

Association for the Accreditation of Laboratory Animal Care International (AAALAC) accredited 83 

facility. All animal procedures were approved by the BIOQUAL Institutional Animal Care and 84 

Use Committee (IACUC) (IACUC #22-037P). Blood, bronchoalveolar lavage (BAL), stool, and 85 

nasal, tracheal, and rectal swabs were collected prior to and every 3-4 days post-SARS-CoV-2 86 

infection (DPI). Sample collection occurred under ketamine sedation. Physical exams were 87 

conducted at each sampling timepoint including body weight, body temperature, and clinical 88 

scoring (Supplemental Tables 1-3).  89 

 90 

Sample collection and processing  91 

Blood was collected by femoral venipuncture using a vacutainer 21g x 1” blood collection needle 92 

or Abbott Butterfly 23g x ¾” tubing attached to a vacutainer evacuated blood collection tube 93 

holder and tube. The volume of blood withdrawn did not exceed guidelines with respect to the 94 

animal’s body weight and physical condition. BAL was collected as previously described8. 10mL 95 

of saline was flushed and retrieved through the tube. Swabs were collected using Copan flocked 96 

swabs, placed in PBS or viral transport medium (Lampire Biological Laboratories, Inc, 97 

Pipersville, PA), and stored at <-70°C.  98 

Blood was collected in BD vacutainer EDTA tubes and centrifuged to isolate plasma. 99 

Peripheral blood mononuclear cells (PBMC) were further isolated from remaining blood using 100 

Histopaque®-1077 (Millipore Sigma, Burlington, MA). After centrifugation, PBMC were carefully 101 

removed. Red blood cells, if visible, were removed using ACK lysing buffer. PBMC were 102 

counted using a Nexcelom cellometer (Nexcelom Bioscience, Lawrence, MA). Cells were 103 

resuspended in freezing media (FBS + 10% DMSO) and stored at -75 to -80oC for 12-24 hours 104 
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before transfer to liquid nitrogen. Serum was isolated by centrifugation of blood collected into 105 

BD Vacutainer® SST™ tubes. 106 

At necropsy, lung tissue was collected from all 5 lobes and stored for histopathology or 107 

snap-frozen on dry ice for viral quantification.  108 

  109 

SIV and SARS-CoV-2 viral infections  110 

Rhesus macaques were challenged 1-5 times intravaginally with a low dose of SIVmac251 111 

(1:25 dilution, 800 TCID50) to model natural SIV infection. Four to eight months post-SIV 112 

acquisition, animals were co-infected intranasally (0.5mL/naris) and intratracheally (1.0mL) with 113 

a total of 1.3 x 106 TCID50/mL SARS-CoV-2, isolate USA-WA1/2020 (NR-53872, BEI Resources, 114 

Manassas, VA). A full table of animal characteristics at the time of SARS-CoV-2 co-infection is 115 

given in Supplemental Table 1. 116 

  117 

Clinical disease monitoring 118 

Body weight, rectal temperature (Supplemental Fig. 1), and awake and sedated clinical scoring 119 

was recorded in Supplemental Tables 2 and 3. Complete blood counts and serum chemistries 120 

were quantified via BD TruCount at -7, 3, 7, and 14 DPI (Supplemental Tables 4 and 5). SIV 121 

viral RNA was isolated using the Qiagen QIAsymphony DSP Virus/Pathogen Midi Kit 122 

(96)/QIAgility (QIAGEN, Cat #937055), and levels were evaluated using the Applied Biosystems 123 

StepOne Plus Quantitative Real-Time PCR (Applied Biosystems, Waltham, MA). The limit of 124 

quantification (LOQ) for this assay is 62 RNA copies/mL (1.7log10) in 0.5mL of plasma. 125 

 126 

Quantification of SARS-CoV-2 viral and subgenomic RNA  127 

Viral RNA was isolated using the Qiagen MinElute Virus Kit (QIAGEN Cat #57704, 128 

Germantown, MD) per the manufacturer’s instruction and quantified by optical density at 260nm. 129 

SARS-CoV-2 viral RNA was assessed in the BAL, nasal swabs, tracheal swabs, and rectal 130 
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swabs collected at 3, 5, 7, 10 and 14 DPI. cDNA synthesis was performed using the SensiFAST 131 

Probe Lo-ROX One-Step Kit (Meridian Life Science, Cat #78005, Memphis, TN) and the 132 

following primer/probe sequences: 2019-nCoV_N1-F :5’-GAC CCC AAA ATC AGC GAA AT-3’, 133 

2019-nCoV_N1-R: 5’-TCT GGT TAC TGC CAG TTG AAT CTG-3’, 2019-nCoV_N1-P: 5’-FAM-134 

ACC CCG CAT TAC GTT TGG TGG ACC-BHQ1-3’. All samples were tested in triplicate, and 135 

all standard curves were tested in duplicate. cDNA was then amplified via qPCR using the 136 

Applied Biosystems 7500 Real-Time PCR System (Applied Biosystems, Cat # 4351104, Foster 137 

City, CA) and was cycled at 48°C for 30 minutes then 95°C for 10 minutes, followed by 40 138 

cycles at 95°C for 15 seconds and 55°C for one minute. RNA copies/mL were calculated by 139 

extrapolating the standard curve and multiplying by the reciprocal of 0.05mL extraction volume, 140 

giving a detection range of 50 – 5x108 copies/mL. Subgenomic-N (Sg-N) and Subgenomic-E 141 

(Sg-E) RNA was quantified using preciously described methods 9.  142 

 143 

Infectious viral load assay (TCID50)  144 

Vero TMPRSS2 cells (NIAID Vaccine Research Center, Bethesda, MD) were plated at 25,000 145 

cells/well in DMEM + 10% FBS + gentamicin and incubated at 37°C with 5.0% CO2. Once 80-146 

100% confluency was reached, medium was replaced with DMEM + 2% FBS + gentamicin. 147 

Cells were plated at 10-fold dilutions, along with virus of known titer and medium-only wells. The 148 

plates are incubated at 37°C with 5.0% CO2 for 4 days. Cell monolayers were visually inspected 149 

for cytopathic effect (CPE). TCID50 values were calculated using the Read-Muench method with 150 

a limit of detection of 2.7 log10 TCID50/mL.  151 

 152 

Multiplex immunoassay 153 

Cytokine and chemokine levels in plasma and BAL were analyzed using the Cytokine & 154 

Chemokine 30-Plex NHP ProcartaPlex™ Panel (ThermoFisher Scientific), per the 155 

manufacturer’s instruction. The quantification of analytes was assessed on a Bio-Plex 200 156 
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system (BioRad), and plasma concentrations were determined from a standard curve using 5-157 

PL logistic regression. Heatmap visualizations were created using the pheatmap method from 158 

the ComplexHeatMap (v.3.2) package. Each day is independently clustered using the default 159 

pheatmap settings with the clustering distance method set to Euclidean and the clustering 160 

method set to complete. 161 

 162 

H&E lung pathology and scoring 163 

Histopathology was performed on H&E-stained lung sections from seven nonhuman primates. 164 

Five lung sections (right upper, middle, lower and left upper and lower) from each animal were 165 

evaluated and scored for histopathologic lesions on a scale from absent (0) to severe (4) for five 166 

histopathologic lesions. In addition to semiquantitative scores, quantitative measurement was 167 

performed using a deep learning algorithm trained to quantify all types of inflammation (HALO 168 

AI, Indica Labs) and reported as percentage of the lung section with inflammation. The results of 169 

the algorithm were correlated with the semiquantitative scores of the pathologist. Total 170 

inflammation for each animal was determined by summating the percentage of inflamed lung 171 

across all five sections available for all animals (minimal <5%, and mild inflammation 5-10%). A 172 

summation of the gross pathology and histological findings can be found in Supplemental 173 

Tables 6 and 7. 174 

 175 

MPO lung histology  176 

4µm tissues sections of lung were mounted on Superfrost Plus microscope slides, baked for 3 177 

hours at 60oC and passed through xylene, graded ethanol, and double distilled water to remove 178 

paraffin and rehydrate tissue sections. A microwave was used for heat induced epitope retrieval 179 

(HIER). Slides were boiled for 16 minutes in a Tris-based solution, pH 9 (Vector Labs H-3301), 180 

containing 0.1% Tween20. Slides were briefly rinsed in hot, deionized water and transferred to a 181 

hot citrate-based solution, pH 6.0 (Vector Labs H-3300) where they were allowed to cool to 182 



 8 

room temperature. Slides were removed from the antigen retrieval solution, washed in 183 

phosphate-buffered saline, deionized water, and Roche reaction buffer before being loaded on 184 

the Ventana Discovery Ultra Autostainer where they would undergo blocking, primary antibody 185 

(rabbit anti-MPO, Dako A0398, 1:1000 dilution) incubation, washing, secondary antibody 186 

incubation, washing, DAB color development, and counterstaining with hematoxylin II. Upon 187 

removal, slides were put through alternating manual washes of deionized water containing 0.1% 188 

Dawn dish soap and plain deionized water for a total of 5 cycles. Slides were then cleared in 189 

ethanol (80%, 95%, 100%, 100%) and three xylene changes before being permanently mounted 190 

with StatLab Acrymount Mounting Media. After drying overnight, slides were digitally imaged at 191 

40X with a Hamamatsu NanoZoomerS360. Information regarding control samples can be found 192 

in Supplemental Table 8. 193 

 194 

IL-4/IFN-γ enzyme-linked immunospot assay (ELISPOT)  195 

Antigen-specific PBMC secreting IFN-γ or IL-4 were measured using the Human IFN-γ/IL-4 196 

Double-Color ELISPOT Kit (ImmunoSpot, Shaker Heights, Cleveland, OH), per the 197 

manufacturer’s protocol. PBMC were stimulated for 48 hours with SARS-CoV-2 peptide pools 198 

(17-, 13-, or 12-mers, with 10 amino acid overlaps) (BEI Resources, Cat # NR-52402, NR-199 

52403, NR-52404, NR-52405, Manassas, VA) at a concentration of 1µg/mL per peptide. DMSO, 200 

and PMA and ionomycin (ThermoFisher) were used as negative and positive controls, 201 

respectively. Spots were counted on an Immunospot Analyzer with CTL Immunospot 202 

Professional Software (Cellular Technology Ltd. Sharker Heights, Cleveland, OH). Spot forming 203 

cells (SFCs) in peptide stimulated wells were computed following subtraction of SFCs detected 204 

in DMSO stimulated controls wells and were considered positive if the number of SFC was > 3 205 

spots per 1x105 plated cells.  206 

  207 

SARS-CoV-2 binding antibody ELISA 208 
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Antigen-specific IgG and IgM responses were detected in sera by ELISA using recombinant 209 

SARS-CoV-2 Spike protein (Sino Biologicals, Cat #40589-V08B1, #40589-V08H28, #40589-210 

V08H33) as the capture antigen. Information regarding control sera can be found in 211 

Supplemental Table 9. ELISA plates (Corning Inc., Corning, NY) were coated with antigen 212 

(1µg/mL) or with serial dilution of purified NHP IgG (NHPRR, Boston, MA) in 0.1M phosphate-213 

buffered saline (PBS). Consecutively, serially diluted sera, goat anti-monkey IgG-HRP 214 

(Invitrogen, Waltham, MA), SureBlue TMB (SeraCare, Milford, MA), and HCl were added. Plates 215 

were washed with 0.05% PBS/Tween20 in-between the addition of sera, goat anti-monkey IgG-216 

HRP, and SureBlue TMB. Absorbance values were read at 450 nm (ELx808, BioTek 217 

Instruments Inc., Santa Clara, CA). Concentrations were analyzed using a five-parameter (5-PL) 218 

standard curve interpolation on Prism 8.3.0 (GraphPad, San Diego, CA) 219 

  220 

D614G SARS-CoV-2 Spike pseudovirus neutralization  221 

Lentivirus-based pseudoneutralization assays based on the B.1 D614G strain were performed 222 

on specimens at the University of Washington Virology Lab as previously described10. 96-well 223 

plates were seeded with 17,500 293T cells constitutively expressing ACE2 (293T-ACE2), in a 224 

final volume of 50µL D10 media (DMEM, 10% FBS, 1% Pen/Strep), and allowed to adhere 225 

overnight. Serum was diluted 10-fold in D10 media and then serially diluted 3-fold over six 226 

additional dilutions in 96-well U-bottom plate. The viral stock was diluted in D10 media to ~8 x 227 

106 RLU/mL and 60µL of diluted viral stock was added to 60µL of each serum dilution. The virus 228 

and serum were incubated for one hour at 37°C, and then 100µL of the mix was added directly 229 

to the pre-seeded 293T-ACE2 cells. Approximately 50-55 hours post-infection, 100µL of media 230 

was removed from the cells, 30µL of Bright-Glo (Promega) was added, plates were incubated 231 

for 2 minutes and RLU of each well was measured using a VICTOR Nivo Plate Reader (Revvity) 232 

with an integration time of one second. Each plate included wells infected with non-enveloped 233 

pseudovirus (NoVEP) to determine the background RLU and wells infected with virus without 234 
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serum (no-serum) to determine the expected RLU without inhibition. RLU values in test wells 235 

are normalized to percent inhibition using the NoVEP and no-serum well averages. Pseudovirus 236 

neutralization assay results are reported as the 80% neutralizing dilution titers (ND80), based on 237 

four-parameter logistic regression analysis. 238 

 239 

SARS-CoV-2 culture assay  240 

Bronchoalveolar lavage (BAL) fluid and nasal, throat, and rectal swab samples collected 7 days 241 

pre-infection, and on 3 and 14 DPI were cultured to recover live SARS-CoV-2 virus. BAL and 242 

swab samples were placed in Teknova Viral Transport Medium (VTM), filter sterilized and 243 

inoculated onto Vero E6 cells expressing human angiotensin-converting enzyme 2 and 244 

transmembrane Serine Protease 2 (VeroE56AT cells), as previously described11. Virus-positive 245 

cultures were collected (Supplemental Table 10) for whole genome viral sequencing. 246 

 247 

SARS-CoV-2 viral sequencing & analysis 248 

Viral RNA was extracted using Quick-RNA Viral Kit (Zymo Research) and cDNA synthesized 249 

with SuperScript IV (Invitrogen). PCR tiling was performed with the xGen SARS-Cov-2 Amplicon 250 

Panels. Libraries were prepped with TruSeq Stranded Total RNA kit and barcoded using the 251 

Nextera XT Index kit (Illumina). Pooled samples were purified with AMPure XP beads and 252 

sequenced on the Illumina NextSeq platform. FASTQ files were demultiplexed, trimmed with 253 

TrimGalore (v0.6.10), and mapped to SARS-CoV-2 reference genome SARS-CoV-254 

2/human/USA/USA-WA-CDC-02982586-001/2020 (accession: MN985325.1) using bwa 255 

(v07.17). Primers were clipped with iVar (v1.4.2). Variants were called with samtools (v1.13) 256 

and filtered by minimum quality score of 20, and a minimum allele frequency of 0.03 with at 257 

least 20x depth using iVar. SNPs found in only one sample or those present in the inoculating 258 

virus and indels were removed.  259 
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 260 

Microbiome data and analysis 261 

DNA was extracted from stool and rectal, nasal and tracheal swabs using QIAamp PowerFecal 262 

Pro DNA Kit (Qiagen). DNA elution volumes are as follows: stool in 50μL, rectal and nasal 263 

swabs in 30μL, and tracheal swabs in 25μL. Sterile Water was used as a negative control for 264 

stool extractions and a sterile cotton swab soaked in sterile water was used as a negative 265 

control for swab extractions. Amplicon libraries of the V3-V4 region of the 16S rRNA gene were 266 

prepared in accordance with Illumina’s recommendations for 16S Metagenomic Sequencing 267 

Library Preparation (Part# 15044223 Rev. B) using primers 347F and 803R12. Libraries were 268 

sequenced on the Illumina NextSeq2000® using the NextSeq 1000/2000 P1 Reagents with 600 269 

cycle chemistries (Illumina). After demultiplexing, paired end sequences were imported into 270 

QIIME2 v. 2023.9.113. Primers were trimmed using the cutadapt plugin14. Denoising, quality 271 

filtering, and enumeration of amplicon sequence variants (ASVs) were performed using DADA2 272 

(Supplemental Table 11)15. Taxonomic assignments were established using scikit-learn naïve 273 

Bayes classifier trained on the SILVA SSU Ref NR99 138.1 dataset (Supplemental Table 12)16. 274 

A phylogenetic tree for downstream analysis was constructed using SATé-Enabled 275 

Phylogenetic Placement (SEPP) of the with the SILVA 128 release reference tree17. To control 276 

for any potential extraction contaminates or sequencing artifacts, the negative controls 277 

mentioned above were imported into QIIME2 and analyzed in conjunction with samples. The 278 

total number of ASVs found in negative controls was significantly lower than any sampling 279 

location and the identity of features found in the controls were noted (Supplemental Figure 1). 280 

Alpha and beta diversity was calculated in QIIME2 using the core phylogenetics metrics plugin 281 

with a rarefaction depth of 20,600 to retain all samples and exclude negative controls. The 282 

ASVs, taxonomy, and diversity metrics were imported into R (v. 4.4.1) using qiime2R (v. 0.99.6) 283 

for further analysis and visualization. Relative abundance percentages were calculated as the 284 

median relative abundance for samples with those taxa. Differential abundance testing was 285 
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performed on unrarefied counts from imported feature tables using ANCOMBC218 to identify 286 

genus level features changing over time. Genera with a prevalence <10% were excluded from 287 

analysis. Timepoints were treated as a categorical variable to allow for multigroup analysis. 288 

Animal ID was considered as a random intercept, with sensitivity and structural zero analysis set 289 

as true. The p-adjustment method was set to the Benjamini-Hochberg procedure to control the 290 

false discovery rate (Supplemental Table 13). All microbiome related plots were made with 291 

ggplot2 (v. 3.5.1). 292 

 293 

ELISAs for inflammation and gut integrity 294 

Concentrations of myeloperoxidase (MPO) were detected in undiluted plasma by enzyme-linked 295 

immunosorbent assay (ELISA) using the Human Myeloperoxidase DuoSet ELISA (R&D 296 

Systems, Inc, Minneapolis, MN), per manufacturer’s protocol. Diluted plasma was used to 297 

determine the concentrations of soluble CD14 (sCD14) (1:200) using the CD14 Human ELISA 298 

Kit (ThermoFisher, Waltham, MA), C -reactive protein (CRP) (1:1000) using the Monkey CRP 299 

ELISA, CRP-3 (Life Diagnostics, West Chester, PA), and intestinal fatty acid binding protein 300 

(IFABP) (1:2) using the Monkey IFABP/FABP2 ELISA Kit (MyBiosource, San Diego, CA). 301 

 302 

Statistical Analysis  303 

Non-parametric statistical methods were used for all comparisons, unless otherwise noted. 304 

Specifically, the Friedman test was used for complete data or the Kruskal-Wallis test was used 305 

for incomplete data, with Dunn’s multiple comparison tests were used for comparisons across 306 

timepoints and Kruskal-Wallis tests were used to compare values across groups. All analyses 307 

were conducted using two-sided tests with an alpha value of 0.05. Analyses were conducted in 308 

Prism version 10.3.1 (GraphPad). Statistical analysis for microbiome related figures was 309 

performed in R (v. 4.4.1) using the rstatix (v. 0.7.2) package for the Friedman test and Dunn’s 310 

multiple comparisons.  311 



 13 

 312 

Results 313 

SARS-CoV-2 viral replication persists in the upper respiratory tract, but not the lower respiratory 314 

tract of SIV+/SARS-CoV-2+ co-infected rhesus macaques 315 

Seven female rhesus macaques, aged 7-10 years, were previously infected with SIVmac251 by 316 

repeat low dose intravaginal challenge (Supplemental Table 1). All animals were co-infected 17-317 

32 weeks (4-8 months) post-initial SIV infection with 1.3 x 106 TCID50/mL SARS-CoV-2 (USA-318 

WA1/2020) and monitored for 14 days post infection (DPI) (Fig 1A, Supplemental Table 1). At 319 

the time of co-infection, the median SIV viremia was 5.00 (4.08-6.03) log10 copies/mL of plasma 320 

(Supplemental Figure 2). All animals had signs of immunosuppression including depleted 321 

peripheral CD4 counts (<500 cells/µL of blood) in 4/7 (57%) of animals (median 494 (274-1090) 322 

cells/µL of blood) and a blood CD4/CD8 ratio of <1, a biomarker of HIV/AIDS disease 323 

progression, in 7/7 (100%) of animals (Supplemental Figure 3, Supplemental Table 1)19. Mild 324 

anemia, hyperglycemia, thrombocytopenia, and lymphopenia were also noted in a few of the 325 

animals (Supplemental Table 5). 326 

Longitudinal SARS-CoV-2 viral burden was evaluated in bronchoalveolar lavage (BAL), 327 

respiratory mucosal secretions (nasal and tracheal swabs), and rectal swabs by qRT-PCR 328 

evaluation of genomic viral and subgenomic (Sg) RNA (N and/or E) and infectious virus was 329 

detected by TCID50 assay (Fig 1B-C, Supplemental Figure 4-5). At 3 DPI, robust viral 330 

replication was detected in all animals in the upper (nasal and tracheal swabs) and lower 331 

respiratory tract (BAL), with lower and variable viral levels detected in rectal swabs (Fig 1B-C, 332 

Supplemental Figure 4). Infectious virus was detected in 6/7 (86%) animals at 3 DPI in the BAL 333 

and nasal swabs, in 1/7 (14%) animals in the tracheal swab and in none of the rectal swabs 334 

(Supplemental Figure 5). Genomic RNA in rectal swabs was detected in 5/7 (72%) animals at 3 335 

DPI, but only in 3/7 (43%) by 14 DPI (Fig 1B). Interestingly Sg-N RNA was not initially detected 336 

in rectal swabs in any of the animals for the first 10 days of the infection but was detected in 2/7 337 
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(29%) of animals at 14 DPI (Fig. 1B-C). Genomic and subgenomic levels of RNA (Sg-N and Sg-338 

E) and infectious virus significantly decreased in the BAL 10-14 DPI, with the detection of viral 339 

RNA in 3/7 (43%) and Sg-N RNA in 1/7 (14%) of animals by 14 DPI and is evidence for viral 340 

clearance in the lung (Fig. 1B-C, Supplemental Figure 4). In contrast, only the levels of Sg-N 341 

RNA were significantly decreased in nasal swabs at 14 DPI (Fig. 1C), but the persistence of 342 

genomic (7/7, 100%) and Sg-E viral (3/7, 43%) RNA was evident at 14 DPI (Fig. 1B, 343 

Supplemental Figure 4). These results were further confirmed by the detection of infectious 344 

virus in the nasal swabs in 3/7 (43%) animals at 14 DPI but in none of the BAL specimens 345 

(Supplemental Figure 5).  346 

Virus persistence was also evident in the tracheal swabs; genomic RNA was detected in 347 

5/7 (71%) and subgenomic RNA in 2/7 (29%) animals at 14 DPI (Fig. 1B-C). Collectively, these 348 

data suggest that SARS-CoV-2 may persist longer in the upper respiratory tract of SIV+ 349 

animals. To investigate this hypothesis, we next compared the levels of SARS-CoV-2 RNA at 7-350 

10 DPI from our study to data sets from two published studies of naïve rhesus macaques of 351 

similar age who received a comparable WA-1 SARS-CoV-2 infection but were necropsied 352 

earlier at 10 DPI20, 21. The levels of genomic RNA in the nasal swabs, but not the BAL, tracheal 353 

or rectal swabs, were significantly higher at 7 and 10 DPI in our SIV+/SARS-CoV-2+ co-infected 354 

animals in comparison to SIV- animals infected with SARS-CoV-2 (Supplemental Figure 6)21. 355 

Similarly, we compared the levels of subgenomic-E RNA in the BAL and nasal swabs collected 356 

in our study with results from those from Chandrashekar et al.20, and found that the levels of Sg-357 

E were significantly higher in the nasal swabs, but not the BAL, of SIV+ versus naïve animals at 358 

10 DPI (Supplemental Figure 4). Collectively, these data provide evidence that SIV infection 359 

may contribute to persistence or delayed clearance of SARS-CoV-2 virus in the upper, but not 360 

the lower, respiratory tract. 361 

 362 

Mild COVID-19 disease progression during SIV+/SARS-CoV-2+ co-infection  363 
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We next evaluated whether SIV-induced immunosuppression had an impact on SARS-CoV-2 364 

disease pathogenesis. SARS-CoV-2 clinical disease was generally mild in all animals as 365 

measured by transient increases in body temperature, and blinded clinical scoring throughout 366 

infection, however significant declines in body weight were detected at 7 and 14 DPI 367 

(Supplemental Figure 2, Supplemental Table 2-3). Elevated serum levels of alanine 368 

aminotransferase (ALT) and decreased serum levels of hemoglobin were also noted 1-2 weeks 369 

after infection (Supplemental Figure. 2, Supplemental Table 5). Levels of SIV plasma viremia 370 

were unchanged by SARS-CoV-2 infection and there were transient dips in the levels of 371 

peripheral CD8 cells at 3 DPI that returned to pre-SARS-CoV-2 levels by 7 DPI (Supplemental 372 

Figure 3), indicating SARS-CoV-2 infection did not further promote peripheral SIV disease 373 

progression.  374 

At necropsy, lung inflammation and pathology were evaluated (Fig 2A, Supplemental 375 

Table 7). All animals exhibited minimal to mild pulmonary inflammation. Two animals, T985 and 376 

T986, exhibited minimal to mild pulmonary inflammation, and the remaining five animals 377 

exhibited minimal pulmonary inflammation with modest differences between them. Type II 378 

pneumocyte hyperplasia, a common finding in SARS-CoV-2 infection, was closely associated 379 

with inflammation, indicating that SARS-CoV-2 infection was likely the driver of pulmonary 380 

inflammation observed in these animals. Type II pneumocyte hyperplasia was observed less 381 

frequently than pulmonary inflammation which may indicate resolving disease in these animals. 382 

Two animals had thrombotic lesions (T981 & T982): T982 had multiple pulmonary infarcts (Fig. 383 

2B-C), whereas T981 had an intravascular thrombus but no infarction. Thrombocytopenia was 384 

evident in both animals prior to SARS-CoV-2 infection (Supplemental Table 5), indicating the 385 

SIV infection is likely the primary driver of thrombotic disease, however SARS-CoV-2 has been 386 

shown to result in thrombotic disease in both humans and NHP and therefore may 387 

synergistically contribute to thrombus formation in the context of SIV co-infection.  388 

 389 
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Mild and persistent peripheral and pulmonary inflammation during SIV/SARS-CoV-2 co-infection 390 

COVID-19 disease is typically more severe in individuals with HIV, leading to higher levels of 391 

inflammatory markers and is suggestive that immune dysregulation impacts COVID-19 392 

pathogenesis22. Based on this, we next evaluated peripheral inflammation during SIV/SARS-393 

CoV-2 co-infection. Transient increases in plasma concentrations of C-reactive protein (CRP), a 394 

marker of inflammation, occurred in most animals 3-7 DPI (Supplemental Figure 7). Similarly, 395 

concentrations of soluble CD14 (sCD14), a marker of monocyte/neutrophil activation, transiently 396 

increased in three animals 3-14 DPI (Supplemental Figure 7). Circulating concentrations of 397 

intestinal fatty acid binding protein (IFABP), a marker of impaired gastrointestinal integrity, also 398 

transiently increased in 3 animals 3-5 DPI (Supplemental Figure 7). 399 

Systemic and pulmonary inflammation was further evaluated in the plasma and BAL by 400 

multiplex immunoassay relative to pre-SARS-CoV-2 infection levels. In the plasma, four animals 401 

had persistent systemic inflammatory profiles starting 3-7 DPI and persisting to 14 DPI (T982, 402 

T986, 12M273, and T981), one animal (T988) had an acute inflammatory profile 3-5 DPI, and 403 

the remaining two animals had no substantial increase in the plasma analytes tested 404 

(Supplemental Figure 8). The systemic inflammatory profile consisted of several cytokines and 405 

chemokines important for the recruitment and differentiation of innate (CCL2/MCP-1, 406 

CCL4/MIP-1β, CCL11/Eotaxin, and CXCL8/IL-8) and adaptive immune cells (CXCL9/MIG, 407 

CXCL10/IP-10, CXCL11/I-TAC, CXCL12/SDF-1α, and CXCL13/BLC). In the BAL, all animals 408 

had proinflammatory cytokine profiles starting at 3 DPI, with the strongest profiles observed in 4 409 

animals (T981, T985, T982, and T986) (Supplemental Figure 8). These 4 animals additionally 410 

had acute and high concentrations of interferon alpha (IFNα) and IL-7 at 3 DPI. This 411 

proinflammatory profile was primarily driven by several key molecules: CCL11/Eotaxin, an 412 

eosinophil chemoattractant; CXCL11/I-TAC, which recruits activated T-cells; CXCL13/BLC, 413 

which recruitment B-cells; CXCL/IL-88, a neutrophil chemoattractant; IL-6, an activator of 414 

humoral immunity; and IL-1RA, which can suppress inflammation and antiviral responses. Two 415 
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of the animals (T986 and T985) with the strongest pulmonary inflammatory responses at 3 DPI 416 

had little peripheral inflammation, while the other 2 animals (T981, T982) also had the strongest 417 

peripheral inflammatory profiles. Although many of the cytokine and chemokine levels returned 418 

to baseline levels at 14 DPI, a few were sustained through 14 DPI and in some animals, 419 

cytokine levels started to increase. For example, the peak levels of CXCL8/IL-8 (T988, T985), 420 

CXCL11/I-TAC (T985), CXCL9/MIG (T982, 12M273, and T985), and CCL2/MCP-1 (T982, 421 

12M273) were observed at 14 DPI in specific animals. These data demonstrate that in some 422 

animals with SIV infection, SARS-CoV-2 co-infection prompts an acute inflammatory response 423 

in the lungs. However, in other animals there is evidence for more persistent inflammatory 424 

responses in the lung and periphery, which may contribute to SARS-CoV-2 persistence in the 425 

upper respiratory tract. 426 

Pulmonary recruitment and activation of neutrophils in humans and NHP occurs during 427 

mild and severe COVID-1921, 23, indicating that neutrophils are an important player in the anti-428 

viral defense against SARS-CoV-2 infection, but neutrophils can also contribute to 429 

immunopathology. We first measured circulating levels of myeloperoxidase (MPO), a neutrophil 430 

granule and marker of inflammation, and found that several animals had elevated levels prior to 431 

SARS-CoV-2 infection and throughout co-infection, with transient increases observed in a few 432 

animals (Supplemental Figure 7). We next measured neutrophil activity in the lung tissue at 433 

necropsy, in comparison to SIV+ and SARS-CoV-2+ mono-infected historical control specimens 434 

(Supplemental Table 8)24-27. MPO+ cells in the lung during SIV/SARS-CoV-2 co-infection were 435 

evident in all animals (Fig. 2C-D). The number of MPO+ cells in the lung was similar or higher in 436 

SIV+/SARS-CoV-2+ co-infected animals when compared to control specimens from SIV+ 437 

animals that had similarly been infected with SIVmac251 for 4-8 months (Fig. 2C-D). In 438 

comparison to lung specimens from historically SARS-CoV-2+ infected animals, the number of 439 

MPO+ cells in lungs from co-infected animals was more consistent with lungs from 7 DPI, a 440 

timeframe of greater inflammation, than at 21 DPI, a post-acute phase timepoint (Fig. 2D). 441 
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Collectively, this data suggests that SIV/SARS-CoV-2 co-infection may promote the continual 442 

recruitment of inflammatory neutrophils to the lung following viral clearance from the lung. 443 

 444 

SIV infection impairs the generation of anti-SARS-CoV-2 humoral and cellular immunity 445 

Humoral and cellular immunity are important for control of SARS-CoV-2 infection and protection 446 

against re-infection. We next evaluated anti-SARS-CoV-2 Spike binding antibodies in the sera 447 

by ELISA. At 14 DPI, 6/7 animals developed peripheral IgM antibodies, but only 2/7 (28.6%) 448 

animals developed IgG antibodies, albeit low, against the A.1 Spike (Fig. 3A-B). Cross-binding 449 

IgM and IgG antibodies to the Spike protein of more contemporary variants of concern (BA.2, 450 

BA.5) were only detected in a few animals (Supplemental Figure 9). There is evidence in 451 

humans for conserved and cross-reactive SARS-CoV-2 T-cell epitopes across variants, 452 

including Omicron, and suggest an important role of T-cells in the control of SARS-CoV-228. We 453 

next evaluated IFN-γ and IL-4-producing T-cells by ELISPOT in response to stimulation with 454 

peptides against SARS-CoV-2 Spike (S), Membrane (M), Nucleocapsid (N) and Envelope (E) 455 

proteins. Moderate IFN-γ producing T-cell responses, predominantly against Spike, were only 456 

detected in a single animal at 14 DPI (Fig. 3C). Very low numbers of IFN-γ producing T-cells, 457 

against S, M, and/or N proteins were detected in 3 animals, and IL-4 producing T-cells were not 458 

detected in any animal against any antigen (Fig. 3C). These results contrast with published NHP 459 

studies in which robust peripheral antigen-specific T-cells are typically detected as early as 7 460 

days post-SARS-CoV-2 in naïve rhesus macaques29. 461 

Studies in NHP demonstrate that infection of naïve rhesus macaques with SARS-CoV-2 462 

infection results in seroconversion (i.e. detection of IgG antibodies) in most animals 10-14 DPI30, 
463 

31. Therefore, we obtained day 14 serum specimens from control animals infected with WA.1 464 

SARS-CoV-2 to be used as SIV-/naïve controls in our immune assays, the animal details can be 465 

found in Supplementary Table 920, 32. Binding IgG, but not IgM antibodies, against WA.1, BA.2. 466 

and BA.5 Spike were significantly lower in SIV+/SARS-CoV-2+ animals when compared to SIV-467 
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/SARS-CoV-2+ control specimens (Fig. 3D-E, Supplemental Figure 9). Furthermore, only one 468 

SIV+/SARS-CoV-2+ animal developed a low neutralizing antibody (nAb) response against 469 

SARS-CoV-2, as measured by pseudovirus neutralization assay, and that SARS-CoV-2+ 470 

control specimens produced significantly higher nAb responses when compared to in 471 

SIV+/SARS-CoV-2+ animals (Fig. 3F). Collectively, these results provide evidence that SIV-472 

induced immunosuppression impairs and/or delays the generation of humoral and cellular anti-473 

SARS-CoV-2 immunity, which may be important for viral clearance and necessary for protection 474 

against SARS-CoV-2 re-infection. 475 

 476 

The composition of the tracheal microbiome significantly changes during acute SIV/SARS-CoV-477 

2 co-infection 478 

SARS-CoV-2 and other respiratory diseases alter the oral, nasal, tracheal, and lung 479 

microbiomes, leading to more severe disease outcomes33-37. Pulmonary diseases associated 480 

with HIV infection can also affect the respiratory microbiome38. Therefore, we next evaluated 481 

compositional changes in the nasal and tracheal microbiomes during SIV+/SARS-CoV-2+ co-482 

infection. The Shannon diversity index, a metric that combines measures of richness and 483 

evenness, was used to assess community-level changes over time. During SARS-CoV-2 484 

infection in humans, Shannon diversity in the upper respiratory tract was shown to be greater in 485 

comparison to healthy individuals33, 35. Shannon diversity significantly increased (p = 0.0365) in 486 

tracheal swabs at 5 DPI when compared to pre-SARS-CoV-2 infection levels (Figure 4A) but 487 

was unchanged in nasal swabs at any timepoint post-SARS-CoV-2 co-infection. Overall 488 

community composition, which was measured using the unweighted UniFrac distance, showed 489 

the nasal and the tracheal swabs to have distinct microbial communities (Supplemental Figure 490 

9). Therefore, we next determined the taxonomical composition of the airway (nasal and 491 

tracheal) microbiome within individual animals. Across all timepoints, the most abundant phyla 492 

in the nasal swabs were Firmicutes (39.90%), Actinobacteria (34.37%),Proteobacteria (17.51%), 493 
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and Campylobacteria (15.5%); while the tracheal swabs were dominated by Firmicutes 494 

(37.13%), Bacteroidetes (29.74%), Proteobacteria (20.01%), and Fusobacteriota (10.67%) 495 

(Supplemental Figure 10), which is consistent with dominant phyla reported in NHP with 496 

pulmonary infections39. At lower taxonomical levels, 12M273, 15P034 and T982 had a high 497 

abundance of Staphylococcus particularly after SARS-CoV-2 co-infection, while T981, T982, 498 

T985 and T988 had a notable presence of Dolosigranulum across timepoints (Figure 4B). The 499 

genus Corynebacterium (37.63%) and family Moraxellaceae (32.06%) appear in the nasal 500 

microbiome of most animals for at least one time point (7/7 and 6/7 respectively) (Figure 4B). 501 

The tracheal swabs were distinctly composed of the genera Streptoccocus (17.75%), 502 

Porphyromonas (15.03%), and Alloprevotella (14.61%) and the family Pasteurellacaea (14.22%) 503 

with all animals having similar genus level compositions. Four genera in nasal samples and 504 

three genera in tracheal samples showed significant differential abundance at a single timepoint 505 

after SIV+/SARS-CoV-2+ co-infection, but none differed consistently across multiple time points 506 

(Supplemental Figure 11). Overall, these findings suggest that acute SIV/SARS-CoV-2 co-507 

infection causes transient changes in microbial diversity in the tracheal, but not the more 508 

uniform nasal microbiome. 509 

 510 

SIV+/SARS-CoV-2+ co-infection induces genus level changes in the gut microbiome 511 

The importance of gut symbiosis and barrier function in reducing HIV disease progression is 512 

well described40. Similar to HIV, SARS-CoV-2 replication occurs in the gastrointestinal tract41 513 

and promotes intestinal barrier dysfunction leading to bacterial translocation42 and alterations to 514 

the gut microbiota43, 44. To determine if SIV+/SARS-CoV-2+ co-infection altered the microbial 515 

community composition of the GI tract we first looked at changes in microbial diversity over 516 

time. Shannon diversity did not significantly change in stool or rectal swabs at any timepoint 517 

post-SARS-CoV-2 co-infection when compared to baseline (Figure 5A). The rectal swabs and 518 

stool had a high degree of similarity as shown by the unweighted UniFrac distance, suggesting 519 
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that these samples have analogous microbial niches (Supplemental Figure 9). We next looked 520 

at the longitudinal relative abundances of relevant taxa during SIV+/SARS-CoV-2+ co-infection. 521 

Taxonomic profiling of the gastrointestinal microbiome (stool and rectal swabs) showed 522 

Firmicutes (59.62%), Bacteroidetes (24.37%), Proteobacteria (4.54%) and, Campylobacteria 523 

(2.76%) to be the most abundant phyla across all animals at all timepoints (Supplemental Figure 524 

10), which is consistent with previous findings33. As expected for GI samples, most (80/84) had 525 

a high Shannon diversity index and were not dominated by a singular genus: On average, 526 

98.25% of the taxa in each sample were comprised of taxa with a relative abundance of ≤5%. 527 

However, a subset of the rectal swabs (4/84) had low Shannon diversity and were dominated by 528 

Heliobacter (>50% abundance) (Figure 5A-B). The most abundant genera in both the stool and 529 

rectal swabs were Lactobacillus (13.57%), Helicobacter (12.29), Prevotella (9.42%) and 530 

Rikenellaceae_RC9_gut_group (8.59%) (Figure 5B). Taxonomic changes between pre- and 531 

post- SARS-CoV-2 co-infection were determined using differential abundance analysis. In the 532 

rectal swabs and stool, 11 and 10 taxa, respectively were determined to be differentially 533 

abundant post-SARS-CoV-2 co-infection at a singular timepoint (Supplemental Table 14). 534 

Succinivibrio and Streptococcus were differentially abundant across multiple timepoints post-535 

SARS-CoV-2 co-infection in both the rectal swabs (Figure 5C) and the stool (Supplemental 536 

Figure 11). Succinivibrio abundance was significantly higher in rectal swabs at all timepoints 537 

post-SARS-CoV-2 co-infection in comparison to baseline levels (Figure 5D). In contrast, 538 

Streptococcus abundance significantly decreased 5 DPI in rectal swabs relative to baseline and 539 

the abundance remained low in most animals for the 2-week period after co-infection (Figure 540 

5E). Streptococcus abundance in rectal swabs of only two animals (T985 and 12M273) returned 541 

to levels at or above baseline at 14 DPI. Collectively, these data demonstrate that during the 542 

first two weeks of SIV+/SARS-CoV-2+ co-infection, there are significant changes in the 543 

abundance of specific genera, such as Streptococcus and Succinivibrio, within the 544 
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gastrointestinal tract. However, these changes do not disrupt the overall community structure of 545 

the gut microbiome.  546 

 547 

SIV infection may allow for intrahost SARS-CoV-2 viral evolution  548 

Impaired cellular and humoral adaptive immunity during HIV contributes to poor SARS-CoV-2 549 

viral clearance, providing more opportunity for SARS-CoV-2 viral evolution45. This is a potential 550 

mechanism for the emergence of variants of concern (VOC) contributing to breakthrough 551 

immunity in vaccinated and pre-exposed individuals. SARS-CoV-2 persistence and intrahost 552 

evolution are reported in individuals with untreated or advanced HIV3. We therefore wanted to 553 

determine whether SIV-induced immunosuppression similarly allows for intrahost viral SARS-554 

CoV-2 evolution in an acute 2-week period. BAL fluid and swabs (nasal, throat, and rectal) 555 

collected prior to SARS-CoV-2 challenge (-7 DPI) and on 3 and 14 DPI were cultured to recover 556 

live virus (Supplemental Table 10). Virus was not recovered from any of the pre-SARS-CoV-2 557 

nor in any rectal swab cultures (3 or 14 DPI). Virus was also not recovered from BAL fluid on 14 558 

DPI. Viral RNA was isolated from BAL and swab (nasal and throat) containing live SARS-CoV-2 559 

virus and processed for whole genome sequencing. Viral sequences were mapped to SARS-560 

CoV-2/WA-1/2020 clinical isolate to identify single nucleotide polymorphisms (SNPs). SNPs 561 

observed in ≥2 samples were identified in the ORF1a, ORF1ab, surface glycoprotein (S), S-562 

ORF3a intergenic region, membrane glycoprotein (M), ORF6, ORF7b, ORF8 and nucleocapsid 563 

(N) genomic regions (Figure 6). A consistent pattern of mutations was observed across multiple 564 

animals and specimens (locations: M, H125Y; ORF6 T10A, Q56X; N, A251S). Two silent SNPs 565 

present in the inoculating virus at low frequencies (ORF1a/nsp3 C4897T at 5.2% and 566 

ORF8/T11C A27924C at 7.8%) were also enriched in samples in 6/7 and 7/7 animals, 567 

respectively (5.6-99.9%). Collectively, these data provide evidence that SIV-induced immune 568 

suppression may allow for intrahost SARS-CoV-2 viral evolution. 569 
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 570 

Discussion 571 

This pilot study demonstrates the utility of the rhesus macaque HIV/AIDS model in 572 

understanding the underlying mechanisms contributing to COVID-19 in PLWH and in other 573 

immunocompromised individuals. Key findings confirmed or newly identified in this study using 574 

this model include evidence for 1) persistent SARS-CoV-2 virus replication, 2) systemic and 575 

pulmonary inflammation, 3) impaired anti-SARS-CoV-2 immunity, 4) alterations to the airway 576 

and gastrointestinal microbiome, and 5) intrahost SARS-CoV-2 viral evolution. Surprisingly, 577 

despite these factors, SARS-CoV-2 lung disease was mild and showed little immunopathology, 578 

a finding that is similar in SIV/SARS-CoV-2 co-infected pigtail macaques and SARS-CoV-2 579 

infected rhesus macaques depleted of T-cells46.  580 

SARS-CoV-2 viral shedding is more persistent in PLWH (CD4 counts <200 cells/µL 581 

and/or high HIV viral load) in comparison to individuals with suppressed HIV and higher CD4 582 

counts3 and SARS-CoV-2 viral RNA can persist for months in tissues, including the lymphoid, 583 

gastrointestinal, and respiratory tissues47. In NHP studies, RT-PCR is used to discern input 584 

SARS-CoV-2 challenge virus (genomic RNA) from newly replicating virus (subgenomic RNA). In 585 

rhesus macaques, WA.1/Wuhan SARS-CoV-2 sgRNA typically clears 7-10 dpi in the BAL and 586 

4-14 dpi from the upper respiratory tract 20, 29, 48-50. In our study, we observed persistent sgRNA 587 

in the upper respiratory tract, but not the lower respiratory tract during SIV infection, when 588 

compared to historical control data20, 21. While subgenomic SARS-CoV-2 RNA, may not be a 589 

definitive marker of active replication51,our ability to isolate infectious SARS-CoV-2 virus, which 590 

is rarely reported in NHP studies, from multiple samples at 14 dpi provides evidence for 591 

persistent infection in our model2. In contrast to our findings, persistent viral replication was not 592 

observed in a similar study of SIV-infected pigtail macaques by Melton et al.46, potentially due to 593 

a smaller sample size or because of differences in macaque species, warranting further 594 

investigation into the impact of HIV co-infection on SARS-CoV-2 persistence in NHP models. 595 
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Consistent with our findings, Hasenkrug et al. recently demonstrated that T-cell depletion in 596 

rhesus macaques delayed SARS-CoV-2 viral clearance49. Collectively these studies 597 

demonstrate that while T-cells contribute to SARS-CoV-2 viral control, they are not strictly 598 

required for SARS-CoV-2 viral clearance and that SIV infection can alter the timeframe of 599 

SARS-CoV-2 viral clearance.  600 

Seroconversion rates and T-cell responses following COVID-19 vaccination can be 601 

highly variable in PLWH and are typically lower in individuals with low CD4 counts (<200 cell/µL) 602 

or who are not virally suppressed52, 53. Consequently, these individuals are at a higher risk of 603 

breakthrough infections54, and may require additional booster immunizations to achieve 604 

protective immunity55. Our study found that SIV infection hindered the generation of robust T-605 

cell, IgG binding Ab, and neutralizing Ab against SARS-CoV-2 by 7-14 DPI – when anti-SARS-606 

CoV-2 antibodies and T-cells typically emerge in healthy animals29-31. Interestingly, most 607 

animals in our study developed anti-Spike IgM bAbs, but failed to class switch to produce IgG 608 

bAbs, warranting further investigation into the contributing mechanisms. Similarly, Melton et. al 609 

did not detect SARS-CoV-2 specific T-cells in the periphery or lung, nor the development of anti-610 

Spike IgG or IgA, or nAb against SARS-CoV-2 by 21 DPI46. In a separate study, CD4 depletion 611 

in rhesus macaques delayed or reduced anti-SARS-CoV-2 IgM and IgG responses, although a 612 

strong anamnestic recall response was observed upon reinfection49. Collectively, these studies 613 

suggest that CD4 T-cells are not necessary for the generation of protective immunity against 614 

SARS-CoV-2. In addition, other factors in immunosuppressed SIV-infected macaques appear to 615 

hamper the generation of an effective anti-SARS-CoV-2 immune responses. 616 

Both HIV and SARS-CoV-2 are known to impair gut barrier function, promote microbial 617 

translocation, and alter the host micobiome42, 44. Two prior studies in NHP have specifically 618 

examined the gut microbiome during SARS-CoV-2 and found no significant changes in alpha 619 

diversity during the acute phase of infection infection43, 56. Significant and sustained gut barrier 620 

dysfunction did not occur in our animals, which contrasts with findings from previous studies in 621 
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NHP43, 56. Our findings support prior descriptions of the high-level stability of the microbiome 622 

during COVID-19 disease, but newly reveal genus-level changes in the gut microbiome. 623 

Notably, we observed rapid and sustained depletion of bacteria in the Streptococcus genus, 624 

which is commonly found in the normal NHP gut microbiome43. This change was conserved 625 

across all animals and observed in analysis of both rectal swab and stool specimens. While 626 

many Streptococcus species are commensal, some can be highly pathogenic. Due to the 627 

limitations of 16S sequencing, it is not possible to resolve the implicated taxa at the species 628 

level with available data in this study, leaving it unclear whether pathogenic and/or commensal 629 

Streptococcus species were reduced during SIV+/SARS-CoV-2 co-infection. Interestingly, we 630 

also detected an enrichment of Succinivibrio within the gut of our co-infected animals. While 631 

Succinivibrio is commonly found in the gut microbiome of wild macaques57-59, it appears to be 632 

less prevalent in research-housed adult macaques60. Factors such as diet, age, and sex can 633 

influence Succinivibrio abundance in the gut57-59, but in our study, SARS-CoV-2 co-infection is 634 

likely the primary driver of this change. In humans, Succinivibrio is enriched in PLWH or in those 635 

exposed to HIV compared to individual without HIV infection or those who have not been 636 

exposed61-63, however in our animal model Succinivibrio abundance was low during SIV-637 

infection. Species within the Succinivibrio genus play a role in carbohydrate metabolism, 638 

particularly in the fermentation of cellulose and carbohydrates to produce succinate and acetate. 639 

Succinate is a metabolite associated with inflammation and has been linked to various 640 

inflammatory diseases64 and is also important for intestinal remodeling and maintaining gut 641 

integrity65.  642 

 Characterization of the upper airway microbiome in NHP is limited. In rhesus macaques, 643 

the primary genera of the nasal microbiome are Dolosigranulum and Corynebacterium 66. This 644 

pattern was also observed in SIV/SARS-CoV-2 co-infected macaques in our study. However, 645 

unlike healthy rhesus macaques66, the nasal microbiome of co-infected macaques also shows 646 

dominance by the genus Staphylococcus and the family Moraxellaceae. Future research is 647 
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needed to determine whether these observable differences are due to SIV infection or other 648 

environmental factors. SARS-CoV-2 infection and the severity of COVID-19 have been variably 649 

associated with changes in the respiratory microbiome37. Our study is the first to examine the 650 

impact of SARS-CoV-2 on the NHP airway microbiome. In human studies, the alpha diversity of 651 

the nasal and throat microbiome has generally remained unchanged with SARS-CoV-2 652 

infection, though a few studies have reported decreased alpha diversity, most commonly in the 653 

oropharyngeal cavity37. Similarly, microbial diversity in the nasal microbiome was unchanged in 654 

our model, but in contrast, alpha diversity of the tracheal/oropharyngeal microbiome increased 655 

during early SIV+/SARS-CoV-2+ co-infection. Future studies in NHP and humans are crucial to 656 

fully elucidate the long-term effects of HIV and SARS-CoV-2 co-infection on both the respiratory 657 

and gastrointestinal microbiome. Specifically, research should focus on how co-infection alters 658 

microbial composition, diversity, and metabolism. Additionally, understanding potential 659 

interactions across the lung-gut axis will be essential for revealing how these microbial changes 660 

may influence local and systemic immune responses, inflammation, and disease progression.  661 

SARS-CoV-2 persistence and intrahost viral evolution are reported in individuals with 662 

untreated or advanced HIV3. Here, we provide evidence of intrahost SARS-CoV-2 evolution in 663 

SIV-infected rhesus macaques, which contrasts findings from co-infected pigtail macaques46. 664 

Previous studies have reported changes in the SARS-CoV-2 genome in rectal swabs from 665 

rhesus macaques67; however, we were unable to recover live virus from rectal specimens in our 666 

study. SARS-CoV-2 escape from nAb is often linked to mutations in the Spike receptor binding 667 

(RBD) or N-terminal (NTD) domains, which can enhance receptor-binding affinity68. The 668 

occurrence of viral mutations arising from immune pressure is rare68 and given the acute 669 

timeframe of our study and the lack of anti-SARS-CoV-2 immunity that is generated, we expect 670 

virus mutations to precede immune divergence. While we only observed silent mutations in the 671 

Spike surface glycoprotein, we identified 14 nonsynonymous SNPs in other protein coding 672 
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regions. Notably, two SNPs in ORF1ab of animal T985 were highly enriched by day 14, 673 

suggesting successful selection and expansion of this quasispecies. 674 

Four SNPs of interest emerged independently in most macaques. The A215S mutation 675 

in the nucleocapsid phosphoprotein, observed in 6/7 animals, is a minor variant that peaked at 676 

1% in global GISAID data in July 2022. Although this is not a defining mutation for any VOC, the 677 

A251V mutation was present in Delta lineage viruses and peaked at 9% of global data in July 678 

2021. This suggests that the 251 site may continue to play a role in the evolution of emerging 679 

VOCs. Membrane glycoprotein H125Y and ORF6 Q56X have also been reported in humans, 680 

peaking at 4% in February 2020 and 1% in September 2021, respectively. The ORF6 Q56X 681 

mutation truncates six amino acids from the C-terminus and was strongly selected for in 6/7 682 

animals, reaching a frequency up to 47%. The T10A mutation in ORF6, observed in only seven 683 

high quality human-host genomes to date, was found in 5/7 macaques, suggesting potential 684 

differential selective pressure between species. 685 

This study has several study design limitations. Outside the scope of this study, the 686 

animals had prior SIV infections, so we unfortunately did not have access to samples or data 687 

from before the SIV infection. Our study is limited by the lack of comparison to SARS-CoV-2 688 

mono-infected contemporaneous controls. Thus, to increase the robustness of our results, we 689 

leveraged publicly available data20, 21 and historical control specimens20, 24-27, 32 where applicable, 690 

providing additional context for comparing our results with those from SIV or SARS-CoV-2 691 

infected rhesus macaques. Furthermore, as our study exclusively utilized females, not all our 692 

reported findings may be directly applicable to males. Additional studies are needed to further 693 

validate our findings.  694 

SARS-CoV-2 is typically an acute infection, but about 10% of infected individuals 695 

develop symptoms associated with long COVID (PASC)69, which can affect multiple organ 696 

systems, including the gastrointestinal tract, neurological system, heart and lungs. Long COVID 697 

symptoms are diverse and it is hypothesized that a persistent SARS-CoV-2 viral reservoir could 698 
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contribute to this condition through mechanisms such as modulating the host immune response, 699 

enhancing inflammation, stimulating cross-reactive autoantibodies or promoting microbial 700 

dysbiosis47. HIV infection similarly dysregulates many of these immune responses and 701 

pathways, and PLWH are at a higher risk for PASC1. The complexity of long COVID makes it 702 

difficult to study in humans and acquiring aged nonhuman primates for research poses 703 

additional challenges70. Given that our model exhibits several characteristics that contribute to 704 

long COVID, future studies are needed to determine whether the rhesus macaque model of 705 

HIV/SARS-CoV-2 co-infection could also serve as an animal model for long COVID. 706 

Furthermore, this immunocompromised animal model could be highly valuable for testing new 707 

COVID-19 vaccines and therapeutics, particularly those that aim to be suitable and effective in 708 

immunosuppressed populations. 709 
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Figures 1122 

 1123 

 1124 
Figure 1. SARS-CoV-2 viral replication persists in the upper, but not the lower respiratory 1125 

tract in SIV-infected macaques 14 days after infection. (A) Seven female rhesus macaques 1126 

were experimentally challenged with SIVmac251 and then co-infected with SARS-CoV-2 (SA-1127 

WA1/2020) and followed for 14 days. Tissue sampling and clinical exams occurred prior to SARS-1128 

CoV-2 infection and on days 3-, 5-, 7-, 10-, and 14-days post SARS-CoV-2 infection (DPI). 1129 

Created in https://BioRender.com. Quantification of SARS-CoV-2 (B) viral RNA or (C) 1130 

subgenomic-N viral RNA as determined by qRT-PCR. The dotted line indicates the lower limit of 1131 

detection of the assay (50 copies/mL). (B-C) Friedman test with Dunn’s post hoc test versus 3 1132 

DPI, * p < 0.05, ** p < 0.01. 1133 

 1134 
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1135 
Figure 2. Mild pulmonary inflammation and pulmonary infarction in SIV+/SARS-CoV-2+ 1136 

rhesus macaques. (A) Histopathology of SARS-CoV-2 infection. Animal T985, right middle 1137 

lung. Left Panel: The pulmonary interstitium is multifocally infiltrated by low to moderate 1138 

numbers of mixed inflammatory cells (arrows). Right Panel: The inflammatory infiltrate is 1139 

composed predominately of histiocytes with fewer numbers of lymphocytes and neutrophils 1140 

(arrows). Inflamed alveolar septa are segmentally lined by type II pneumocytes (arrowheads). 1141 

(B) Pulmonary infarction. Animal T982, right lower lung. Left Panel: There is wedge-shaped 1142 

(dotted lines) pulmonary hemorrhage consistent with infarction effecting a focal region of the 1143 

right lower lobe. Right Panel: Vessels within the region of infarction exhibit medial and intimal 1144 

expansion by low to moderate numbers of lymphocytes (arrows). (C) Immunohistochemistry for 1145 

myeloperoxidase (MPO). Top left: Animal EE87, chronic SIV infection. Low numbers of MPO 1146 

positive cells (brown, arrows) are present within alveolar septa and alveoli. Top right: Animal 1147 

T985, SIV+/SARS-CoV-2+ co-infection, 14 DPI. There is patchy infiltration of alveoli and 1148 

alveolar septa with aggregates of MPO+ cells. Bottom left: Animal LM74, SIV-/SARS-CoV-2+, 7 1149 

DPI. Alveolar septa are multifocally expanded by small aggregates of MPO+ cells. Bottom right: 1150 

Animal KE93, SIV-/SARS-CoV-2+ 21 DPI. Low numbers of MPO positive cells are present 1151 

within alveolar septa and alveoli. Bar=100 um. MPO-DAB. (D) MPO immunohistochemistry 1152 

quantification. Historical control specimens: SIV+ (n=6), SARS-CoV-2+ (n= 2, 7 DPI; n=4, 21 1153 

DPI). Medians are shown. Kruskal-Wallis test between groups showed no significant 1154 

differences. 1155 
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 1156 

Figure 3. SIV infection impairs the generation of anti-SARS-CoV-2 immunity. Serum (A) 1157 

anti-IgM and (B) anti-IgG enzyme linked immunosorbent assays (ELISAs) against A.1 Spike 1158 

proteins. (C) Magnitude of IFN-γ T-cell responses were measured by ELISpot assay in PBMCs 1159 

following 48-hour stimulation with overlapping peptide pools encompassing the WA.1 SARS-1160 

CoV-2 spike (S), membrane (M), nucleocapsid (N) and envelope (E) proteins. Comparative 1161 

serum (D) anti-IgM and (E) anti-IgG ELISAs against A.1 Spike proteins with control specimens 1162 

(n=15-21). (F) Pseudovirus neutralization titers (ND80) against D614G with historical controls 1163 

(n=18). Dotted line indicates the limit of detection for the assay (20). (A-B) Friedman Test with 1164 

Dunn’s post hoc test versus baseline, * p < 0.05, ** p < 0.01. (D-F) Medians with interquartile 1165 

ranges are shown. Kruskal-Wallis test between groups, * p < 0.05, ** p < 0.01. 1166 
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 1171 

 1172 

 1173 



 40 

 1174 

Figure 4. Transient changes in the throat microbiome during SIV+/SARS-CoV-2+ co-1175 

infection. (A) Shannon diversity of microbial DNA extracted from nasal and tracheal swabs. 1176 

Medians with interquartile ranges are shown. The whiskers extend to the largest or smallest value 1177 

no further than 1.5*IQR from the hinge. Friedman test of the Shannon diversity between 1178 

timepoints. Post hoc Dunn Test for pairwise comparisons, * p < 0.05. (B) Relative Abundance of 1179 

taxa classified to the family or genus level. Taxa that have an abundance of less than 10% in 1180 

each sample are pooled into the "Other” category. Taxa that were only able to be classified to the 1181 

family level have the prefix f_ while those classified to the genus level have the prefix g_. 1182 
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 1184 

 1185 

 1186 

 1187 
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 1189 

 1190 
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 1195 
Figure 5.  Changes in Streptococcus and Succinivibrio abundance in the gastrointestinal 1196 

tract during SIV+/SARS-CoV-2. (A) Shannon diversity of microbial DNA extracted from rectal 1197 

swabs and stool. Medians with interquartile ranges are shown. The whiskers extend to the largest 1198 

or smallest value no further than 1.5*IQR from the hinge. Friedman test of the Shannon diversity 1199 

between timepoints. (B) Relative abundance of taxa classified to the family or genus level. Taxa 1200 

that have an abundance of less than 5% in each sample are pooled into the “Other” category. 1201 

Taxa that were only able to be classified to the family level have the prefix f_ while those classified 1202 

to the genus level have the prefix g_. (C) Differentially abundant genera relative to baseline in 1203 

rectal swabs as determined by ANCOMBC2. Dotted line indicates a p adjusted value of < 0.05. 1204 

Grey dots represent non-significant taxa, and colored dots represent taxa determined to be 1205 

significantly abundant. Relative Abundance of (D) Streptococcus and (E) Succinivibrio in rectal 1206 

swabs with p-adjusted values determined by ANCOMBC2, * p <0.5, ** p < 0.01, *** p < 0.001, **** 1207 

p < 0.0001.   1208 
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 1209 
 1210 

Figure 6. Heatmap of SARS-CoV-2 single nucleotide polymorphisms in SIV-infected 1211 

macaques. Viral SNPs were identified against SARS-CoV-2/WA-1 reference (MN985325.1) 1212 

Samples are shown in rows clustered by animal, with names on the left and sample type and 1213 

timepoint on the right. SNPs are ordered in columns left to right, from 5’ to 3’ of viral genome. 1214 

Allele frequency is represented by gradated red color in variants with a minimum of 3%. Variants 1215 

with the highest (>80%) allele frequency are colored black. The genomic polyproteins and proteins 1216 

associated with SNPs are annotated at the top of the heatmap. Mutations are labeled with the 1217 

genomic nucleotide mutation, and, when applicable, the polyprotein and/or protein amino acid 1218 

mutation. RdRP is RNA-dependent RNA polymerase, and IGR is an intergenic region.  1219 
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