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Abstract: B. pertussis is a human-specific pathogen and the causative agent of whooping cough.
The ongoing resurgence in pertussis incidence in high income countries is likely due to faster waning
of immunity and increased asymptomatic colonization in individuals vaccinated with acellular
pertussis (aP) vaccine relative whole-cell pertussis (wP)-vaccinated individuals. This has renewed
interest in developing more effective vaccines and treatments and, in support of these efforts, defining
pertussis vaccine correlates of protection and the role of vaccine antigens and toxins in disease.
Pertussis and its toxins have been investigated by scientists for over a century, yet we still do not
have a clear understanding of how pertussis toxin (PT) contributes to disease symptomology or how
anti-PT immune responses confer protection. This review covers PT’s role in disease and evidence
for its protective role in vaccines. Clinical data suggest that PT is a defining and essential toxin
for B. pertussis pathogenesis and, when formulated into a vaccine, can prevent disease. Additional
studies are required to further elucidate the role of PT in disease and vaccine-mediated protection,
to inform the development of more effective treatments and vaccines.

Keywords: Bordetella pertussis; bacterial infection; immunization; pertussis toxin; whooping cough;
pertussis; pertussis vaccine

Key Contribution: Review of the evidence for pertussis toxin’s inclusion in pertussis vaccines.

1. Introduction

Bordetella pertussis is a Gram-negative pathogen that causes pertussis, or whooping cough, a highly
contagious disease spread by respiratory droplets [1]. It is a strict human pathogen with no other known
reservoir. The disease has an initial catarrhal-phase of one to two weeks followed by four or more
weeks of paroxysmal coughing. The severe coughing bouts are often followed by an inspiratory whoop,
for which the disease is named [2]. The disease is generally afebrile and causes lymphocytosis. Other
more severe symptoms can include post-tussive vomiting, apnea, cyanosis, seizures, encephalopathy,
and weight loss [2]. The disease is milder in older children and adults and most severe in infants,
with half of all deaths in the US occurring in infants below two months of age [3]. The bacterium that
causes pertussis was first isolated by Bordet and Gengou in 1906 [4]. By 1914, multiple whole-cell
pertussis (wP) vaccines were in use with variable efficacy [5,6]. Different B. pertussis strains and
culture conditions reduced the expression of virulence factors, contributing to the variable efficacy of
these early pertussis vaccines. The discovery of different antigenic growth phases and phase-locked
mutants of B. pertussis [7] lead to more standardized growth conditions for wP vaccine production [8].
Widespread use of standardized wP vaccines, that also include diphtheria (D) and tetanus (T) toxoids,
began in 1944 following the recommendations of the American Academy of Pediatrics [5,6]. Doctors
and parents around the world became more concerned with the reactogenicity of wP vaccines as rates
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of disease fell, prompting the development of less-reactive acellular pertussis (aP) vaccines in the 1980s
(please see Ligon [9] and Pittman [6] for more in-depth histories of this topic). Currently, almost all
licensed wP and aP vaccines are combination vaccines that include D and T [10,11]. Many B. pertussis
virulence factors were identified as research on pertussis progressed in the 20th and beginning of the 21st

century, however, despite over a century of scientific inquiry, we still do not have a clear understanding
of which antigens in the wP vaccine confer protection or the mechanisms underlying that protection.
This review will cover pertussis toxin (PT) and its role in aP vaccines. With a better understanding of
how this key toxin contributes to disease, better correlates of protection and a more effective vaccine
may be developed. This information is increasingly important because of the increasing incidence of
pertussis in high income countries despite high vaccination rates with current vaccines.

2. Pertussis Toxin

B. pertussis establishes itself on ciliated cells in the conducting airways of the respiratory tract [12,13]
and is not known to disseminate systemically in humans, although Scanlon et al. observed B. pertussis
dissemination in an immunocompetent neonatal mouse model [14]. Non-systemic B. pertussis infections
can have profound systemic effects—many of which are attributed to PT. PT is an ADP-ribosyltransferase
that ribosylates inhibitory Gαi subunits of G protein-coupled receptors (GPCRs) [15], that are involved
in cell-signaling pathways throughout the body. This ribosylation permanently inactivates Gαi subunits,
removing the negative regulatory function of these inhibitory GPCRs causing an increase in the second
messenger cyclic adenosine monophosphate (cAMP) and, for some GPCRs, also altering potassium
and calcium channels [15]. Downstream effects of PT include leukocytosis [16], impaired macrophage
function [17], altered leukocyte trafficking [18], hyperinsulinemia [19], and sensitivity to multiple agents,
including histamine [20–22], bradykinin [23], and serotonin [22]. Because of these pleiotropic effects,
this toxin originally went by a variety of different names, including lymphocyte-leukocyte-promoting
factor hemagglutinin, histamine-sensitizing factor, islet-activating protein, and pertussigen before Dr.
Margaret Pittman proposed the name PT. She hypothesized that pertussis was primarily a PT-mediated
disease and immunity to the toxin conferred immunity to disease [24]. Continued research has revealed
a more complex picture of pertussis pathogenesis and virulence factors [25,26] and adhesins such as
fimbrial hemagglutinin (FHA), and fimbrial proteins 2/3 (Fim 2/3), and the autotransporter pertactin
(Prn) have been included in acellular vaccines, yet PT remains central in disease and immunity.

Comparative genomics may provide insights into the role of PT in disease. B. pertussis is closely
related to B. parapertussis and B. bronchiseptica, with B. parapertussis causing a similar, but milder version
of disease in humans and ovines [27], and B. bronchiseptica infecting many mammals, including dogs
and swine, but very rarely infecting humans [28]. Only B. pertussis is known to express PT. Both
B. parapertussis and B. bronchiseptica have homologous regions encoding functional PT, which can be
expressed when engineered with a B. pertussis promoter region [29,30]. The driving forces favoring
the loss of PT expression by B. parapertussis and B. bronchiseptica are unknown. These genetic, host,
and disease similarities between B. pertussis and B. parapertussis suggest that PT exacerbates disease,
but is not necessary for symptoms, including coughing. Unfortunately, these direct comparisons are
tenuous since B. parapertussis evolved to infect humans independently from B. pertussis [31], so their
mechanisms of causing human disease may be different. Another example of a bacterium that has very
different mechanisms of infection from another genetically similar bacterium is Yersinia pestis. Y. pestis
is taxologically similar enough to be a subspecies of Y. pseudotuberculosis [32–34], yet Y. pestis is vector-
or aerosol-borne and causes primarily bubonic, septicemic and/or pneumonic disease, whereas Y.
pseudotuberculosis is food-borne and causes a primarily enteric disease [35]. This illustrates that similar
disease mechanisms cannot be assumed in closely related species like B. pertussis and B. parapertussis.
Within B. pertussis, only two pertussis-toxin deficient B. pertussis strains have been isolated from
patients. One was isolated in 2007 from a 3-month-old infant in France, and the second was isolated in
2013 from an 11-month-old infant in New York, USA. Both infants had classic symptoms of pertussis
and both contained the same deletion of the PT locus between two insertion elements [36,37]. Again,
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this data suggests, but does not prove, that PT is dispensable for disease. These retrospective anecdotes
do not eliminate the possibility of co-infections with a PT-positive pertussis strain or the possibility
that these individuals were infected with a wild-type strain and the deletion mutant arose during the
course of infection. Therefore, these examples do not reliably inform us on the role of PT in infection.
Clearly, PT-deficient clinical isolates are extremely rare. Given the large size of the locus encoding
PT and the toxin-secretion apparatus, PT-deficient clinical isolates would be expected to occur at a
relatively high rate if PT was dispensable for infection.

PT affects many cell types and it has been shown to have many, and sometimes seemingly
contradictory effects in vivo and in vitro. This includes functioning as both a pro-inflammatory
adjuvant [38,39] and anti-inflammatory agent [39,40], inhibiting macrophage and neutrophil
migration [40,41] and phagocytosis [42], and reducing or potentiating vascular permeability in
response to different molecules [40]. These studies may not reflect the true effects of PT expressed
during a natural pertussis infection, given differences in concentrations as well as anatomical and
temporal exposure. Direct comparisons between wild-type and PT-knock out pertussis infections in
mice have provided more relevant insight into PT’s role in pathogenesis. In this model, PT hinders early
innate immune responses in part by targeting alveolar macrophages to promote B. pertussis infection [17]
and delay neutrophil recruitment to the lung [18]. It does this by inhibiting cytokine and chemokine
production by aveolar macrophages and other lung cells [43], not by direct action on neutrophils, as was
previously thought [40]. PT has also been shown to play a role in resistance to antibody-mediated
clearance of B. pertussis [18], and in suppression of antibody production against B. pertussis antigens,
including FHA [44,45]. Later in infection, PT promotes and prolongs the inflammatory response in
the lung [46,47]. In neonatal mice, PT reduced lung pathology and increased mortality. The authors
suggest that infant mortality from B. pertussis may be due to systemic effects of PT, and not from
lung pathology [14].

In a rat model of whooping cough, wild-type B. pertussis strains induced coughing but a strain
lacking PT did not, providing direct evidence that PT is required for coughing in that model [48].
Additional studies in a more relevant model, such as in humans or the baboon model of pertussis are
needed to directly address the role of PT in pertussis-induced coughing. No coughing was observed
in a clinical study in which purified, fully-active PT was injected into subjects at a dose of 1 µg/kg to
evaluate PT’s potential use as a therapeutic to increase insulin sensitivity in diabetics [49]. This suggests
that PT alone does not induce coughing, however, the immunization status of these individuals was not
reported and it is not known how the injected, bolus dose of PT compares to an exposure resulting from
infection. An intravenous PT dose of 12.5 µg/kg did not induce leukocytosis in rhesus macaques [50],
whereas a 25 µg/kg caused leukocytosis to levels similar to those observed in clinical disease [1,2,51].
Higher intravenous doses of PT alone is toxic in mice and rats, causing weight loss, “a puffy face”
(suggestive of enhanced vascular leakage and edema), splenic and thymic atrophy, decreased activity,
tearing, and death with a respective mean lethal dose of 127 µg/kg and 114 µg/kg [49].

3. PT as Protective Antigen

Investigation into the protective immune response against pertussis began shortly after B. pertussis
was identified as the causative agent of pertussis. Polyclonal anti-toxin immune therapies were
investigated, with immune serum generated against the whole pathogen or against multiple soluble
factors) [6]. Uncontrolled case studies of these non-standard therapies had mixed results [52].
To standardize the treatments, researchers isolated protein fractions from B. pertussis to try and
find the agglutinizing toxin, a protective antigen identified in the 1940s [53]. A protein fraction
with hemagglutinizing and protective properties was found in some, but not all studies [54–57],
which could have been due to differences in growth and expression of PT and method of pertussis
challenge. This protein fraction was actually composed of two hemagglutinating proteins—fimbrial
hemagglutinin, now known as filamentous hemagglutinin (FHA) and leukocytosis-promoting factor
hemagglutinin, now known as PT. Different research groups isolated PT from B. pertussis culture
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supernatant, free from FHA contamination, in order to help elucidate which fraction, or if both fractions,
were protective [58]. Pure PT was toxoided with formalin and was successfully used to immunize
mice against a lethal intracerebral (IC) challenge of B. pertussis—pure FHA was not protective in the IC
model [20,59]. The IC challenge model was a commonly used assay at the time since it was predictive
of pertussis-vaccine efficacy in field trials [60]. Passive immunization with PT-antisera also protected
mice from IC challenge [20,59], and monoclonal antibodies raised against pure PT were protective
against disease in mice by both IC and aerosol challenge [61]. Sato et al. found that the PT fraction had
the most protective effects in mouse models of pertussis and FHA was able to boost the immunogenicity
of PT [62]. Results from monoclonal antibody prophylaxis of mice with anti-PT or anti-FHA antibodies
prior to aerosol challenge were similar, with anti-FHA prophylaxis being protective, but not quite as
effective as anti-PT pretreatment in reducing symptoms [63]. These data supported the inclusion of
both FHA and PT in the Japanese acellular vaccine [62,63]. Both PT and FHA are protective in a murine
aerosol challenge model of pertussis [20,59,63]. Additional studies found that FHA alone [64,65],
or an FHA epitope [66], conferred protection when delivered mucosally. While mouse studies were
instrumental in helping develop the acellular pertussis vaccines, it is important to not draw too many
conclusions about the protective efficacy of a given antigen based on mouse models alone. B. pertussis is
a human-specific pathogen and mice do not fully capitulate the human course of disease. Additionally,
FHA may play a role in host specificity [67], indicating that murine studies on the protective nature
of FHA are additionally confounded and protective antigens identified in the mouse model may not
reflect the true human protective antigens. Human studies, or studies conducted in the closely related
baboon model, may provide more relevant data regarding the protective effects of individual antigens.

Clinical studies investigating pertussis vaccine serologic correlates of protection identified
antibodies against PT, Fim2/3 and pertactin as protective in two efficacy trials with the aP vaccine but
antibodies against FHA were not [68,69]. In contrast, a small, prospective study conducted during a
pertussis outbreak in Finnish children who were immunized with the Finnish wP DTP vaccine found
that children with high levels of anti-FHA antibody were protected [70].

Protection from clinical disease does not correlate with protection from colonization or transmission.
An epidemiological study in England and Wales found that the frequency of pertussis outbreaks did
not decrease following the widespread use of wP vaccines, nor did it increase during a fall in the
vaccination rate as would be expected. This stable epidemic frequency is suggestive of a vaccine that
prevents clinical disease, but does not prevent colonization and transmission [71]. Later epidemiological
analysis with a more extensive data set did observe a decrease in epidemic frequency in England
and Wales [72], and a pertussis vaccine efficacy study in Senegal showed reduced transmission of
disease in primarily wP vaccinated children during a pertussis epidemic [73]. A vaccination study
in infant baboons appears to support the 1982 epidemiological data. Infant baboons vaccinated with
either a wP or an aP vaccine (containing PT, FHA, Prn and Fim2 and 3) were protected from disease
when directly challenged with B. pertussis. WP and aP-vaccinated animals were colonized upon
challenge, but the wP group cleared the infection more quickly than the naïve, un-vaccinated animals,
and the aP-vaccinated animals remained colonized for longer than the naïve, un-vaccinated animals.
Additionally, the aP-vaccinated animals were colonized to the same level as naïve animals following
natural transmission and transmitted disease to unvaccinated animals [74]. It is possible that aP
vaccination reduces transmission by reducing rhinorrhea and coughing but these baboon studies
indicate that aP vaccination does not prevent colonization or transmission.

4. Pertussis Toxin-Only Vaccination and Inactivation

Prevention of disease with the use of PT-only vaccines has been demonstrated in humans.
A 1988 placebo-controlled study found that a mono-component PT vaccine was estimated to be 54%
effective, while a two-component PT and FHA vaccine was slightly more effective at 69%, similar
to the Sato et al. studies discussed earlier [62,63]. Both of these vaccines were 80% effective in
preventing more serious disease defined as culture-confirmed pertussis lasting more than 30 days [75].
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Another mono-component PT vaccine study was completed in Gothenburg, Sweden in a previously
unvaccinated population. Vaccination with the PT-only vaccine decreased the incidence of pertussis in
vaccinated children with an efficacy of 71%, similar to the PT and FHA-containing vaccine. It also
decreased pertussis cases in vaccinees’ household contacts and in older, unvaccinated children,
suggesting that use of the PT-only vaccine induced a level of herd immunity. Importantly, the study
found that protected vaccinees had higher levels of PT-specific antibodies, whereas high levels of
FHA- and pertactin-specific antibodies may have been elicited by other Bordetellae infections [76].
The researchers in the Gothenburg study concluded that PT “is both an essential and alone sufficient
antigen in acellular pertussis vaccines [76].” However, after three years of surveillance, protection in
the PT-only group was lower than that observed in the two-component vaccine group [77]. An analysis
of multiple vaccine efficacy trials by Storsaeter et al. found that levels of anti-PT, pertactin and Fim 2/3
antibodies, but not FHA were associated with protection, but the authors urge readers that their analysis
“should not be overinterpreted and should not be taken to indicate a proven causal relationship [68],”
especially in light of an Italian vaccine efficacy study. This study observed good levels of protection from
aP vaccination despite quickly waning antibody responses against PT, FHA and pertactin, suggesting
that immunity not measured by a serologic response plays a role in protection [78,79]. A PT-only
vaccine has been in use for over 15 years in Denmark and it has been very effective, further supporting
the efficacy of a PT-only vaccine. Evidence from the baboon model of pertussis suggests that PT-only
vaccines are also effective trans-placentally. Five-week old infant baboons directly challenged with
B. pertussis were protected from disease if their mother had been vaccinated with a PT-only vaccine
during pregnancy, but these infants were still colonized. It is reasonable to conclude that these infants
were protected by maternal antibodies transferred during pregnancy, supporting the conclusion that
antitoxin alone is sufficient to protect against disease, but not colonization [80].

The method of PT inactivation and stabilization is important for vaccinology since altering the
molecular structure of PT, via chemical modifications, heat or genetically, can alter its antigenicity.
This further confounds comparisons between pertussis vaccines with different formulations.
These alterations may affect conformational epitopes, the 3-dimensional surface(s) recognized by
B-cell immunoglobulins, and the processing and presentation of linear epitopes, the peptides
presented by antigen presenting cells to helper CD4 and killer CD8 T cells. Many chemical
detoxification methods have been used, including formaldehyde, glutaraldehyde, hydrogen peroxide,
and tetranitromethane [76,81]. All chemical methods of detoxification have the potential to decrease
antigenicity and allow for reversion to a toxic molecule. Researchers suggest that the efficacy of the
Denmark mono-component vaccine may lie in its formulation. It includes a higher dose PT that is
inactivated with hydrogen peroxide, a different method of inactivation than the more commonly
used formaldehyde. Studies indicate that hydrogen peroxide inactivation of PT preserves more
critical epitopes for antibody recognition than formaldehyde [82,83]. Formaldehyde treatment to
inactivate PT is known to alter both conformational and linear epitopes, which could reduce vaccine
effectiveness [84,85]. Sutherland et al. demonstrated that the antibody responses to formaldehyde
detoxified PT in a vaccine differed to those produced by natural infections, with the natural infection
producing more antibodies against protective conformational epitopes, suggesting that alternate
methods of detoxification could allow for more effective vaccines [85]. To address safety concerns and
enhance immunogenicity, Locht et al. [86–88] and Pizza et al. [89] have introduced genetic mutations
to alter key residues of the S1, or A subunit of PT, resulting in genetically inactivated pertussis
toxin. Studies by Pizza et al. show that their genetically inactivated PT is only immunogenic when
produced as a holotoxin. This is potentially due to the disordered nature of the A subunit and the
stabilization of conformational epitopes by the B5 oligomer. The genetically inactivated PT maintained
both T- and B-cell epitopes [89]. A genetically detoxified PT made by Biocine (Siena, Italy) induced
high-titers of anti-PT antibodies in a clinical trial comparing serologic responses between 13 different
aP vaccines, despite using roughly one half to one-fifth the amount of PT as most of the other aP
vaccines [81]. In a 2015 phase 2 and 3 non-inferiority vaccine trial, vaccines containing either genetically
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inactivated PT and FHA only, or genetically inactivated PT, FHA, D and T, was shown to induce
significantly more seroconversion (approximately 40% for PT and 30%–40% for FHA) and significantly
higher geometric mean titers and anti-PT neutralizing antibody titers when compared to a TdaP
vaccine. This study led to the licensure of Pertagen (aP(PTgen/FHA)) and Boostagen (TdaP(PTgen/FHA)) in
Thailand [11]. The availability of a more effective pertussis-only aP vaccine, such as the Thai Pertagen
vaccine, as opposed to TdaP combination vaccines, could increase maternal vaccination rates [10,90].

Further characterization of T- and B-cell epitopes in PT, both from natural B. pertussis infections
and vaccination, is needed to help better select PT-inactivation and stabilization methods, preserve
potential protective vaccine epitopes, and better understand waning protective immunity to aP
vaccination [91,92]. It is also important to consider adjuvants in vaccine formulations. Adjuvants
can play an important role in directing the vaccine-induced immune response to pertussis, and may
improve immunogenicity in next-generation aP vaccines [93,94].

5. Anti-Pertussis Toxin Immunoglobulin Therapies in Humans and Non-Human Primates

Assuming a serologic response is sufficient to neutralize PT and protect against disease,
immunoglobulin therapies targeting pertussis should be protective and clearly identify PT titers as
protective. Unfortunately, studies investigating this question are not conclusive. A placebo-controlled
trial was conducted in the 1970s on an anti-PT immunoglobulin administered intramuscularly to
patients within the first week of paroxysmal coughing. The treatment was not effective at reducing
symptomology, but this may have been due to the intramuscular administration, which does not result
in rapid attainment of peak antibody concentrations in the blood [95]. Addressing this concern, another
study utilized intravenous administration of a high-titer polyclonal human anti-PT IgG (P-IVIG),
prepared from sera harvested from individuals vaccinated with a pertussis toxoid. This study saw
non-statistical decreases in paroxyms and white blood cell counts following P-IVIG treatment of
children with pertussis, when compared to pretreatment values [96]. However, this study was a small
phase I clinical trial designed to examine dosing and safety, not efficacy. A phase 3, randomized,
placebo-controlled clinical trial of P-IVIG was discontinued due to a slow rate of enrollment [97].
To address the concerns of availability and variability of human polyclonal anti-sera, Nguyen et al. [98]
humanized two well-characterized PT-neutralizing mouse monoclonal antibodies developed by
Sato et al. [61]. These monoclonal antibodies target epitopes on the S1 or the S2 and S3 subunits of PT
and are believed to respectively inhibit the ADP-ribosylating and target-cell binding capabilities of
PT [61,99]. These antibodies are thought to bind epitopes similar to antibodies elicited during a natural
pertussis infection, and are therefore more protective than antibodies raised against a chemically
toxoided PT [85], the antigen used to generate P-IVIG. These humanized antibodies were used to treat
weanling baboons infected with pertussis. Unfortunately, two of the four antibody-treated animals
had previous exposure to Bordetella bronchiseptica, as evidenced by their anamnestic antibody response
to FHA, and were partially protected from the B. pertussis infection [100]. The two remaining animals
in the monoclonal antibody-cocktail treatment group appeared to have decreased coughing and
leukocytosis as compared to the control animals, suggesting that passively administered antitoxin is
sufficient to confer protection against symptoms [98]. This further supports the baboon maternal PT-only
vaccination data, in which antibody transfer against PT is sufficient to protect infants from infection [80].

Additional research is needed to determine the efficacy of immunoglobulin therapies against PT,
and if antibodies against different B. pertussis antigens could be used alone or in combination with
anti-PT antibodies to boost its therapeutic potential. It is also possible that a more cellular-skewed
or a mucosal-type (IgA) antibody response would more effectively prevent disease or clear
infection, highlighting the need for a better understanding of the protective immune response
to a B. pertussis infection.
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6. Discussion

Clearly, PT is a key protective antigen in pertussis vaccines, despite the lack of a full understanding
of its mechanism of action. PT is responsible for specific pertussis symptoms, but by itself does not
recapitulate the full spectrum of disease. This is evidenced by the effectiveness of PT mono-component
pertussis vaccines in preventing disease [76,77,80,101] and the lack of overt pertussis symptoms upon
injection with PT [49]. Challenging adult humans [102] or infant baboons with a PT knock-out strain of
B. pertussis is required to directly address the role PT plays in the establishment of disease and/or disease
progression, given the host specificity of B. pertussis. Human challenge studies could address the role of
PT in colonization and early symptoms. Baboon studies could directly assess the role PT has in many
aspects of disease pathogenesis, including pertussis-induced coughing, dissemination and colonization
of the lungs and upper respiratory tract, systemic dissemination (if any), lung inflammation and
damage, pulmonary hypertension, skewing of the host immune response(s), and other systemic
perturbations. It is currently difficult to draw cross-study conclusions regarding the relative efficacy
of different antigens present in pertussis vaccines given the many differences in manufacturing and
formulation. The human and baboon challenge models may also be able to determine the protective
effects that additional vaccine antigens, adjuvants, formulations or delivery routes may have on
disease symptomology and on colonization and transmission. Transcriptomic, proteomic, metabolomic
and other -omics studies in these models may also help identify pertussis correlates of protection,
facilitating vaccine development and manufacture.

Despite our imprecise understanding of PT after over a century of investigation, PT is clearly a
critical virulence factor for B. pertussis and immune responses to PT protect against disease. PT will
likely remain a key component in the next generation of pertussis vaccines.
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