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Abstract

We analyze an ensemble of n-sub-epidemic modeling for forecasting the trajectory of epi-

demics and pandemics. These ensemble modeling approaches, and models that integrate

sub-epidemics to capture complex temporal dynamics, have demonstrated powerful fore-

casting capability. This modeling framework can characterize complex epidemic patterns,

including plateaus, epidemic resurgences, and epidemic waves characterized by multiple

peaks of different sizes. We systematically assess their calibration and short-term forecast-

ing performance in short-term forecasts for the COVID-19 pandemic in the USA from late

April 2020 to late February 2022. We compare their performance with two commonly used

statistical ARIMA models. The best fit sub-epidemic model and three ensemble models con-

structed using the top-ranking sub-epidemic models consistently outperformed the ARIMA

models in terms of the weighted interval score (WIS) and the coverage of the 95% prediction

interval across the 10-, 20-, and 30-day short-term forecasts. In our 30-day forecasts, the

average WIS ranged from 377.6 to 421.3 for the sub-epidemic models, whereas it ranged

from 439.29 to 767.05 for the ARIMA models. Across 98 short-term forecasts, the ensemble

model incorporating the top four ranking sub-epidemic models (Ensemble(4)) outperformed

the (log) ARIMA model 66.3% of the time, and the ARIMA model, 69.4% of the time in 30-

day ahead forecasts in terms of the WIS. Ensemble(4) consistently yielded the best perfor-

mance in terms of the metrics that account for the uncertainty of the predictions. This frame-

work can be readily applied to investigate the spread of epidemics and pandemics beyond

COVID-19, as well as other dynamic growth processes found in nature and society that

would benefit from short-term predictions.
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Author summary

The COVID-19 pandemic has highlighted the urgent need to develop reliable tools to

forecast the trajectory of epidemics and pandemics in near real-time. We describe and

apply an ensemble n-sub-epidemic modeling framework for forecasting the trajectory of

epidemics and pandemics. We systematically assess its calibration and short-term fore-

casting performance in weekly 10–30 days ahead forecasts for the COVID-19 pandemic

in the USA from late April 2020 to late February 2022 and compare its performance with

two different statistical ARIMA models. This framework demonstrated reliable forecast-

ing performance and substantially outcompeted the ARIMA models. The forecasting per-

formance was consistently best for the ensemble sub-epidemic models incorporating a

higher number of top-ranking sub-epidemic models. The ensemble model incorporating

the top four ranking sub-epidemic models consistently yielded the best performance, par-

ticularly in terms of the coverage rate of the 95% prediction interval and the weighted

interval score. This framework can be applied to forecast other growth processes found in

nature and society, including the spread of information through social media.

Introduction

The coronavirus disease 2019 (COVID-19) pandemic has amplified the critical need for reli-

able tools to forecast the trajectory of epidemics and pandemics in near real-time. During the

early stages of the COVID-19 pandemic, multiple modeling teams embarked on the challeng-

ing task of producing short-term forecasts of the course of the COVID-19 pandemic in terms

of the trajectory for the number of new cases, hospitalizations, or deaths (e.g., [1–10]). Soon

after the epidemic started, our research team published short-term forecasts of the pandemic

during the early outbreaks of the novel coronavirus in China [4] and subsequently focused on

producing weekly forecasts for the USA [11]. In a related effort, the US COVID-19 Forecasting

Hub brought together multiple research teams to synthesize weekly short-term forecasts of the

COVID-19 pandemic in the USA [12]. It is important to evaluate rigorously the forecasting

performance of these different pandemic forecasting efforts and document the lessons learned

to continue advancing our understanding of epidemic forecasting.

Ensemble modeling approaches and models that integrate sub-epidemics to capture com-

plex temporal dynamics have demonstrated powerful forecasting capability (e.g., [13–17]). In

prior work, we developed a sub-epidemic modeling framework to characterize and improve

forecasting accuracy during complex epidemic waves [13]. This mathematical framework

characterizes epidemic curves by aggregating multiple asynchronous sub-epidemics and out-

performs simpler growth models in providing short-term forecasts of various infectious dis-

ease outbreaks [13,18]. It is possible to model sub-epidemics associated with transmission

chains that are asynchronously triggered and progress somewhat independently from the

other sub-epidemics. This framework supports a family of sub-epidemic models that yield sim-

ilar fits to the calibration data, but their corresponding forecasts could produce diverging

trajectories.

Ensemble modeling aims to boost forecasting performance by systematically integrating

the predictive accuracy tied to individual models [16,19–21]. Past work indicates that multi-

model ensemble approaches are powerful forecasting tools that frequently outperform individ-

ual models in epidemic forecasts [14,15,22–27]. We extend prior sub-epidemic modeling work

and propose an ensemble sub-epidemic modeling framework for forecasting the trajectory of

epidemics and pandemics. In this model, the sub-epidemics can start at different time points
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and may differ in growth rates, scaling of growth, and sub-epidemic size parameters. The indi-

vidual sub-epidemics are frequently unobserved and shaped by multiple heterogeneities such

as asynchronous focal transmission occurring in different spatial areas, the transmission bur-

den gradually shifting from high-risk to lower-risk groups [28], varying intensity of public

health interventions over time, and the emergence of new variants of the pathogen, to name a

few. Hence, this ensemble modeling framework can characterize more diverse epidemic pat-

terns, including plateaus, epidemic resurgences, and epidemic waves characterized by multiple

peaks of different sizes, which were impossible to capture in earlier sub-epidemic frameworks

[13].

We systematically assess the calibration and short-term forecasting performance in weekly

10–30 day forecasts in the context of the COVID-19 pandemic in the USA from late April

2020 to late February 2022, including the Omicron-dominated wave. We then compare the

performance of the ensemble modeling framework with a set of Autoregressive Integrated

Moving Average (ARIMA) models, following the EPIFORGE 2020 guidelines to report epi-

demic forecasts [29]. Our extended ensemble modeling framework substantially outperforms

individual top-ranking sub-epidemic models and the ARIMA models based on standard per-

formance metrics that account for the uncertainty of the predictions.

Results

Quality of the sub-epidemic model fits

The best fit sub-epidemic model and three ensemble models constructed using the top-ranking

sub-epidemic models (Ensemble(2), Ensemble(3), Ensemble(4)) yielded similar quality fits to

98 sequential weekly calibration periods from 20-April-2020 to 28-February-2022 (Fig 1 and

Table 1). For instance, the average WIS was ~247 with slight variation across models (Table 1).

The coverage rate of the 95% PIs averaged 97% and ranged from 91% to 100% during the

study period. Moreover, all performance metrics displayed similar temporal trends (Fig 1).

Representative fits of the top-ranking sub-epidemic models to the daily curve of COVID-19

deaths in the USA from 27-Feb-2020 to 20-April-2020 are shown in Fig 2. Although these sub-

epidemic models fit the data well, each results from the aggregation of two sub-epidemics char-

acterized by different growth rates, scaling of growth, and outbreak sizes, as shown in Fig 3.

Short-term forecasting performance

The best fit sub-epidemic model and three ensemble models constructed using the top-ranking

sub-epidemic models (Ensemble(2), Ensemble(3), Ensemble(4)) consistently outperformed

the ARIMA models in terms of the weighted interval score (WIS) and the coverage of the 95%

prediction interval across the 10, 20 and 30-day short-term forecasts (Table 2). For instance,

for 30-day forecasts, the average WIS ranged from 377.6 to 421.3 for the sub-epidemic models,

whereas it ranged from 439.29 to 767.05 for the ARIMA models. Across 98 short-term fore-

casts, the Ensemble(4) outperformed the (log) ARIMA model 66.3% of the time and the

ARIMA model 69.4% of the time in 30-day ahead forecasts in terms of the WIS (Figs 4 and 5).

Similarly, the 95% PI coverage ranged from 82.2% to 88.2% for the sub-epidemic models,

whereas it ranged from 58% to 60.3% for the ARIMA models in 30-day forecasts. In terms of

the coverage of the 95% PI, the Ensemble(4) outperformed the (log) ARIMA model 89.8% of

the time and the ARIMA model 91.8% of the time (Figs 4 and 5). Forecasting performance

generally improved as the number of top-ranking sub-epidemic models included in the

ensemble increased (Table 1). The Ensemble(4) model consistently yielded the best perfor-

mance in terms of the metrics that account for the uncertainty of the predictions.
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In terms of the metrics based on point estimate information, the ARIMA models showed

lower overall MSE or MAE compared to the sub-epidemic models in 10 and 20-day forecasts.

However, the Ensemble(4) achieved the best forecasting performance in 30-day forecasts

(Table 2). Overall, the forecasting performance deteriorated at longer forecasting horizons

across all models considered in our study.

Representative 30-day forecasts of the top-ranking sub-epidemic models to the daily curve

of COVID-19 deaths in the USA from 20-April-2020 to 20-May-2022 are shown in Fig 6. The

corresponding sub-epidemic profiles of the forecasts are shown in Fig 7. These models support

forecasts with diverging trajectories even though they yield similar fits to the calibration

period. For instance, the top-ranked sub-epidemic model predicts a decline in the mortality

curve, whereas the second-ranked model predicts a stable pattern during the next 30 days (Fig

Table 1. Mean performance metrics quantifying model fit quality across 98 sequential weekly calibration periods of the daily time series of COVID-19 deaths in the

USA from 20-April-2020 through 22-February 2022.

Model Mean absolute error

(MSE)

Mean squared error

(MAE)

Percentage coverage of the 95% prediction

interval

Weighted Interval Score

(WIS)

Best fit sub-epidemic

model

309260.00 394.74 97.06 247.28

Ensemble(2) model 308300.00 394.91 97.30 246.93

Ensemble(3) model 308620.00 395.24 97.46 247.09

Ensemble(4) model 309160.00 396.17 97.46 247.33

�The Ensemble(i) model incorporates the top i ranked sub-epidemic models in the ensemble as described in the text.

https://doi.org/10.1371/journal.pcbi.1010602.t001

Fig 1. Performance metrics quantifying the quality of the sub-epidemic model fits to 98 sequential weekly calibration periods of the daily time

series of COVID-19 deaths in the USA from 20-April-2020 through 22-February 2022. The best fit sub-epidemic model and three ensemble models

constructed using the top-ranking sub-epidemic models (Ensemble(2), Ensemble(3), Ensemble(4)) yielded similar quality fits.

https://doi.org/10.1371/journal.pcbi.1010602.g001
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6). The corresponding forecasts generated from three ensemble models (Ensemble(2), Ensem-

ble(3), Ensemble(4)) built from the top-ranking sub-epidemic models are shown in Fig 8. The

individual 30-day ahead predictions across 98 forecasting periods generated by the Ensemble

(4) and the ARIMA models are available in the GitHub repository [30].

In sensitivity analyses, defining ensemble weights as proportional to the relative likelihood

did not perform better than the ensemble models generated using weights proportional to the

reciprocal of the AICc. Moreover, the rank of the ensemble models was not affected by the type

of weights (Table 3).

Discussion

Our ensemble sub-epidemic modeling approach outperformed individual top-ranking sub-

epidemic models and a set of ARIMA models in weekly short-term forecasts covering the

national trajectory of the COVID-19 pandemic in the USA from the early growth phase up

until the Omicron-dominated wave. This framework has demonstrated reliable forecasting

performance across different pandemic phases, from the early growth phase characterized by

exponential or sub-exponential growth dynamics to plateaus and new disease surges driven by

the relaxation of social distancing policies or the emergence of new variants. Importantly, we

found that forecasting performance consistently improved for the ensemble sub-epidemic

models that incorporated a higher number of top-ranking sub-epidemic models. The ensem-

ble model incorporating the top four ranking sub-epidemic models consistently yielded the

Fig 2. Representative fits of the top-ranking sub-epidemic models to the daily curve of COVID-19 deaths in the USA from 27-Feb-

2020 to 20-April-2020. The sub-epidemic models capture well the entire epidemic curve, including the latter plateau dynamics, by

considering models with two sub-epidemics. The best model fit (solid red line) and 95% prediction interval (dashed red lines) are shown in

the left panels. The cyan curves correspond to the associated uncertainty from individual bootstrapped curves. The sub-epidemic profiles

are shown in the center panels, where the red and blue curves represent the two sub-epidemics, and the grey curves are the estimated

epidemic trajectories. For each model fit, the residuals are also shown (right panels). Black circles correspond to the data points.

https://doi.org/10.1371/journal.pcbi.1010602.g002
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best performance, particularly in terms of the coverage rate of the 95% prediction interval and

the weighted interval score.

Our findings support the power of ensemble modeling approaches (e.g.,[14–17]). Our

ensemble modeling framework derived from a family of sub-epidemic models demonstrated

improved performance as the number of top-ranking sub-epidemic models included in the

ensemble increased. Prior studies have documented the potential of ensemble models to

enhance forecasting performance during multi-epidemic periods [14]. For instance, in the

context of influenza, one study utilized "weighted density ensembles" for predicting timing

and severity metrics and found that the performance of the ensemble model was comparable

to that of the top individual model, albeit the ensemble’s forecasts were more stable across

influenza seasons [17]. In the context of dengue in Puerto Rico, another study found that fore-

casts derived from Bayesian averaging ensembles outperformed a set of individual models

[25]. Results from the US COVID-19 Forecasting Hub CDC were consistent with our findings

in that a multimodel ensemble frequently outperformed the set of individual models.

We also evaluated short-term forecasting performance by a set of ARIMA models, as prior

studies have underscored the value of ARIMA models in epidemic forecasting [31], by provid-

ing a relatively simple and transparent approach to forecasting. For instance, in the context of

forecasting influenza-like illness in the USA, a set of ARIMA models provided reasonably

accurate short-term forecasts during the 2016/17 influenza season [32]. In another forecasting

study during multiple influenza seasons in the USA, an ARIMA model yielded similar short-

term forecasting performance compared to other models based on the mechanistic SIR model-

ing framework [33]. ARIMA models have also been used for spatial prediction of the COVID-

Fig 3. Parameter estimates for the first (top panel) and the second sub-epidemics (bottom panels) were derived for the top-ranking sub-epidemic

model after fitting the sub-epidemic modeling framework to the daily curve of COVID-19 deaths in the USA from 27-Feb-2020 to 20-April-2020 (see

also Fig 1). Parameter estimates for both sub-epidemics are well identified, as indicated by their relatively narrow bootstrap confidence intervals.

https://doi.org/10.1371/journal.pcbi.1010602.g003
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19 epidemic [34,35]. Another study [36] showed that the ARIMA model is more effective than

the Prophet time series model for forecasting COVID-19 prevalence. Finally, it is worth noting

that the US COVID-19 Forecast Hub did not include an ARIMA model in its set of evaluated

models [37]. Therefore, it is interesting to assess how ARIMA models perform in the context

of the COVID-19 pandemic in the US.

Prior work has underscored the need to assess alternative ways of constructing ensembles

from individual models [14,16]. We explored two ways of constructing the ensembles by rely-

ing on the AICc or the relative likelihood associated with the individual models. We found that

the short-term forecasting performance achieved by the ensemble models was not significantly

affected by the type of ensemble weights used to construct them. However, performance using

ensemble weights based on the reciprocal of the AICc was slightly better. Further research

could explore how different weighting strategies influence the forecasting performance of

ensemble modeling approaches.

Short-term forecasting is an essential attribute of the models. As prior studies have under-

scored, longer-term forecasts are of value, but their dependability varies inversely with the

time horizon. Our 20 and 30-day forecasts are most valuable for monitoring, managing, and

informing the relaxation of social distancing requirements. The early detection of potential

Table 2. Mean forecasting performance metrics for the sub-epidemic models (ensemble weights are proportional to the reciprocal of the AICc) and the ARIMA

models across 98 sequential weekly calibration periods of the daily time series of COVID-19 deaths in the USA from 20-April-2020 through 22-February 2022. Val-

ues highlighted in bold correspond to the best performance metrics.

Model Mean absolute error

(MSE)

Mean squared error

(MAE)

Percentage coverage of the 95% prediction

interval

Weighted Interval Score

(WIS)

10 days ahead

Top-ranked sub-epidemic

model

551740.00 535.16 87.14 352.00

Ensemble(2) model 504560.00 516.44 88.88 331.83

Ensemble(3) model 491020.00 513.39 89.29 328.00

Ensemble(4) model 491740.00 513.14 89.39 326.56

(log) ARIMA model 424880.00 458.72 42.45 365.19

ARIMA model 430070.00 467.18 43.06 380.47

20 days ahead

Top-ranked sub-epidemic

model

646880.00 570.34 85.15 382.90

Ensemble(2) model 576700.00 544.35 88.57 354.04

Ensemble(3) model 558890.00 540.71 89.59 350.73

Ensemble(4) model 557130.00 539.30 89.44 346.83

(log) ARIMA model 591980.00 536.22 51.07 422.41

ARIMA model 538690.00 528.87 55.05 404.92

30 days ahead

Top-ranked sub-epidemic

model

749560.00 613.75 82.18 421.29

Ensemble(2) model 670740.00 586.52 87.35 383.36

Ensemble(3) model 650790.00 584.20 88.20 382.79

Ensemble(4) model 644270.00 579.77 88.16 377.64

(log) ARIMA model 818530.00 621.58 57.99 767.05

ARIMA model 656480.00 591.93 60.34 439.29

�The Ensemble(i) model incorporates the top i ranked sub-epidemic models in the ensemble as described in the text.

https://doi.org/10.1371/journal.pcbi.1010602.t002
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Fig 4. Forecasting performance metrics for the (log) ARIMA and Ensemble(4) models across 98 30-day forecasts. The symbol (^) indicates weekly

forecasts where the Ensemble(4) model outperformed the (log) ARIMA model. For example, the Ensemble(4) outperformed the (log) ARIMA model

66.3% of the time in terms of the WIS and 89.8% of the time in terms of the coverage rate of the 95% PI (Figs 3 and 5).

https://doi.org/10.1371/journal.pcbi.1010602.g004

Fig 5. Forecasting performance metrics for the ARIMA and Ensemble(4) models across 98 30-day forecasts. The symbol (^) indicates

weekly forecasts where the Ensemble(4) model outperforms the ARIMA model. For instance, the Ensemble(4) outperformed the ARIMA model

69.4% of the time in terms of the WIS and 91.8.8% of the time in terms of the coverage rate of the 95% PI (Figs 3 and 5).

https://doi.org/10.1371/journal.pcbi.1010602.g005
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disease resurgence can signal the need for strict distancing controls, and the reports of cases

can identify the geographic location of incubating sub-epidemics.

Our study is not exempt from limitations. Although ensemble n-sub-epidemic modeling is

effective in forecasting the COVID-19 pandemic using the CSSE dataset [38], a single dataset

is not sufficient to demonstrate the general effectiveness of any method. It will be important to

compare the approach with competing methods on other datasets and infectious diseases in

the future. Our analysis relied on daily time series data of COVID-19 deaths in the USA,

which is inherently noisy due to heterogeneous data reporting at fine spatial scales (i.e.,

county-level) [39]. Noisy data complicate the ability of any mathematical model to identify

meaningful signals about the impact of transmission dynamics and control interventions. To

deal with the high noise levels in the data, we fitted the models to smoothed time series rather

than the actual daily series, as described in the parameter estimation section. Other forecasting

studies, including the US COVID-19 Forecasting Hub, have relied on weekly death counts to

address this issue [37]. Beyond the COVID-19 pandemic, there is a need to establish bench-

marks to systematically assess forecasting performance across a diverse catalog of mathemati-

cal models and epidemic datasets involving multiple infectious diseases, social contexts, and

spatial scales.

While our analysis demonstrated the accuracy of our ensemble sub-epidemic modeling

framework in forecasting the COVID-19 pandemic, the same framework could be readily used

to forecast other epidemics irrespective of the type of disease and spatial scale involved. Beyond

infectious diseases, this framework could also be used to forecast other biological and social

Fig 6. Representative 30-day forecasts of the top-ranking sub-epidemic models to the daily curve of COVID-19 deaths in the USA from 20-April-2020

to 20-May-2020. The model fit (solid line) and 95% prediction interval (shaded area) are also shown. The vertical line indicates the start time of the forecast.

Circles correspond to the data points. These four top-ranking models support forecasts with diverging trajectories even though they yield similar fits to the

calibration period. For instance, the 1st ranked sub-epidemic model predicts a decline in the mortality curve, whereas the 2nd ranked model predicts a stable

pattern during the next 30 days.

https://doi.org/10.1371/journal.pcbi.1010602.g006
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growth processes, such as the epidemics of lung injury associated with e-cigarette use or vaping

and the viral spread of information through social media platforms.

In summary, our ensemble sub-epidemic models provided reliable short-term forecasts of

the trajectory of the COVID-19 pandemic in the USA involving multiple waves and outcom-

peted a set of ARIMA models. The forecasting performance of the ensemble models improved

with the number of top-ranking sub-epidemic models included in the ensemble. This frame-

work could be readily applied to investigate the spread of epidemics and pandemics beyond

COVID-19 and in a range of problems in nature and society that would benefit from short-

term predictions.

Materials and methods

Data

We used daily COVID-19 deaths reported in the USA from the publicly available data tracking

system of the Johns Hopkins Center for Systems Science and Engineering (CSSE) from 27 Feb-

ruary 2020 to 30 March 2022 [38]. The data is updated on the CSSE webpage daily at 23:59

(UTC) and read from the daily case report. The data is also publicly available in the GitHub

repository [30].

n-sub-epidemic model

We model epidemic trajectories comprised of one or more overlapping and asynchronous

sub-epidemics. The sub-epidemics are used as building blocks to characterize more complex

Fig 7. Representative sub-epidemic profiles of the forecasts derived from the top-ranking sub-epidemic models to the daily curve of COVID-19

deaths in the USA from 20-April-2020 to 20-May-2022. The model fit (solid line) and 95% prediction interval (shaded area) are also shown. Black

circles correspond to the calibration data. Blue and red curves represent different sub-epidemics of the epidemic wave profile. Gray curves correspond

to the overall epidemic trajectory obtained by aggregating the sub-epidemic curves. The vertical line indicates the start time of the forecast.

https://doi.org/10.1371/journal.pcbi.1010602.g007

PLOS COMPUTATIONAL BIOLOGY An ensemble n-sub-epidemic modeling framework for short-term forecasting epidemics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010602 October 6, 2022 10 / 20

https://doi.org/10.1371/journal.pcbi.1010602.g007
https://doi.org/10.1371/journal.pcbi.1010602


epidemic trajectories. The mathematical equation for the sub-epidemic building block is the

3-parameter generalized-logistic growth model (GLM), which has performed well in short-

term forecasts of single outbreak trajectories for different infectious diseases, including

COVID-19 [40–42]. This model is given by the differential equation:

dCðtÞ
dt
¼ rCpðtÞ 1 �

CðtÞ
K0

� �

;

where
dCðtÞ
dt describes the curve of daily deaths over time t. The cumulative curve at time t is

given by C(t), while r is a positive parameter denoting the growth rate per unit of time, K0 is

the final outbreak size, and p 2 [0, 1] is the "scaling of growth" parameter which allows the

model to capture early sub-exponential and exponential growth patterns. If = 0, this equation

describes a constant number of new deaths over time, while p = 1 indicates that the early

growth phase is exponential. Intermediate values of p (0< p< 1) describe early sub-exponen-

tial (e.g., polynomial) growth dynamics.

An n-sub-epidemic trajectory comprises n overlapping sub-epidemics and is given by the

following system of coupled differential equations:

dCiðtÞ
dt
¼ AiðtÞriCi

piðtÞ 1 �
CiðtÞ
K0 i

 !

;

where Ci(t) tracks the cumulative number of deaths for sub-epidemic i, and the parameters

that characterize the shape of the ith sub-epidemic are given by ðri; pi;K0 i
Þ, for i = 1, . . ., n.

Thus, the 1-sub-epidemic model is equivalent to the generalized growth model described

above. When n> 1, we model the onset timing of the (i + 1)th sub-epidemic, where (i + 1)� n,

by employing an indicator variable given by Ai(t) such that the (i + 1)th sub-epidemic is trig-

gered when the cumulative curve of the ith sub-epidemic exceeds Cthr.

Fig 8. Representative sub-epidemic ensemble model forecasts (Ensemble(2), Ensemble(3), Ensemble(4)) of COVID-19 deaths in the USA from

20-April-2020 to 20-May-2022. Circles correspond to the data points. The model fits (solid line), and 95% prediction intervals (shaded area) are shown.

Circles correspond to the data points. The vertical line indicates the start time of the forecast.

https://doi.org/10.1371/journal.pcbi.1010602.g008
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The (i + 1)th sub-epidemic is only triggered when Cthr � K0i
. We have:

AiðtÞ ¼
�

1; Ci� 1ðtÞ > Cthr

0; Otherwise
i ¼ 2; . . . n;

where A1(t) = 1 for the first sub-epdemic. Hence, the total number of parameters needed to

model an n-sub-epidemic trajectory is given by 3n + 1. The initial number of deaths is given

by C1(0) = I0, where I0 is the initial number of deaths in the observed data. The cumulative

curve of the n-sub-epidemic trajectory is given by:

CtotðtÞ ¼
Xn

i¼1

CiðtÞ:

The n-sub-epidemic wave model can characterize diverse epidemic patterns, including epi-

demic plateaus where the epidemic stabilizes at a high level for an extended period, epidemic

resurgences where the number of cases increases again after a low incidence period, and epi-

demic waves characterized by multiple peaks.

Table 3. Mean forecasting performance metrics for the sub-epidemic models (ensemble weights were based on the relative likelihood) and the ARIMA models

across 98 sequential weekly calibration periods of the daily time series of COVID-19 deaths in the USA from 20-April-2020 through 22-February 2022. Values

highlighted in bold correspond to the best performance metrics.

Model Mean absolute error

(MSE)

Mean squared error

(MAE)

Percentage coverage of the 95% prediction

interval

Weighted Interval Score

(WIS)

10 days ahead

Top-ranked sub-epidemic

model

551740.00 535.16 87.14 352.00

Ensemble(2) model 548540.00 534.14 87.25 348.66

Ensemble(3) model 547220.00 533.51 87.25 347.99

Ensemble(4) model 546350.00 533.23 87.35 347.60

(log) ARIMA model 424880.00 458.72 42.45 365.19

ARIMA model 430070.00 467.18 43.06 380.47

20 days ahead

Top-ranked sub-epidemic

model

646880.00 570.34 85.15 382.90

Ensemble(2) model 640240.00 567.90 85.71 377.27

Ensemble(3) model 640960.00 568.45 85.71 376.67

Ensemble(4) model 639280.00 567.74 85.56 376.36

(log) ARIMA model 591980.00 536.22 51.07 422.41

ARIMA model 538690.00 528.87 55.05 404.92

30 days ahead

Top-ranked sub-epidemic

model

749560.00 613.75 82.18 421.29

Ensemble(2) model 744130.00 612.63 82.65 414.72

Ensemble(3) model 745230.00 613.21 82.59 414.54

Ensemble(4) model 743020.00 612.48 82.52 414.16

(log) ARIMA model 818530.00 621.58 57.99 767.05

ARIMA model 656480.00 591.93 60.34 439.29

https://doi.org/10.1371/journal.pcbi.1010602.t003
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Parameter estimation

To reduce the noise in the original data due to artificial reasons such as the weekend effects,

we use the 7-day moving average of daily death series to fit the n-sub-epidemic model. Let

ytj ¼ yt1 ;yt2 ; . . . ; ytnd where j ¼ 1; 2; . . . ; nd

denote the smoothed daily COVID-19 death series of the epidemic trajectory based on the

moving average. Here, tj are the time points for the time series data, nd is the number of obser-

vations, and each ytj , j = 1,2,. . ., nd, is the average of the death counts at the neighboring seven

days (tj−3, tj−2, tj−1, tj, tj+1, tj+2, tj+3). We will use this smoothed data to estimate a total of 3n + 1

model parameters, namely Y ¼ ðCthr; r1; p1;K01
; . . . ; rn; pn;K0n

Þ. Let f(t, Θ) denote the

expected curve of new COVID-19 deaths of the epidemic’s trajectory. We can estimate model

parameters by fitting the model solution to the observed data via nonlinear least squares [43]

or via maximum likelihood estimation assuming a specific error structure [44]. For nonlinear

least squares, this is achieved by searching for the set of parameters Ŷ that minimizes the sum

of squared differences between the observed data ytj ¼ yt1 ;yt2 . . . ‥ytnd and the model mean, cor-

responding to f(t, Θ). That is,Y ¼ ðCthr; r1; p1;K01
; . . . ; rn; pn;K0n

Þ is estimated by

Ŷ ¼ arg min
Xnd

j¼1
ðf ðtj;YÞ � ytjÞ

2
. We estimate parameter Cthr through simple discretization

of its range of plausible values. Our estimation procedure consists of two steps. First, for each

Cthr, we search for the set of parameters ðr1; p1;K01
; . . . ; rn; pn;K0n

Þ to minimize the sum of

squared errors (SSE). Then we choose the Cthr and the corresponding estimates of other

parameters leading to the minimum SSE as the best fit.

This parameter estimation method weights each data point equally and does not require a

specific distributional assumption for yt, except for the first moment E[yt] = f(ti; Θ). That is,

the mean of the observed data at time t is equivalent to the expected count (e.g., number of

deaths) denoted by f(t, Θ) at time t [45]. This method yields asymptotically unbiased point esti-

mates regardless of any misspecification of the variance-covariance error structure. Hence, the

estimated model mean f ðti; ŶÞ yields the best fit to observed data yti in terms of squared L2

norm. We can use the fmincon function in MATLAB to set the optimization problem.

To quantify parameter uncertainty, we follow a parametric bootstrapping approach which

allows the computation of standard errors and related statistics in the absence of closed-form

formulas [46]. We generate B bootstrap samples from the best-fit model f ðt; ŶÞ, with an

assumed error structure, to quantify the uncertainty of the parameter estimates and construct

confidence intervals. Typically, the error structure in the data is modelled using a probability

model such as the Poisson or negative binomial distribution. Because the time-series data we

are fitting to involve large counts, the Poisson or negative binomial distribution can be well

approximated by a normal distribution for large numbers. So, using the best-fit model f ðt; ŶÞ,
we generate B-times replicated simulated datasets of size nd, where the observation at time tj is

sampled from a normal distribution with mean f ðt; ŶÞ and variance

Pnd
j¼1
ðf ðtj ;ŶÞ� ytj Þ

2

nd � ð3nþ1Þ
. Next, we

refit the model to each of the B simulated datasets to re-estimate parameters for each. The new

parameter estimates for each realization are denoted by Ŷb where b = 1,2,. . .,B. Using the sets

of re-estimated parameters ðŶbÞ, it is possible to characterize the empirical distribution of

each estimate, calculate the variance, and construct confidence intervals for each parameter.

The resulting uncertainty around the model fit can similarly be obtained from ðt; Ŷ1Þ,

f ðt; Ŷ2Þ; . . . ; f ðt; ŶBÞ.
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Model-based forecasts with quantified uncertainty

Forecasting the model, f ðt; ŶÞ, h days ahead provides an estimate for f ðt þ h; ŶÞ. The uncer-

tainty of the forecasted value can be obtained using the previously described parametric boot-

strap method. Let

f ðt þ h; Ŷ1Þ; f ðt þ h; Ŷ2Þ; . . . ; f ðt þ h; ŶBÞ

denote the forecasted value of the current state of the system propagated by a horizon of h time

units, where Ŷb denotes the estimation of parameter set Θ from the bth bootstrap sample. We

can use these values to calculate the bootstrap variance as the measure of the uncertainty of the

forecasts and use the 2.5% and 97.5% percentiles to construct the 95% prediction intervals

(PI).

Model selection

To select the top-ranked sub-epidemic models, we analyze the AICc values of the set of best fit

models that include the 1-subepidemic model as well as the 2-subepidemic models with differ-

ent values of Cthr. We ranked the models from best to worst according to their AICc values,

which is given by [47, 48]:

AICc ¼ ndlogðSSEÞ þ 2mþ
2mðmþ 1Þ

nd � m � 1

where SSE ¼
Xnd

j¼1
ðf ðtj; ŶÞ � ytjÞ

2
, m = 3n + 1 is the number of model parameters, and nd is

the number of data points. The AICc for the parameter estimation from the nonlinear least-

squares fit implicitly assumes normal distribution for error.

We selected the top four ranking sub-epidemic models for further analysis. We used them

to construct three ensemble sub-epidemic models, which we refer to as Ensemble(2), Ensem-

ble(3), and Ensemble(4). The following section describes the process of constructing these

ensemble models from the top-ranking sub-epidemic models.

Constructing Ensemble Models from top-ranking models

Ensemble models that combine the strength of multiple models may exhibit significantly

enhanced predictive performance (e.g., [14–17]). We generate ensemble models from the

weighted combination of the highest-ranking sub-epidemic models as deemed by the AICci
for

the i-th ranked model where AICc1
� . . . � AICcI

and i = 1, . . ., I. An ensemble derived from

the top-ranking I models is denoted by Ensemble(I) and illustrated in Fig 9. Thus, Ensemble

Fig 9. Schematic diagram of the construction of the ensemble model from the weighted combination of the

highest-ranking sub-epidemic models as deemed by the AICci
for the i-th model where AICc1

� � � � � AICcI
and

i = 1, . . ., I. An ensemble derived from the top-ranking I models is denoted by Ensemble(I).

https://doi.org/10.1371/journal.pcbi.1010602.g009
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(2) and Ensemble(3) refer to the ensemble models generated from the weighted combination

of the top-ranking 2 and 3 models, respectively. We compute the weight wi for the i-th model,

i = 1, . . ., I, where ∑ wi = 1 as follows:

wi ¼

1

AICci
1

AICc1
þ 1

AICc2
þ . . .þ 1

AICcI

for all i ¼ 1; 2; . . . ; I;

and hence wI� � � � � w1.

The estimated mean curve of daily COVID-19 deaths for the Ensemble(I) model is:

fensðIÞðtÞ ¼
XI

i¼1

wifiðt; Ŷ
ðiÞÞ

where given the training data, ŶðiÞ denotes the set of estimated parameters, and fiðt; ŶðiÞÞ
denotes the estimated mean curve of daily COVID-19 deaths, for the i-th model. Accordingly,

we compute the weighted average and sample the bootstrap realizations of the forecasts for

each model to construct the 95% CI or PI using the 2.5% and 97.5% quantiles, as previously

described to derive ensembles of different growth models in ref. [16]. Our MATLAB (The

Mathworks, Inc) code for model fitting and forecasting is publicly available in the GitHub

repository.

As a sensitivity analysis, we also investigated how the ensemble sub-epidemic models per-

formed when the ensemble weights were proportional to the relative likelihood (l) rather than

the reciprocal of the AICc. Let AICmin denote the minimum AIC from the set of models. The

relative likelihood of model i is given by li ¼ eððAICmin� AICiÞ=2Þ [49]. We compute the weight wi for

the i-th model where ∑ wi = 1 as follows:

wi ¼
li

l1 þ l2 þ . . .þ lI
for all i ¼ 1; 2; . . . ; I;

and hence wI� � � �� w1.

Auto-regressive integrated moving average models (ARIMA)

We also generated short-term predictions of the pandemic trajectory using ARIMA models to

compare their performance with the sub-epidemic models. ARIMA models have frequently

been employed to forecast financial trends [50–52] and weather [53–55]. The ARIMA (p, d, q)

process is given by

�ðBÞð1 � BÞdyt ¼ cþ yðBÞ�t

or equivalently as ϕ(B) (1 − B)d (yt − μtd/d!) = θ(B)�t, where p is the order of the AR model, d is

the degree of differencing, q is the order of the MA model, {�t} is a white noise process with

mean 0 and variance σ2, and B denotes the backshift operator. The p-order polynomial ϕ(z) =

1 − ϕ1z − � � � − ϕpzp and the q-order polynomial d θ(z) = 1 − θ1 z − � � � −θ1zq are assumed to

have no roots inside the unit circle to ensure causality and invertibility. The constant c = μ(1 −
ϕ1 − � � � − ϕp), and μ is the mean of (1 − B)dyt. When d = 0, μ is the mean of yt.

The auto.arima function in the R package "forecast" is used to select orders and build the

model [56]. First, the degree of differencing 0� d� 2 is selected based on successive KPSS

unit-root tests [57], which test the data for a unit root; if the test result is significant, the differ-

enced data is tested for a unit root; and this procedure is repeated until the first insignificant

result is obtained. Then given d, the orders p and q are selected based on the AICc for the d-

times differenced data. For d = 0 or d = 1, a constant will be included if it improves the AICc
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value; for d>1, the constant μ is fixed at 0 to avoid the model having a quadratic or higher

order trend, which is dangerous when forecasting. The final model is fitted using the maxi-

mum likelihood estimation.

To guarantee that the forecasted values and prediction intervals are above zero, we use the

following two strategies. In the first one, we conduct the ARIMA order selection and model fit-

ting using the log-transformed data. Then we take the exponential of the forecasted values and

the PI bounds to predict the incident death counts and get the PIs. We refer to this approach

as the (log) ARIMA throughout the manuscript. In the second case, the negative values are set

as zero. Then, it is possible that the actual coverage probability of such PIs can be smaller than

the nominal value (95%). We refer to this approach as ARIMA throughout the manuscript.

Forecasting strategy and performance metrics

We conducted short-term forecasts using the top-ranking n-sub-epidemic model (1� n� 2)

and three ensemble models constructed with the top-ranking sub-epidemic models, namely

Ensemble(2), Ensemble(3), and Ensemble(4). For comparison, we also generated short-term

forecasts using the previously described ARIMA models. Overall, we conducted 588 forecasts

across models.

Using a 90-day calibration period for each model, we conducted 98 weekly sequential 10-day,

20-day and 30-day forecasts from 20 April 2020 to 28 February 2022, spanning five pandemic

waves. This range of forecasting horizons is comparable to that investigated in prior COVID-19

forecasting studies [37]. This period covers the latter part of the early spring wave, a summer wave

in 2020, a fall-winter 2020/2021 wave, the summer-fall wave in 2021, and the winter 2022 wave.

To assess the forecasting performance, we used four performance metrics: the mean abso-

lute error (MAE), the mean squared error (MSE), the coverage of the 95% prediction intervals,

and the weighted interval score (MIS) [58]. The mean absolute error (MAE) is given by:

MAE ¼
1

N

XN

h¼1

jf ðth; ŶÞ � ~yth
j:

Here ~yth
is the time series of the original death counts (unsmoothed) of the h-time units

ahead forecasts, where th are the times for the sample data [59]. Similarly, the mean squared
error (MSE) is given by:

MSE ¼
1

N

XN

h¼1

ðf ðth; ŶÞ � ~yth
Þ

2
:

We also employed two metrics that account for prediction uncertainty: the coverage rate of
the 95% PI e.g., the proportion of the observations that fall within the 95% PI as well as the

weighted interval score (WIS) [58, 60] which is a proper score. The WIS and the coverage rate

of the 95% PIs take into account the uncertainty of the predictions, whereas the MAE and

MSE only assess the closeness of the mean trajectory of the epidemic to the observations [61].

Recent epidemic forecasting studies have embraced the Interval Score (IS) for quantifying

model forecasting performance [18, 24, 37, 62]. The WIS provides quantiles of predictive fore-

cast distribution by combining a set of ISs for probabilistic forecasts. An IS is a simple proper

score that requires only a central (1−α)×100% PI [58] and is described as

ISaðF; yÞ ¼ ðu � lÞ þ
2

a
� ðl � yÞ � 1ðy < lÞ þ

2

a
� ðy � uÞ � 1ðy > uÞ:

In this equation 1 refers to the indicator function, meaning that 1(y< l) = 1 if y< l and
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0 otherwise. The terms l and u represent the a

2
and 1 � a

2
quantiles of the forecast F. The IS

consists of three distinct quantities:

1. The sharpness of F, given by the width u − l of the central (1 − α) × 100% PI.

2. A penalty term 2

a
� ðl � yÞ � 1ðy < lÞ for the observations that fall below the lower end

point l of the (1 − α) × 100% PI. This penalty term is directly proportional to the distance

between y and the lower end l of the PI. The strength of the penalty depends on the level α.

3. An analogous penalty term 2

a
� ðy � uÞ � 1ðy > uÞ for the observations falling above the

upper limit u of the PI.

To provide more detailed and accurate information on the entire predictive distribution,

we report several central PIs at different levels (1 − α1)< (1 − α2)< � � �< (1 − αK) along with

the predictive median, m, which can be seen as a central prediction interval at level 1 − α0 � !

0. This is referred to as the WIS, and it can be evaluated as follows:

WISa0:K
ðF; yÞ ¼

1

K þ 1

2

:ðw0:jy � mj þ
XK

k¼1

wk:ISakðF; yÞÞ

where, wk ¼
ak
2

for k = 1,2, . . ..K and w0 ¼
1

2
. Hence, WIS can be interpreted as a measure of

how close the entire distribution is to the observation in units on the scale of the observed data

[10,37].
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