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Abstract: Lipopolysaccharydes (LPS) are responsible for the intestinal inflammatory reaction, as they
may disrupt tight junctions and induce cytokines (CKs) secretion. Osthole has a wide spectrum of
pharmacological effects, thus its anti-inflammatory potential in the LPS-treated Caco-2 cell line as
well as in Caco-2/THP-1 and Caco-2/macrophages co-cultures was investigated. In brief, Caco-2 cells
and co-cultures were incubated with LPS to induce an inflammatory reaction, after which osthole
(150–450 ng/mL) was applied to reduce this effect. After 24 h, the level of secreted CKs and changes
in gene expression were examined. LPS significantly increased the levels of IL-1β, -6, -8, and TNF-α,
while osthole reduced this effect in a concentration-dependent manner, with the most significant
decrease when a 450 ng/mL dose was applied (p < 0.0001). A similar trend was observed in changes
in gene expression, with the significant osthole efficiency at a concentration of 450 ng/µL for IL1R1
and COX-2 (p < 0.01) and 300 ng/µL for NF-κB (p < 0.001). Osthole increased Caco-2 monolayer
permeability, thus if it would ever be considered as a potential drug for minimizing intestinal
inflammatory symptoms, its safety should be confirmed in extended in vitro and in vivo studies.

Keywords: pro-inflammatory cytokine; interleukin; gene expression; transepithelial electrical resis-
tance; permeability

1. Introduction

Lipopolysaccharides (LPS) are potent inflammation stimulants that are located on
the outer membranes of Gram-negative bacteria. They are responsible for intestinal and
systematic inflammatory reactions [1]. Previous studies indicated that LPS disrupt tight
junctions (TJ) [1–3]. Furthermore, chronic inflammation results in functional impairment
of the intestinal barrier to further generate pro-inflammatory cytokines (CKs), which
constitutes a vicious cycle. Strategies that alleviate inflammatory response are promising
for disease prevention in which maintenance of the intestinal barrier is crucial (such as
inflammatory bowel disease (IBD)) [4].

Several in vitro studies discovered natural compounds that can prevent or reverse LPS-
induced intestinal barrier damage. Extracts obtained from Boswellia serrata and Curcuma
longa as well as combinations of probiotics and Chamomilla recutita extract mitigated LPS-
induced epithelial permeability [4,5]. 6-gingerol, a phenolic component in Zingiber officinale,
also restores intestinal barrier function and suppressed pro-inflammatory responses [6].
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Osthole (7-methoxy-8-(3-methylbut-2-en-1-yl)-2H-chromen-2-one), a coumarin bioac-
tive derivative obtained from medicinal plants, is commonly used as an ingredient in
herbal medicine and functional foods. Osthole is isolated from the mature fruit of Cnidium
monnieri and plants of genera Angelica, Archangelica, Citrus, and Clausena. Fruit of C. monieri
are commonly applied in traditional Chinese medicine to strengthen the immune system,
reduce rheumatic pain, and treat asthma, osteoporosis, and skin diseases [7,8]. Based
on in-depth investigations, osthole is revealed to possess a wide range of different phar-
macological effects, including anti-allergy [9], anti-inflammatory [10,11], antioxidant [12],
hepatoprotective [13,14], neuroprotective [15], anti-osteoporotic [16], and anti-microbial
properties [17]. Osthole possess anti-cancer and anti-metastatic activities by inducing cell
cycle arrest and apoptosis in many types of cancer, including breast [18,19], ovarian [20],
cervival [21], lung [22,23], and gastric cancer [24,25], hepatocellular carcinoma [26], sar-
coma [27], glioma [28], and leukemia [29]. Importantly, osthole has been shown to not
induce apoptosis and growth inhibition in normal peripheral blood mononuclear cells
(PBMCs) and fibroblasts [30]. In our previous research, we confirmed that osthole possesses
anti-inflammatory properties in PBMCs isolated from children with diagnosed allergy and
autism spectrum disorder (ASD) and from adults with allergy and asthma [9,31–36]. How-
ever, to date, its anti-inflammatory effect specifically against intestinal inflammation has
not been identified.

During the propagation and initiation of IBD and disruption of the intestinal TJ barrier,
the mucosal epithelial barrier is compromised, and lymphocyte/macrophages secrete
chemokines and pro-inflammatory CKs [37–42]. Previously, intestinal inflammation has
been studied using animal models [7,38,43–46]. However, in vitro models are also useful
to understand the regulatory mechanisms of anti-inflammatory drugs or food factors [47].

The Caco-2 cell line is widely accepted as a model for human epithelium [40,48–50]
since Hidalgo et al. reported that they resemble the morphology and function of human
intestinal epithelial cells [51]. The Caco-2 model allows the analysis of the biological
activity of food components or drugs toward human intestine epithelial cells, reflected in
cell proliferation, enzymatic activity, apoptosis, and cytokines secretion. Differentiated
Caco-2 monolayer with polarized apical and basolateral TJ is widely used to evaluate the
transepithelial transport of chemicals and drugs, including osthole [52–54].

In the present study, an in vitro model of intestinal inflammation was established
using a co-culture system of human intestinal epithelial Caco-2 cells and monocytic THP-1
cells as well as THP-1-derived macrophages. To evaluate the role of osthole in intestinal
inflammation, cells were incubated with LPS alone or in combination as dual mixtures
(LPS and osthole). We hypothesize that: (i) tested concentrations of LPS and osthole do
not cause a cytotoxic effect on the Caco-2 cell line, (ii) LPS induces changes in secretion
of pro-inflammatory CKs (IL-1β, IL-6, IL-8, tumor necrosis factor alpha—TNF-α) as well
as affects the expression level of genes encoding interleukin 1 receptor type 1 (IL1R1),
nuclear factor kappa B (NF-κB), and cyclooxygenase-2 (COX-2) in the Caco-2 monolayer
cell line and co-cultured with THP-1/macrophages, (iii) osthole successively reduces these
effects of LPS, (iv) osthole does not affect tight junction integrity in the Caco-2 monolayer
and prevents LPS-induced tight junctions disruption, and (v) osthole can be used as a
plant-driven substance minimizing the leakage of the intestinal barrier under LPS-induced
inflammation.

2. Materials and Methods
2.1. Caco-2 Cell Culture

The Caco-2 cell line was obtained from American Tissue Culture Collection (ATCC,
Manassas, VA, USA) and cultured in T-75 flasks in DMEM (Dulbecco’s modified Eagle’s
medium, Sigma-Aldrich, St. Louis, MO, USA, cat. no. D6429) supplemented with 10% fetal
bovine serum (Gibco, Thermo Fisher Scientific, Waltham, MA, USA, cat. no. 16000044), 1%
nonessential amino acids serum (Gibco, Thermo Fisher Scientific, Waltham, MA, USA, cat.
no. 11140050), 0.5% penicillin/streptomycin (Sigma-Aldrich, St. Louis, MO, USA, cat. no.
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P4333), and 0.1% gentamicin (Sigma-Aldrich, St. Louis, MO, USA, cat. no. G1272). Caco-2
cells were incubated at 37 ◦C in a 95% humidified atmosphere and 5% CO2. The culture
medium was changed every 2–3 days, and cells were passaged when confluence reached
about 80–90%. The cells used in experiments were between passages 56 and 61.

2.2. THP-1 Cell Culture

Human THP-1 monocytic cells (ATCC, Manassas, VA, USA) were cultured in T-75
flasks in RPMI 1640 (Sigma-Aldrich, St. Louis, MO, USA, cat. no R8758) containing 10%
FBS, 1% penicillin/streptomycin, and 50µM β-mercaptoethanol (Sigma-Aldrich, St. Louis,
MO, USA, cat. no M3148). THP-1 cells were incubated at 37 ◦C in a 95% humidified
atmosphere and 5% CO2. Cells were subcultured when they reached a concentration of
8 × 105 cells/mL.

2.3. THP-1 Differentiation into Macrophages

THP-1 cells were differentiated into resting macrophages according to the protocol
described by Pinto et al. (2020) [55]. Briefly, THP-1 cells were resuspended in a cul-
ture medium containing 50 ng/mL phorbol 12-myristate-13-acetate (PMA Sigma-Aldrich,
St. Louis, MO, USA, cat. no P8139) for 16 h, followed by 48 h rest in complete RPMI.

2.4. Chemicals

LPS from Escherichia coli O111:B4 (EC Number 297-473-0, MDL number MFCD00164401)
and osthole (CAS Number 484-12-8, MDL number MFCD00076049, PubChem Substance
ID 329818938) were obtained from Sigma-Aldrich (St. Louis, MO, USA, cat. no. L4391
and O9265, respectively). Stock solutions were prepared as described in Kordulewska
et al. (2015) [34]. LPS were dissolved in water and osthole was dissolved in 96% ethanol
(Chempur, Piekary Śląskie Poland, cat. no. 653964200). Solutions were filtered through
0.22 µm pore filters and stored at 4 ◦C for later dilutions.

2.5. Cells Proliferation Analysis

Caco-2 cells proliferation in the presence of different concentrations of tested sub-
stances was examined using a cell proliferation ELISA BrdU (colorimetric) kit (Roche
Diagnostics, Basel, Switzerland, cat. no. 11647229001). Cells were seeded in culture
medium into 96-well plates in a concentration of 5 × 103 cells per well. After 24 h, the
medium was removed and replaced with the tested substance solutions and BrdU in the
final volume of 100 µL. Cells were incubated for 6, 12, 24, 48, and 72 h. After the incubation,
the medium was removed, and cells were dried at 60 ◦C for 1 h. Plates were coated with
parafilm and stored at 4 ◦C for up to 3 days. Subsequently, the manufacturer’s instructions
were followed. Percent of cells were calculated in reference to control (100%, cells seeded
in DMEM).

2.6. Caco-2 Cells Incubation with Examined Substances

Cells were seeded in culture medium into 24 well-plates in a concentration of 2.5 × 104 cells
per well. After 24 h, the medium was removed and replaced with fresh DMEM with the
addition of LPS (1 µg/mL) or osthole (150–300 ng/mL) in a final volume of 1 mL. After 3 h,
osthole in final concentrations of 150 ng/mL, 300 ng/mL, and 450 ng/mL was added to
the wells containing LPS. Cells were cultured for 24 h. After that, media were collected,
and total RNA was isolated and reverse transcribed. The experiment scheme is shown
in Figure 1A.
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2.7. Caco-2 and THP-1 or Macrophages Co-Culture Models Incubation with Examined Substances

A co-culture model of Caco-2/THP-1 and Caco-2/macrophages was prepared accord-
ing to the modified protocol described in Kim et al. (2015) [56]. In brief, Caco-2 cells were
seeded onto transwell insert plates (Merck St. Louis, MO, USA, cat. no. MCHT06H48)
in a concentration of 1.5 × 105 cells/cm2 and cultured for 21 days until cells were fully
differentiated. The culture medium was changed every 2–3 days. THP-1 or THP-1-derived
macrophages were seeded onto 6-well plates (4 × 106 cells/well) and rested for 24 h.
After replacing media with complete DMEM, inserts with Caco-2 were added into plates
containing THP-1 or macrophages. One microgram per milliliter of LPS was added to the
basolateral side, and after 3 h of incubation, different concentrations of osthole (150 ng/mL,
300 ng/mL, and 450 ng/mL) were applied to the apical side of the insert. Osthole was also
added to the insert without previous stimulation with LPS. After 24 h of incubation, media
from the basolateral side were collected for the CKs secretion analysis, and Caco-2 cells
from the insert were collected for total RNA isolation and reverse transcription, as shown
in Figure 1B,C.

2.8. Post-Culture Media Collection and Isolation of Total RNA

Cell culture plates were centrifuged at 800× g for 10 min at 4 ◦C. Subsequently, post-
culture media were collected into tubes and stored at −80 ◦C for further analysis. Total
RNA was isolated according to the protocol described in Kordulewska et al. (2016) [9].
Briefly, cells were lysed in 1 mL TRIzol reagent (Invitrogen, Thermo Fisher Scientific,
Waltham, MA, USA, cat. no. 15596026) by repetitive pipetting. Samples were incubated for
5 min at room temperature, then 0.2 mL of chloroform (Chempur, Piekary Śląskie, Poland,
cat. no. 112344305) was added. Samples were mixed and centrifuged at 12,000× g for
15 min at 4 ◦C. The aqueous phase was collected and mixed with 0.5 mL of isopropanol to
precipitate RNA. Samples were incubated at room temperature for 10 min, then centrifuged
at 12,000× g for 10 min at 4 ◦C. The supernatant was discarded, and the RNA pellet
was washed with 75% ethanol. Subsequently, the pellet was air-dried and dissolved in
diethylpyrocarbonate (DEPC)-treated water. RNA purity was estimated by calculation
of the ratio between absorbance at 260 and 280 nm (A260/A280), with 1.8–2.0 results, and
stored at −80 ◦C for further analysis.

2.9. Reverse Transcription

Purified RNA was reverse transcribed by a high-capacity cDNA reverse transcription
kit (Applied Biosystems, Thermo Fisher Scientific, Waltham, MA, USA, cat. no. 4368814)
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according to the manufacturer’s protocol, as described in Kordulewska et al. (2016) [9].
cDNA was stored at −20 ◦C for further analysis.

2.10. Quantitative Real-Time PCR (qPCR) and Data Analysis

Expression of IL1R1, NF-κB, COX-2, and the human β-actin gene (ACTB) were exam-
ined. ACTB was used as a reference gene to normalize disproportion in the mRNA amount.
Oligonucleotide primers specific to each gene are listed in Table S1.

qPCR was performed in the LightCycler 96 real-time PCR system with the FastStart Es-
sential DNA Green Master kit (Roche Diagnostics, Basel, Switzerland, cat. no. 06402712001),
as described in Kordulewska et al. (2016) [9]. Five microliters of cDNA was given for
reaction and qPCR was performed in triplicate under the following conditions: denatu-
ration at 95 ◦C for 10 min, amplification and quantification repeated 45 times (95 ◦C for
20 s, 60/62/63 ◦C for 20 s, and 72 ◦C for 20 s with a single fluorescence measurement),
melting curve at 60–95 ◦C with 0.1 ◦C per second heating rate and continuous fluorescence
measurement, and final cooling to 4 ◦C. A negative control without cDNA and an inter-run
calibrator (mix of cDNA of healthy bladder tissue) were included in each assay. Gene
expression was analyzed by following Pfaffl (2001) [57]. The results were scaled to the
expression level of control, which was determined as one.

2.11. Cytokines Level Measurement

Serum IL-1β, -6, -8, and TNF-α levels were examined using enzyme-linked im-
munosorbent assay (ELISA) kits obtained from Diaclone (Besancon Cedex, France; IL-
1β—cat. no. 851.610.001, TNF-α—cat. no. 851.570.001), Mabtech (Nacka Strand, Sweden;
IL-6—cat. no. 3460-1H-20), and BD Biosciences (San Jose, CA, USA; IL-8—cat. no. 555244)
according to the manufacturers’ protocols. Samples were run in triplicate. Results were
standardized by comparison with a standard curve.

2.12. Transepithelial Electrical Resistance Measurement

To evaluate tight junction integrity in the Caco-2 monolayer in the presence of tested
substances, transepithelial electrical resistance (TEER) measurement was performed using
a Millicell ERS-2 volt–ohm meter (Merck St. Louis, MO, USA, cat. no. MERS00002).

Caco-2 cells were seeded onto 0.4 µm pore inserts with an effective growth area
of 1.1 cm2 (Merck St. Louis, MO, USA, cat. no. MCHT12H48) in concentrations of
1.5 × 105 cells/cm2. Cells were cultured for 14 days in complete DMEM, and the medium
was changed every second day until cells were fully differentiated and the monolayer
reached adequate TEER value (minimum 250 Ω × cm2).

TEER measurement was performed immediately after medium replacement with
DMEM with LPS, osthole, and its mixtures, and after 1, 2, 6, 24, and 48 h of incubation
with tested substances. TEER value was calculated according to the formula described
in Srinivasan et al. (2015) [58]. Because TEER values initially differed between wells,
measurements at different time points were expressed as a percent of TEER value at time
0 (100%).

2.13. Statistical Analysis

Ordinary two-way ANOVA, Tukey’s, and Dunnett’s multiple comparisons tests were
used to examine differences between quantitative values. Significance was defined as
p < 0.05. GraphPad Prism software version 7 (GraphPad Software, San Diego, CA, USA)
was used for all statistical analyses.

3. Results
3.1. Cells Proliferation Analysis

Different concentrations of osthole (150 ng/mL, 300 ng/mL, and 450 ng/mL) and
LPS (0.05 µg/mL, 0.1 µg/mL, 0.5 µg/mL, 1 µg/mL, 2 µg/mL) were applied to Caco-2
at 5 time points (6, 12, 24, 48, 72 h). Cell proliferation assays (BrdU) were subsequently
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performed. It was assumed that maximum inhibition of proliferation can reach 50% of
the control, and none of the tested substance variants caused a proliferation decrease to
this level (Figure S1). Incubation with tested substances caused a significant increase in
proliferation, especially after 6 h of the experiment. Lin et al. (2015) showed that LPS can
increase growth via c-Src upregulation [59].

3.2. Osthole Reduces the Secretion of Pro-Inflammatory CKs (IL-1β, IL-6, IL-8, and TNF-α) in
LPS-Induced Caco-2, Caco-2/THP-1, and Caco-2/Macrophages Co-Culture Model

The secretion of pro-inflammatory CKs into the culture medium was investigated
to determine the anti-inflammatory effect of osthole after LPS-induced inflammation in
Caco-2 cells and co-culture models. It was determined whether osthole could suppress
LPS-induced secretion of IL-1 β, IL-6, IL-8, and TNF-α in Caco-2.

As shown in Figure 2, LPS significantly increased the levels of IL-1 β, IL-6, IL-8, and
TNF-α in the medium collected from Caco-2 cultured in 24-well plates (p < 0.0001). Osthole
reduced this effect in a concentration-dependent manner, with the most significant CKs
level reduction when cells were treated with 450 ng/mL of osthole (p < 0.001).
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Similar trends were observed in Caco-2 cultured with THP-1 and THP-1-derived
macrophages. LPS-induced inflammation reflected a significant increase of tested CKs,
whereas osthole alleviated this effect, with the most significant decrease when the 450 ng/mL
dose was applied (Figures 3 and 4). A significant decrease of IL-6 level was also observed
already at the lowest dose of osthole, both in Caco-2/THP-1 and Caco-2/macrophages
co-culture models (p < 0.0001).
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Importantly, osthole alone mostly did not cause an increase in CKs level in Caco-2
monoculture and co-culture models.
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3.3. Osthole Decreases LPS-Induced Increase of IL-1R1, NF-κB, and COX-2 Expression

To assess the anti-inflammatory potential of osthole on mRNA level in Caco-2, changes
in gene expression of chosen genes involved in inflammation were analyzed. LPS signif-
icantly increased IL1R1, NF-κB, and COX-2 genes expression level in Caco-2 monolayer
as well as in Caco-2 cultured with THP-1 and macrophages. In Caco-2, osthole decreased
the examined genes’ levels in a concentration-dependent manner, with the significant
efficiency at a concentration of 450 ng/µL for IL1R1 and COX-2 (p < 0.01) and 300 ng/µL
for NF-κB (p < 0.001) (Figure 5A). However, Caco-2 co-cultured with THP-1 monocytic
cells and macrophages promoted an anti-inflammatory effect, as a significant decrease of
the examined genes’ levels was observed in lower osthole concentration (Figure 5B,C).
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3.4. LPS and Osthole Increase Caco-2 Monolayer Permeability

Tight junction integrity in the Caco-2 monolayer was estimated by TEER measurement.
LPS significantly increased monolayer permeability from 6 (p < 0.01) to 48 h (p < 0.0001)
from what was expressed in decreasing TEER value (39.48% after 48 h, Figure 6A). Contrary
to the assumed hypothesis, osthole also disturbed monolayer integrity, since after 6 h,
TEER value in Caco-2 treated with 450 ng/mL of osthole was 71% of the control (p < 0.01).
Monolayer permeability was increasing until the end of the experiment and also in cells
treated with lower concentrations (150 and 300 ng/mL) of osthole. Even if absolute TEER
values in the LPS/osthole-treated Caco-2 monolayer were higher than in Caco-2 cells
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treated with LPS alone, osthole did not prevent LPS-induced disturbance of tight junctions’
integrity, as there were no significant differences between these measurements (Figure 6B).
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4. Discussion

Osthole has various beneficial activities, including anti-cancer, anti-inflammation,
and antioxidant properties [60]. Even so, there is limited evidence to indicate that osthole
can attenuate intestinal inflammation. According to our knowledge, this is the first study
that identifies the anti-inflammatory effects of osthole in Caco-2 cells and Caco-2 co-
culture models.

In this study, we aimed at exploring the anti-inflammatory properties of osthole in
the context of its potential utility as a natural active substance of a drug. For this purpose,
we investigated how osthole affects the Caco-2 proliferation, CKs secretion, and gene
expression level in LPS-induced Caco-2 as well as in Caco-2/THP-1 and Caco-2/THP-1-
derived macrophages.

LPS is a well-known pro-inflammatory factor derived from Gram-negative bacteria.
We have shown that LPS, also in the presence of osthole, significantly increased Caco-2
proliferation. Lin et al. (2015) showed that LPS can increase Caco-2 growth via c-Src
upregulation in a time-dependent manner [59]. Interestingly, we observed the opposite
trend, but our results cannot be directly compared because we applied different LPS
concentrations and methods of proliferation assessment.

We demonstrated that after stimulation with LPS, IL-1β, IL-6, IL-8, and TNF-α levels
were significantly increased in Caco-2 in comparison to control, suggesting the occurrence
of an inflammatory response. After the addition of osthole, secretion of all tested ILs was
inhibited. In general, cells treated with osthole alone did not secrete CKs on a significantly
higher level. Interestingly, absolute CKs values in co-culture were relatively lower than
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in Caco-2 monoculture. Kämpfer et al. (2017) previously showed that IL-1β and TNF-
α concentration in post-culture media from Caco-2/THP-1 co-culture treated with LPS
were significantly lower in comparison to LPS-treated THP-1 monoculture. Absolute CKs
values in Caco-2/THP-1 co-culture were also relatively low. Authors also suggested that
a down-regulation of the macrophage-driven stress response occurs in the presence of
Caco-2 cells [61].

Gene expression analysis showed that osthole inhibits the expression of IL1R1, NF-
κB, and COX-2. Obtained results suggest that osthole may suppress the expression of
genes involved in inflammation and reduce pro-inflammatory cytokine production in
LPS-stimulated cells. Neurath et al. (2014) discussed that the blockade of IL-6 signaling
was effective in suppressing chronic inflammation in mouse models, which suggests IL-6 as
a potential therapeutic target in IBD. This effect was associated with the induction of T cell
apoptosis and the reduced production of pro-inflammatory CKs [62]. We also confirmed
that osthole successively reduced IL-6 level in LPS-induced inflammation.

Excessive secretion of TNF-α and IL-1β plays a key role in the pathogenesis of intesti-
nal inflammation, and intestinal epithelial cells can produce soluble mediators that initiate
or amplify inflammatory events. Increasing concentration of the IL-1β and TNF-α can
cause intestinal mucosa injury and plays one of the most important roles in the occurrence
and development of IBD and other inflammatory diseases [62]. Clinical studies have
reported that a higher expression of TNF-α was detected in serum and colonic mucosa in
ulcerative colitis (UC) patients [63]. TNF-α blockers (e.g., infliximab and adalimumab) have
been widely used to treat IBD patients [62]. Our results show that LPS caused a significant
increase in TNF-α concentration and that osthole reduced its levels in a concentration-
dependent manner. These results suggest that osthole is a potential substance to treat
patients with IBD or UC via the suppression of TNF-α.

IL-1β, IL-6, IL-8, and TNF-α were found to stimulate neutrophils recruitment and the
secretion of matrix metalloproteinases by intestinal fibroblasts [62]. These findings suggest
that these CKs may induce tissue destruction in IBD. Osthole successively decreased
secretion of tested CKs. Taken together, the above findings suggest that blockage of IL-1β,
IL-6, IL-8, and TNF-α production is of key relevance for IBD therapy.

COX-2 is widely distributed in immune and epithelial cells and directly regulates the
secretion of prostaglandin E2 (PGE2). Numerous studies have reported a high level of
COX-2 in the local tissues and organs of patients with IBD. High expression of COX-2 on
mRNA and protein levels was observed in the colonic mucosa of IBD patients [64]. It has
been also reported that LPS upregulates COX-2 expression, which was also confirmed in
our research. Our results show that osthole decreased COX-2 expression, suggesting that
this substance exhibits anti-inflammatory activity.

IL-1β is implicated in the pathogenesis of intestinal inflammation and stimulates
NF-κB activation, which serves as an indicator of cellular inflammation [65], which was
also confirmed in our study. We provide evidence that the incubation of LPS-treated
cells with osthole can inhibit the secretion of IL-1β in all tested models. Furthermore, we
speculate that osthole may decrease IL-1β-induced NF-κB activation. Caco-2 cells upon the
stimulation of IL-1 β secretion can synthesize and secret IL-8 via the NF-κB pathway [66].

The pathogenesis of intestinal inflammation is a complex process that involves alter-
ations in gut barrier function and food intolerances, resulting in activation of the innate
immune system. However, several lines of evidence suggest that NF-κB activation in
mucosal epithelia is a critical event in this process. Anti-inflammatory therapies such as
anti-TNF-α antibodies and steroids regulating NF-κB activation are commonly used to
treat intestinal inflammation but are also associated with significant side effects. Although
elemental diets and specific nutrients have been shown to attenuate gut inflammation, it is
unclear whether they act by altering the microbiome, innate immunity, and/or the cellular
response to allergy inflammation [67,68]. NF-κB plays a central role in the connection
between external pro-inflammatory stimuli and gene expression of inflammatory responses
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in the nucleus [69], thus interfering with NF- kB activation may particularly be beneficial
in diseases related to chronic, low-grade inflammation [70].

Pattern recognition and transmembrane receptors play a pivotal role in the initiation
of the immune response caused by inflammation inducers (e.g., LPS). One among these,
toll-like receptor 4 (TLR4), senses the harmful stimuli and recruits the coordinate activation
of transcription factors, including NF-кB [71,72]. NF-кB, as well as IL1R1-activated COX-2,
translocates to the nucleus and facilitates transcription of genes encoding pro-inflammatory
CKs (Figure 7). We suspect that osthole may act as a regulator in these pathways, and
extended studies are needed to uncover the molecular basis of its anti-inflammatory activity.
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It has been demonstrated that LPS disrupts tight junctions [73,74]—a finding that was
also confirmed in our experiment. Unfortunately, osthole also increased Caco-2 monolayer
permeability, and if it would ever be considered as an anti-inflammatory drug, its dosage
should be carefully selected.

5. Conclusions

Osthole reduced LPS-induced proinflammatory CKs secretion and IL1R1, NF-κB, and
COX-2 genes up-regulation and promoted cell migration. While the mechanisms respon-
sible for the observed effects remain to be elucidated, the anti-inflammatory properties
of osthole may play an important role. Our data confirmed the potential role of osthole
as a protector against intestinal inflammation; thus, if after extended in vivo and in vitro
studies its safety would be confirmed, osthole can be considered an anti-inflammatory
ingredient in functional foods or nutraceutical formulations.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
643/13/1/123/s1, Figure S1: Changes in Caco-2 cell proliferation after incubation with LPS (A),
osthole (B), and LPS and osthole (C). The symbols show the mean and bars depict the standard
error of the mean. Statistically significant differences in comparison to control (*—p < 0.05, **—p <
0.01, ***—p < 0.001, ****—p < 0.0001) are marked. Table S1: Sequences of the oligonucleotide primers
specific to examined genes.
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