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Abstract

This study explored how the neural efficiency and proficiency worked in athletes with

different skill levels from the perspective of effective connectivity brain network in

resting state. The deconvolved conditioned Granger causality (GC) analysis was

applied to functional magnetic resonance imaging (fMRI) data of 35 elite athletes

(EAs) and 42 student-athletes (SAs) of racket sports as well as 39 normal controls

(NCs), to obtain the voxel-wised hemodynamic response function (HRF) parameters

representing the functional segregation and effective connectivity representing the

functional integration. The results showed decreased time-to-peak of HRF in the

visual attention brain regions in the two athlete groups compared with NC and

decreased response height in the advanced motor control brain regions in EA com-

paring to the nonelite groups, suggesting the neural efficiency represented by the

regional HRF was different in early and advanced skill levels. GC analysis demon-

strated that the GC values within the middle occipital gyrus had a linear trend from

negative to positive, suggesting a stepwise “neural proficiency” of the effective con-

nectivity from NC to SA then to EA. The GC values of the inter-lobe circuits in EA

had the trend to regress to NC levels, in agreement with the neural efficiency of

these circuits in EA. Further feature selection approach suggested the important role

of the cerebral-brainstem GC circuit for discriminating EA. Our findings gave new

insight into the complementary neural mechanisms in brain functional segregation
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and integration, which was associated with early and advanced skill levels in athletes

of racket sports.

K E YWORD S

athlete motor training, conditioned Granger causality analysis, hemodynamic response function,
neuroplasticity, resting-state functional magnetic resonance imaging

1 | INTRODUCTION

Athletes perform consistently at optimal levels even under challenging

conditions (Filho et al., 2021). Key characteristics of optimal perfor-

mance include a focus on the present, physical, and psychological

relaxation (i.e., absence of somatic and cognitive anxiety), high levels

of confidence, and effortless “automatic” movement (Filho

et al., 2021; Williams & Krane, 2020). The brain supervises the func-

tioning of the entire organic system for adaptive behavior and perfor-

mance (Bertollo et al., 2020). However, the neural mechanisms

underpinning the optimal performance in athletes remain unclear so

far. Recent studies suggested that complementary hypotheses neural

efficiency and neural proficiency theoretically correlated with optimal

performance in experts (Bertollo et al., 2020; Dietrich, 2006; Filho

et al., 2021; Holmes & Wright, 2017; Li & Smith, 2021). According to

the neural efficiency hypothesis, experts perform better than novices

because their brains work smartly by only recruiting the spatiotempo-

ral areas needed to perform the task at hand (Bertollo et al., 2020;

Filho et al., 2021; Holmes & Wright, 2017). Neural efficiency can be

represented by two different processes. The first indicates that the

more the expertize increases, the more the task becomes automated

and under less executive control; the second reflects a more efficient

processing with a reduction of activity in sensory and motor cortices,

made possible by less energy expenditure (Bertollo et al., 2020; Filho

et al., 2021).

However, the majority of studies observed the increased activity

in athlete in specific brain regions comparing to normal controls

(Bertollo et al., 2016; Coffman et al., 2014; Del Percio et al., 2019;

Duru & Assem, 2018; Fargier et al., 2017; Filho et al., 2021; Li &

Smith, 2021), so the notion that reduced brain activity explains opti-

mal performance experiences has been questioned (Filho et al., 2021).

In this regard, Neubauer and Fink (2009) found that the neural effi-

ciency was mostly observed in tasks of easy or moderate complexity

(Filho et al., 2021; Neubauer & Fink, 2009). For moderate-to-complex

tasks, individuals needed to recruit more cortical resources to perform

at an optimal level (Filho et al., 2021; Neubauer & Fink, 2009). The

neural proficiency hypothesis was thereby proposed, in which cortical

activity is deemed to be related not only to automaticity and economy

of effort but also to some degrees of control and exertion needed to

effectively execute the task with maximum certainty (Bertollo

et al., 2016; Bertollo et al., 2020). Athletes need to engage in both

efficient (system-1; fluid and automatic thinking) and effortful (sys-

tem-2; deliberative thinking) processing to be able to consistently per-

form at optimal levels (Bertollo et al., 2016; Bertollo et al., 2020; Filho

et al., 2021). In other words, athletes can adeptly use and switch

between these two types of processing in order to optimally perform

complex tasks under high pressure: (a) purposefully recruit neural net-

works that allow them to perceive the environment, make decisions,

and regulate their thoughts, feelings, and behaviors; and (b) silence

the parts of their brains that are not relevant to the task at hand (Filho

et al., 2021; Hatfield, 2018; Li & Smith, 2021; Tenenbaum

et al., 2013). How the putative neural mechanisms of neural efficiency

and neural proficiency work in the athletes' brain to support these

neuroplastic adaptation would be of great interests.

The discrepancy of the neuroplasticity representation among the

studies aforementioned might be partly attributed to the specific tasks

(Filho et al., 2021; Neubauer & Fink, 2009). To avoid the constraints

of task-based approaches, the resting-state functional magnetic reso-

nance imaging (fMRI) observes the intrinsically organized spontaneous

fluctuations in the blood oxygen level-dependent (BOLD) signal (Gao

et al., 2021; Raichle & Snyder, 2007). Therefore, it is an effective

approach to study the intrinsic brain plasticity induced by motor learn-

ing/training (Gao et al., 2021). The motor training would induce the

neuroplasticity in the resting-state brain network has been supported

by recent studies (Cantou et al., 2018; Di et al., 2012; Gao

et al., 2019). For example, using seed-based functional connectivity

(FC), distance runners were found to show enhanced connectivity

between the fronto-parietal network and brain regions associated

with executive cognitive functions (Raichlen et al., 2016). Badminton

players displayed functional alterations in fronto-parietal network (Di

et al., 2012). Elite karate players had increased connectivity in the

brain regions, which are involved in movement planning and visual

perception (Duru & Balcioglu, 2018).

In contrast to the undirected FC, which is defined as temporal

correlations between spatially remote neurophysiological events

(Friston, 1994), effective connectivity investigates accurately the

direct or indirect influence that one neural system exerts over another

(Gao et al., 2011, 2016). The Granger causality (GC) analysis has been

widely used to explore the effective connectivity among remote brain

regions (Gao et al., 2016; Geweke, 1984; Wu et al., 2013). Recently, a

blind-deconvolution hemodynamic response function (HRF) retrieval

technique was proposed to reconstruct the HRF at each brain voxel.

This deconvolution approach took the heterogeneous hemodynamic

processes at each brain voxel into account and made it possible to

obtain the deconvolved BOLD-level effective connectivity network

(Wu et al., 2013). The three parameters of the HRF were applied to

characterize the shape of HRF, namely time-to-peak (TTP), response

height (RH), and full-width at half-max (FWHM), which were
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estimated interpretable in terms of potential measures for latency,

response magnitude, and duration of neuronal activity. Physiologically,

estimated TTP differences correspond with the behavioral perfor-

mance or distinguish the responses of one brain region from another,

RH differences are associated with either duration increase or activity

magnitude increase for brief events, and FWHM differences are

attributable to increases in the duration of neuronal activity

(Lindquist & Wager, 2007; Wu et al., 2013). Therefore, the three

parameters estimated at the voxel level are capable of quantifying

regional properties of the brain in resting state (Wu et al., 2013). The

adaption of the voxel-specific HRF and effective functional network

in resting state of athletes' brain might give us new insight into neural

efficiency and neural proficiency corresponding to motor training

from the perspective of brain functional segregation and functional

integration.

The neuroplastic adaptation induced by motor training would also

be associated with different levels of sports experience. There were

distinct phases of motor skill training, and the structural and func-

tional adaptation patterns, which were associated with early and

advanced stages of motor skill training would be different

(Halsband & Lange, 2006). However, most previous studies in sports

performance have solely focused on comparing one group of experts

with novices, in which potential confounds would arise from differ-

ences in participants' experience and extent of training (Chang

et al., 2018; Gao et al., 2021; Jancke et al., 2009; Kim et al., 2014).

Few studies recruiting athletes with different levels of sports experi-

ence demonstrated that a quadratic function instead of a linear rela-

tionship could better depict the intergroup differences in structural

and functional neuroplasticity (Chang et al., 2018; Gao et al., 2021).

Our previous study using dynamic functional connectivity density

(dFCD) mapping showed the diversity and specialization of fluctuating

dynamic brain adaptation in different training stages, highlighting the

effect of motor training stages on brain functional adaptation (Gao

et al., 2021).

In the current study, we thereby explored how the neural mecha-

nisms of neural efficiency and neural proficiency worked in the ath-

letes' brain from the perspective of the effective connectivity brain

network in resting state, and if the alterations corresponded to differ-

ent stages of motor training. We used the blind-deconvolved HRF

retrieval technique to reconstruct the HRF at each voxel to detect the

voxel-wised variability of HRF in athletes with early and advanced

motor training stages. Furthermore, the alterations of the effective

connectivity networks at the deconvolved BOLD-level were explored

using partially conditioned GC approach (Gao et al., 2011; Wu

et al., 2013). We recruited two discriminative athlete groups: the

elite-athlete (EA) group (represented the advanced stage of training),

and the student-athlete (SA) group (represented the early stage of

training). We also recruited the nonathlete health control (NC) group

who had little interests or experience in sports. To better understand

the contributions of these functional segregation and integration fea-

tures to the brain function adaption of different skill levels, we further

performed the random forest (RF) and recursive feature elimination

(RFE) to obtain the optimal features which best differentiated EA, SA,

and NC groups (Darst et al., 2018). We hypothesized that the neural

mechanisms of neural efficiency and neural proficiency worked differ-

entially in different levels of sports experience, which would be char-

acterized by the voxel-wised HRF representing the local functional

segregation and effective connectivity representing the functional

integration in resting state.

2 | MATERIALS AND METHODS

2.1 | Participants

We recruited 35 EAs of racket sports (tennis and table tennis) whose

training year (i.e., training duration) was longer than 5 years and

whose intensity of training (i.e., training intensity) was longer than

28 h per week. All of them won the title of national first-class athletes

based on “Athletes Technical Rating Standards” issued by the China

General Administration of Sport in 2013 and were recruited from the

China University Championships held in Chengdu, China. Forty-two

SAs of racket sports whose training year was less than 3 years and

training intensity was less than 28 h per week were recruited from

TABLE 1 Demographic and
information of subjects

EA (n = 35) SA (n = 42) NC (n = 39)

p valueMean ± SD Mean ± SD Mean ± SD

Age (years) 19.43 ± 3.65 20.43 ± 0.59 20.33 ± 1.33 .52a

Gender (female:male) 18:17 12:30 15:24 .12a

Education (years) 13.4 ± 3.3 14.57 ± 0.67 15.05 ± 1.43 .08a

Train time (hours/week) 32.23 ± 4.16 17.17 ± 0.83 – <.0001*,b

Duration (years) 9.94 ± 0.42 1.95 ± 0.08 – <.0001*,b

Mean FD (mm) 0.08 ± 0.03 0.08 ± 0.02 0.08 ± 0.03 .70a

Abbreviations: EA, elite athlete; FD, frame-wise displacement; NC, nonathlete control; SA, student

athlete; SD, standard deviation.
aKruskal–Wallis test.
bTwo-sample t-test.

*p < .01.
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Chengdu Sport University. They were the students from the tennis/

table tennis specialty of the physical education major. Thirty-nine NCs

with matched age, sex, and education level were also recruited

(Table 1). All subjects were right-handed as tested by the Chinese ver-

sion of Edinburgh-Handedness Questionnaire (coefficients > 50)

(Oldfield, 1971) and had no history of neurological or psychiatric dis-

eases or concussions. The current study protocol was approved by

the research ethical committee of School of Life Science and Technol-

ogy, University of Electronic Science, and Technology of China and

was carried out under the approved guidelines. The informed written

consent has been obtained from all participants.

2.2 | Data acquisition

MRI images were acquired on a 3.0 T GE Signa MR750 system

(GE Healthcare, Milwaukee, USA) with an 8-channel-phased array

head coil. High-resolution three dimensional (3D) T1-weighted ana-

tomical images were obtained in axial orientation using a 3D spoiled

gradient-recalled (SPGR) sequence. The acquisition parameters were

as follows: TR = 5.97 ms, TE = 1.96 ms, field of view

(FOV) = 240 � 240 mm2, flip angle = 12�, matrix size = 512 � 512,

156 slices, and voxel size = 1 � 1 � 1 mm3. Resting-state fMRI

images were acquired using a gradient-recalled echo planar imaging

(EPI) sequence. The parameters were: TR = 2000 ms, TE = 30 ms,

FOV = 220 � 220 mm2, flip angle = 90�, matrix size = 64 � 64,

43 transverse slices without slice gap, voxel

size = 3.75 � 3.75 � 3.2 mm3, and a total of 266 volumes for each

subject. During the scan, the subjects were instructed to lie down

with their eyes closed, not to think of anything in particular, and not

to fall asleep. Padded foams were used to restrict head motion, and

earplugs were used to attenuate scanner noise.

2.3 | Data preprocessing

Conventional fMRI data preprocessing was performed using Data Pro-

cessing Assistant for Resting-State fMRI software (DPARSF, Advanced

Edition, V4.3, http://www.restfmri.net/forum/). The first 10 volumes of

each subject were discarded to ensure steady-state longitudinal magneti-

zation. The remaining 256 resting-state fMRI images were first corrected

for the acquisition time delay between different slices and then realigned

to the first volume to correct for head motion. We required that the

transient movement during the scanning is no more than 2.0 mm of

translation and 2.0� of rotation. The images were further spatially nor-

malized into a standard stereotaxic space at 3 � 3 � 3 mm3, using the

Montreal Neurological Institute (MNI) template in Statistical Parametric

Mapping software (SPM12). The images were not smoothed to avoid

introducing artificial local spatial correlations. Images were then linearly

detrended and corrected using linear regression to remove the possible

spurious variances including 24 head motion parameters, averaged sig-

nals from cerebrospinal fluid, and white matter. The residuals of these

regressions were temporally band-pass filtered (0.01 < f < 0.1 Hz) to

reduce low-frequency drifts and physiological high-frequency respiratory

and cardiac noises. Since FC analysis was sensitive to gross head motion

effects (Power et al., 2012), the mean frame-wise displacement (FD) was

calculated to further determine the comparability of head movement

across groups. The largest FD obtained from the subjects was less than

0.2 mm. Note that we did not use the scrubbing method for head

motion correction, since the previous study suggested that methods,

which are sensitive to temporal ordering in the data cannot use scrub-

bing (Deshpande et al., 2013). The removal of certain parts of the time

series (scrubbing) would create an artificial discontinuity in the data

(Deshpande et al., 2013).

2.4 | Blind-deconvolution in resting-state
fMRI data

The blind-deconvolution technique for voxel-wise HRF estimation was

performed using the NeuroImaging toolbox for Causal ConnectomE soft-

ware (NICE, https://guorongwu.github.io/HRF). The three parameters of

HRF at each voxel, that is, TTP, RH, and FWHM, were estimated for each

subject. To investigate between-group voxel-specific differences in HRF

parameters, one-way analysis of variance (ANOVA) was performed,

respectively, on each of the three parameters using the SPM12 ( http://

www.fil.ion.ucl.ac.uk/spm). The statistically significant threshold was set

for multiple comparisons at the cluster level with p < .05 using Gaussian

random field (GRF) correction, controlled for age, sex, education, and

mean FD. The nonparametric Kruskal–Wallis test would be performed if

the normal distribution hypotheses of the variables were violated. The

brain regions of interest (ROIs) are then defined as the significant differ-

ences in the statistical F map results. Furthermore, the ROIs are applied

for subsequent post hoc analysis using the Bonferroni correc-

tion (p < .05).

2.5 | Voxel-wise conditioned Granger causality
analysis

Conditioned GC analysis approach allowed to demonstrate the

directed influences from one neural system exerts over another for

functional coupling effectively in multivariate data sets. The seed-

based conditioned GC analysis was employed to the ROIs at the neu-

ral level by deconvolution for each subject. The signed-path coeffi-

cients were evaluated in the directed functional networks among the

ROIs and the remaining brain voxels using a joint autoregressive

model in REST software (V1.8, www.restfmri.net) (Zang et al., 2012).

Finally, the directed asymmetric matrix (coefficients matrix) was

obtained for each subject.

2.6 | Statistical analysis

To investigate the differences of the effective connectivity networks

among the three groups, a one-way ANOVA was performed using
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SPM12. The statistically significant threshold was set at a corrected

p < .05 by GRF theory to control for multiple comparisons. We

regressed out confounding covariates including age, sex, years of edu-

cation, types of sports, and mean FD. The nonparametric Kruskal–

Wallis test would be performed if the normal distribution hypotheses

of the variables were violated. Furthermore, the brain regions with

significant differences in ANOVA results were selected for subse-

quent post hoc analysis using the Bonferroni correction (p < .05).

2.7 | Feature selection

Using the scikit-learn package, we combined the machine learning algo-

rithm of RF and feature selection algorithm of RFE to obtain the optimal

features which best differentiated EA, SA, and NC groups. We evaluated

binary classification tasks (EA/SA, SA/NC, and EA/NC) and the multiclass

classification task (EA/SA/NC). The RFE is a heuristic feature screening

framework which has been widely used to select the most significant

features by finding high correlation between specific features and target

(labels) (Senan et al., 2021). We used the RFE technique in RF to extract

the most significant representative features of a classification (Darst

et al., 2018). Basically, (a) we first ran RF to determine initial importance

scores, and the classification accuracy of the initial feature subset was

obtained by cross-validation method. (b) Then the feature with the low-

est feature importance was removed from the current feature subset,

and a new feature was entered into RF to calculate again the importance

of each feature in the new feature subset and the classification accuracy

of the new feature subset. (c) We repeated step (b) recursively until the

feature subset was empty. A total of k subsets with different feature

numbers were obtained, the feature subset with the highest classifica-

tion accuracy was selected as the optimal feature combination.

Figure 1a–f shows the scheme of the data processing.

3 | RESULTS

3.1 | Demographics of the participants

The demographic data of the recruited participants are listed in

Table 1. The three groups did not differ significantly in age (Kruskal–

Wallis test, p = 0.52), sex (Kruskal–Wallis test, p = .12), education

(Kruskal–Wallis test, p = .08), or mean FD (Kruskal–Wallis test,

p = 0.70). The training intensity and training duration were signifi-

cantly different between the two athlete groups (training intensity,

two-sample t-test, p < .01; training duration, two-sample t-

test, p < .01).

F IGURE 1 The scheme of the
data processing. (a) Conventional
fMRI data preprocessing using
DPARSF. (b) Blind deconvolution
to obtain both the voxel-level
HRF parameters and the
deconvoluted signals. (c) ROI
chosen based on ANOVA analysis
of the HRF parameters among the

three groups. (d) Conditioned GC
analysis based on the
deconvoluted signals.
(e) Statistical analysis. (f) Feature
selection. ANOVA, analysis of
variance; DPARSF, Data
Processing Assistant for Resting-
State fMRI; fMRI, functional
magnetic resonance imaging;
FWHM, full-width at half-max;
GC, Granger causality; HRF,
hemodynamic response function;
RH, response height; ROI, region
of interest; TTP, time-to-peak
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3.2 | HRF variability among the groups

Figure 2 (upper row) demonstrates brain regions with significantly dif-

ferent TTP values of HRF among the three groups (ANOVA, GRF-

corrected p-value <.05). The statistical analysis showed the signifi-

cantly different TTP among the three groups in the right middle fron-

tal gyrus (MFG), bilateral middle occipital gyrus (MOG) extending to

angular gyrus (ANG). The details of these regions including the MNI

coordinates of peak voxels, statistical F values, and cluster sizes are

illustrated in Table 2. Further post hoc t-tests showed that compared

with the NC group, the two athlete groups showed significantly

decreased HRF TTP in all the ANOVA significant regions.

Figure 2 (lower row) demonstrates the brain regions with signifi-

cantly different RH values of HRF among the groups (ANOVA, GRF-

corrected p value < .05). The statistical analysis showed the signifi-

cantly different RH among the three groups in the right insula (INS)

F IGURE 2 The between-group differences of HRF parameters. Upper row: brain regions with significantly different TTP values of HRF
among the three groups (one-way ANOVA test, GRF-corrected p value < .05). Numbers below each image refer to the z-plane coordinates of the
MNI space. Bar graphs indicate the ROI-wise post hoc analysis using two-sample t-tests. The mean TTP values at cluster centroids are also
depicted on each bar. Lower row: brain regions with significantly different RH values of HRF among the three groups. Bar graphs indicate the
ROI-wise post hoc analysis using two-sample t-tests. The RH values at cluster centroids are also depicted on each bar. ANG, angular gyrus;
ANOVA, analysis of variance; EA, elite athlete; GRF, Gaussian random field; HRF, hemodynamic response function; IFGoperc, inferior frontal
gyrus opercular part; INS, insula; L, left; MFG, middle frontal gyrus; MNI, Montreal Neurological Institute; MOG, middle occipital gyrus; NC,
nonathlete control; R, right; RH, response height; ROI, regions of interest; SA, student athletes; TTP, time-to-peak. *pp < .05, uncorrected;
**p < .05, Bonferroni corrected
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and the opercular part of the inferior frontal gyrus (IFGoperc) extend-

ing to the inferior frontal gyrus triangular part. The details of these

regions including the MNI coordinates of peak voxels, statistical

F values, and cluster sizes are also illustrated in Table 2. Further post

hoc t-tests showed that the EA groups showed significantly decreased

RH in all the ANOVA significant regions than the SA and NC groups

did. Significantly different HRF FWHM among the three groups was

not found in the present study.

3.3 | Conditioned Granger causality mapping of
significantly different TTP seeds

Significantly different brain regions based on the one-way ANOVA

of the HRF parameters were selected as seeds to calculate the

effective connectivity between the seed regions and the remaining

brain regions. Figure 3 depicts the brain regions which exhibit sig-

nificantly different effective connections centered at TTP-different

seeds among the three groups (ANOVA, GRF-corrected

p value < .05). Figure 3a demonstrates the brain regions showing

significantly different effective connections to the left MOG seed

among the three groups, as well as the post hoc analysis using two-

sample t-tests. Table 3 summarizes the results in detail. Compared

with the SA group, the EA and NC groups exhibited significantly

negative GC values from the left cerebellum_crus2 to the left MOG

seed. In addition, from NC to SA and then to EA, the GC values

from the bilateral MOG/IOG to the MOG seed had a trend from

negative to positive.

Figure 3b demonstrates the brain regions, which exhibit signifi-

cantly different effective connections to the right MFG among the

TABLE 2 Summary of the chosen
seeds

Region name Hem BA

Coordinates

CS Peak F-valueX Y Z

TTP

Middle frontal gyrus R 10 39 48 12 38 9.49

Middle occipital gyrus L 19 �39 �81 30 30 9.34

Angular gyrus R 39 48 �63 48 20 8.98

RH

Insula R 42 0 9 36 9.12

Inferior frontal gyrus, opercular part R 48 15 6 71 11.24

Abbreviations: ANG, angular gyrus; BA, Brodmann area; CS, cluster size; Hem, hemisphere; IFGoperc,

inferior frontal gyrus, opercular part; INS, insula; L, left; MFG, middle frontal gyrus; MOG, middle occipital

gyrus; R, right; RH, response height; TTP, time-to-peak.

F IGURE 3 Brain regions with significantly different information transfer of TTP-different seeds among the EA, SA, and NC groups. Bar

graphs indicating the ROI-wise post hoc analysis using two-sample t-tests. The mean signed-path coefficient (GC) values are also depicted on
each bar. (a) Seed left MOG; (b) seed right MFG; (c) seed right ANG, where inset depicts that the outflow-GC values from right ANG has
significant positive correlation with the training time in SA group. ANG, angular gyrus; Crus2, cerebellum_crus2; EA, elite athlete; GC, Granger
causality; MFG, middle frontal gyrus; MOG, middle occipital gyrus; NC, nonathlete health control; ROI, regions of interest; SA, student-athlete;
SFG, superior frontal gyrus; TTP, time-to-peak. *p < .05, uncorrected. **p < .05, Bonferroni corrected
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three groups. Table 3 summarizes the results in detail. Figure 3b

also indicates post hoc analysis using two-sample t-tests. Com-

pared with SA, EA and NC exhibited decreased GC values from the

brainstem to the right MFG seed. Figure 3c demonstrates the brain

regions which exhibit significantly different effective connections

from the right ANG among the three groups. The post hoc analysis

showed that the EA and NC groups had increased GC values from

the right ANG to the right superior frontal gyrus (SFG) than the SA

group had. The results further demonstrated that the outflow-GC

values from the right ANG to the right SFG had a significant posi-

tive correlation with the training time in the SA group

(r = 0.359, p = .020).

3.4 | Conditioned Granger causality mapping of
significant different RH seeds

Figure 4a demonstrates the brain regions which exhibit significantly

different effective connections both to and from the right INS among

the three groups (ANOVA, GRF-corrected p value < .05). The results

were summarized in Table 3. Compared with the NC group, the two

athlete groups exhibited significantly decreased GC values from the

right INS to the brainstem. The excitatory causal inflow from the right

precuneus (PCUN) to the right INS was significantly increased in the

EA group compared with the other two groups. Figure 4b demon-

strates that the right superior occipital gyrus (SOG) shows significantly

TABLE 3 Brain regions with
significantly different GC values among
the three groups

Seed Region name Hem BA Coordinates Peak F-value

Right middle frontal gyrus

Incoming Brainstem L – (�9, �24, �18) 16.07

Left middle occipital gyrus

Incoming Cerebellum_6 L – (�9, �69, �24) 10.15

Middle occipital gyrus L 37 (�48, �72, 0) 11.66

Middle occipital gyrus R 19 (45, �81, 0) 8.5

Right angular gyrus

Outgoing Superior frontal gyrus R 8 (24, 21, 57) 12.87

Right insula

Outgoing Brainstem R – (12, �27, �36) 10.92

Incoming Precuneus R 7 (6, �63, 39) 7.43

Right inferior frontal gyrus, opercular part

Outgoing Superior occipital gyrus R 7 (21, �69, 36) 8.97

Incoming Precuneus R 7 (12, �72, 39) 13.53

Abbreviations: ANG, angular gyrus; BA, Brodmann area; GC, Granger causality; Hem, hemisphere;

IFGoperc, inferior frontal gyrus, opercular part; INS, insula; L, left; MFG, middle frontal gyrus; MOG,

middle occipital gyrus; R, right; SFG, superior frontal gyrus; SOG, superior occipital gyrus.

F IGURE 4 Brain regions with significantly different information transfer of RH-different seeds among the EA, SA, and NC groups. Bar graphs
indicating the ROI-wise post hoc analysis using two-sample t-tests. The mean GC values are also depicted on each bar. (a) Seed right INS. (b) Seed
right IFGoperc. EA, elite athlete; GC, Granger causality; IFGoperc, opercular part of the inferior frontal gyrus; INS, insula; NC, nonathlete health
control; RH, response height; ROI, regions of interest; SA, student-athlete; SOG, superior occipital gyrus. *p < .05, uncorrected; **p < .05,
Bonferroni corrected
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different effective connections from the right IFGoperc among the

three groups, and that the right PCUN shows significantly different

effective connections to the right IFGoperc among the three groups.

Table 3 summarizes the results in detail. The post hoc analysis demon-

strated that the two athlete groups exhibited significantly increased

GC values from the right IFGoperc to the right SOG while significantly

decreased GC values from the right PCUN to the right IFGoperc com-

pared with the NC group.

3.5 | Feature selection

The optimal feature combinations in the classification tasks are sum-

marized in Table 4. The best features to differentiate EA and SA were

eight features including all RH features and one TTP feature, as well

as the GC features (with the classification accuracy of 0.834). The fea-

ture with the highest importance score was the GC connectivity from

brainstem to right MFG (0.199). Seven features were chosen to best

differentiate EA and NC including two TTP features, one RH feature,

and four GC features with the classification accuracy of 0.834. The

feature with the highest importance score was the GC connectivity

from right INS to brainstem (0.186). For discriminating SA and NC,

13 features with all TTP features, one RH feature, and GC features

were selected as best features (the classification accuracy: 0.852), in

which the GC connectivity from right ANG to right SFG gained the

highest score of 0.150. The three groups differentiation relied on

seven features including one TTP feature, one RH feature, and five

GC features (the classification accuracy: 0.793), in which the GC con-

nectivity from brainstem to right MFG has the highest score of 0.167.

4 | DISCUSSION

To explore how motor training history shapes the brain would be benefi-

cial to sports training, motor learning, and motor rehabilitation in patients

with movement disorders (Bertollo et al., 2020; Halsband & Lange, 2006).

In addition, its neural mechanism is also the theoretical bases of brain–

computer interface. In the present study, we aimed to explore how the

neural mechanisms of neural efficiency and neural proficiency worked in

the athletes' brain from the perspective of the causal connectivity brain

network in resting state, and the possible effect of stages of sports expe-

rience on the neuroplasticity. The resting-state research is independent of

task and might provide complementary information about functional cere-

bral reorganization underlying the acquisition, planning, and execution of

complex movements and expert actions (Cantou et al., 2018). In addition,

we recruited the EA group which represented the advanced stage of

training history and the SA group which represented the early stage of

training history to expand the knowledge of directed brain network neu-

roplasticity related to sports experience. Such a design can provide us

with the differences of neuroplastic information flow corresponding to

different skill levels, and the understanding of the neural mechanism

underpinning the optimal performance associated with early and

advanced stages of motor learning history (Chang et al., 2018).

4.1 | The HRF adaptation associated with early
and advanced stages of training history

The HRF is related to the key physiological factors including cerebral

blood flow and the cerebral metabolic rate of oxygen (Handwerker

TABLE 4 The optimal feature combinations and the importance scores in the classification tasks

Feature

EA versus SA EA versus NC SA versus NC EA versus SA versus NCGroup

TTP: MFG_R 0.082 0.167 0.044 0.143

MOG_L – – 0.049 –

ANG_R – 0.105 0.113 –

RH: INS_R 0.095 – – –

IFGoperc_R 0.108 0.144 0.036 0.126

TTP-based GC: brainstem_L to MFG_R 0.199 – 0.091 0.167

cerebellum_L to MOG_L 0.115 – 0.114 –

MOG_L to MOG_L – 0.126 0.061 –

MOG_R to MOG_L – 0.155 0.050 –

ANG_R to SFG_R 0.165 – 0.150 0.154

RH-based GC: INS_R to brainstem_R – 0.186 0.092 0.153

INS_R to PCUN_R 0.167 – 0.029 0.124

IFGoperc_R to SOG_R 0.069 – 0.085 –

IFGoperc_R to PCUN_R – 0.117 0.087 0.133

Note: Higher values indicate greater contribution of the feature. Different values are highlighted in gradient color of blue.

Abbreviations: ANG, angular gyrus; EA, elite athlete; IFGoperc, inferior frontal gyrus, opercular part; GC, Granger causality; INS, insula; L, left; MFG, middle

frontal gyrus; MOG, middle occipital gyrus; NC, nonathlete health control; R, right; RH, response height; SA, student-athlete; TTP, time-to-peak.
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et al., 2004; Wu et al., 2013; Wu & Marinazzo, 2015). Especially, the

TTP has been used to interpret the latency of neural firing

(Lindquist & Wager, 2007), and RH has been found to have a striking

correlation with cerebral blood flow (Wu & Marinazzo, 2015). Accord-

ing to the “psychomotor efficiency” hypothesis, which posits neural

activity is reduced in experts, tennis/table tennis athletes may exhibit

faster reaction (i.e., shorter TTP), less brain activation (i.e., lower RH),

or shorter brain active time (i.e., FWHM) than nonathletes during the

processing of sports related and sports unrelated visuo-spatial tasks

(Bertollo et al., 2016; Hatfield, 2018). In the present study, we found

that during resting state, the two athlete groups exhibited the

decreased TTP values of the HRF in the MFG, MOG, and ANG com-

pared with the NC group, while the EA group exhibited the signifi-

cantly decreased RH values of the HRF in the INS and the IFG

comparing to the SA and NC groups. Our results gave the brain func-

tion evidence of the “neural efficiency” hypothesis from the point of

view of the HRF and suggested that the neural efficiency of local

brain functional segregation in athletes with early stages of motor

training history was different from that in athletes with advanced

stages of motor training history.

The significantly reduced TTP in the right MFG and bilateral

MOG/ANG suggested the shorter latency of neural firing in the ath-

lete groups compared with the NC group. Previous studies have noted

that the MFG makes a significant contribution to attention processing,

and sustained attention is preferentially controlled by the right MFG

during the visual attention task (Song et al., 2019). As a central part of

visual perception, the MOG takes part in visual recognition of an

object's structure and body-part perception. It is special for spatial

than nonspatial visual tasks (Renier et al., 2010). The ANG has con-

nections to the somesthetic and visual cortex and plays a role in per-

mitting cross-modal sensory associations (Smith, 2013). Especially, the

ANG is essential for visuospatial awareness. Taken together, our

results suggested that appropriate skill levels were likely related to

shorter latency of neural firing (represented by reduced TTP) in the

brain regions associated with spatial visual attention and visual-motor

regulation in the athlete groups. The short latency of neural firing

would be fundamental for the fast-pace racket athletes of tennis and

table tennis who need to improve visual attention and the ability of

visual-motor regulation to accelerate the reaction, movement plan-

ning, and execution with high attentional demands (Bertollo

et al., 2016; Hatfield, 2018). Another result on the HRF parameters

was that compared with the SA and NC groups, the EA group has the

significantly reduced RH in the right INS and IFGoperc. Some

researchers indicated that the INS was considered to provide motiva-

tion for intentional movement when it was involved in processing var-

ious sensory signals from self and combining them with emotion and

motivation (Tinaz et al., 2018). The IFG plays a critical role in execu-

tive control and cognitive functions such as attention control, motor,

and behavioral inhibition (Di et al., 2012; Gao et al., 2019; Raichlen

et al., 2016; Sie et al., 2019; Wang et al., 2015). Specifically, the right

IFGoperc is referred to as action inhibition and execution during the

advanced executive control (Hampshire et al., 2010). Our results sug-

gested that the EA group likely had decreased brain metabolism and

altered cerebrovascular physiology in the brain regions associated

with motor executive control (Bertollo et al., 2016; Guo et al., 2017;

Hatfield, 2018).

Interestingly, the TTP distinguished the athlete groups and the

NC group by shorter TTP in the visuospatial attention brain regions

in the athlete groups, while the RH differentiated the EA and the

nonelite groups by smaller RH in the motor executive control

regions in the EA group. Further feature selection approach also

showed that the best features to differentiate SA and NC con-

tained all the TTP features while the best features to differentiate

EA and SA included all the RH features. It was likely that in the ath-

letes of racket sports, the brain plasticity induced by motor training

firstly began in the areas associated with visuospatial attention uti-

lizing a shorter latency of neural firing in the early stage of motor

training; then the brain alterations in terms of “psychomotor effi-

ciency” (i.e., lower RH) occurred in the areas related to motor exec-

utive control after the athletes underwent the advanced stage of

motor training.

4.2 | Effective connectivity adaptation associated
with early and advanced stages of training history

To detect the effective connectivity alterations centered at the brain

regions with the regional HRF adaptation, the effective connectivity

networks between those seeds and the rest of the brain were further

computed for each subject. The between-group differences were

obtained to explore the neuroplastic adaptation of the brain func-

tional integration by means of effective connectivity. The positive or

negative GC values (signed-path coefficients) meant that the past

value of a brain region could predict the increased or decreased activ-

ity of the present value of another (Zang et al., 2012). The positive

causal effect could be interpreted as an excitatory effect and the neg-

ative causal effect could be interpreted as an inhibitory effect (Zang

et al., 2012). Our results demonstrated that within the primary visual

brain regions, the GC values from the bilateral MOG/IOG to the seed

left MOG had a trend from negative to positive, from NC to SA and

then to EA (Figure 3a). This simple linear trend demonstrated the

alterations from inhibitory function to excitatory function, suggesting

a stepwise “neural proficiency” from NC to SA then to EA. Similar to

the study which revealed an increased gray matter volume of occipital

gyrus in the EAs (Chang et al., 2018; Duru & Balcioglu, 2018), our

results suggested an increased excitatory causal effect within MOG in

the EA group compared with the other two groups. Furthermore, the

feature selection approach demonstrated that the best features to dif-

ferentiate EA/NC and SA/NC both included the GC features from the

bilateral MOG/IOG to the seed left MOG, both of which showed the

“neural proficiency” effect. The incremental changes of this excitatory

function from NC to SA then to EA suggested that the early stage and

advanced stage of motor training history played a role in this excit-

atory function. This might be associated with the consistently

increased excitatory regulation in the MOG and enhancement of

visual sensory (Engel et al., 2008).
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Interestingly, in the fronto-parietal, fronto-occipital, and cerebral-

brainstem/cerebellum effective connectivity networks, the GC values

in the EA group had the trend to regress to the NC group levels. This

nonlinear trend in the networks involving the frontal regions was not

the same as the linearly decreasing tendency of the GC values in the

MOG. Figure 5 shows the diagram of the between-group significantly

different GC connections, in which the red arrows represent the linear

trend of the GC values from the EA group to the SA group then to the

NC group, while the blue arrows represent the nonlinear trend. This

nonlinear trend has been observed in specific brain regions using

dFCD variability among the EA, SA, and NC groups in our previous

study (Gao et al., 2021). In addition, Chang et al. revealed that a qua-

dratic function could better depict intergroup differences in regional

GMV than a linear function among the three groups of skilled baseball

batters, intermediate baseball batters, and the NC group (Chang

et al., 2018). This nonlinear trend might support the idea of the auto-

mation processes of new motor skills in the EA group (Cantou

et al., 2018; Zhang et al., 2018). The EA group was able to generate

automatic motor behaviors related to the sport after long-term train-

ing (Zhang et al., 2018). Therefore, the GC values in these areas

related to motor control and visual attention modulation in the EA

group had a trend to be at the NC group level. In our study, we further

detected a positive correlation between the GC values and the train-

ing time in the SA group. The GC values from the right ANG to the

right SFG went from negative to positive as training time increased in

the SA group. The SA group has significantly decreased GC values

(negative) comparing to the NC group (which had positive GC

values); however, the SA group was likely to progressively increase

the GC values as training time increased. Further studies on the

mechanism of the sharp decrease in the GC values from positive to

negative in the SA group comparing to the NC group are expected

in the future.

Regarding to the positive and negative GC values, our results also

showed the diversity of the fronto-parietal, fronto-occipital, and

cerebral-brainstem/cerebellum effective connectivity networks alter-

ations among the three groups. For example, chosen the right IFGo-

perc as seed, the excitatory causal flow from the right PCUN to the

right IFGoperc was significantly decreased, while the inhibitory causal

outflow from the right IFGoperc to the right SOG was significantly

decreased in the EA and SA groups compared with the NC group

(Figure 4b). Some researches on neuroplasticity in athletes showed

the resting-state functional alterations in the IFG, especially in the

fast-pace racket athletes (Di et al., 2012; Gao et al., 2019; Raichlen

et al., 2016; Sie et al., 2019; Wang et al., 2015). Since the PCUN and

SOG together are pivotal for conscious visuospatial information pro-

cessing (Vogt & Laureys, 2005), our results suggested that the training

history might relate to the reduced casual influence (regardless of

inhibitory or excitatory) between the right IFG and PCUN/SOG asso-

ciated with motor control and visual attention modulation in the rest-

ing state.

F IGURE 5 The diagram of the
between-group significantly different GC
connections. The red arrows represent
the linear trend of the GC values from
the EA group to SA group then to NC
group, while the blue arrows represent
the nonlinear trend. ANG, angular gyrus;
EA, elite athlete; GC, Granger causality;
IFGoperc, inferior frontal gyrus opercular

part; INS, insula; L, left; MFG, middle
frontal gyrus; MOG, middle occipital
gyrus; NC, nonathlete controls; R, right;
SA, student athlete; SFG, superior frontal
gyrus; SOG, superior occipital gyrus
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4.3 | The cerebral-brainstem GC circuit

The results also showed an increased inhibitory effect from the

right INS to the brainstem and from the brainstem to the right

MFG in the EA group compared with the NC group; while inconsis-

tent alterations in the SA group compared with the NC group

(increased inhibitory effect from the right INS to the brainstem and

increased excitatory effect from the brain stem to the right MFG).

Specifically, the feature selection results showed that the GC con-

nectivity from brainstem to right MFG gained the highest impor-

tance score among the best features in both the binary

classification task of EA/SA (0.199) and the multiclass classification

task of EA/SA/NC (0.167) (Table 4). In addition, the feature with

the highest importance score to discriminate EA and NC was the

GC connectivity from right INS to brainstem (0.186). The results

suggested the importance of the cerebral-brainstem GC circuit for

discriminating the EA subjects. The brainstem plays an important

role in the regulation of respiratory and cardiac function, helping to

control respiratory rate and heart rate (Benarroch, 2018). Existing

literature using fMRI pointed out that hypoxic challenge was asso-

ciated with activity enhancement in dorsal mid pons within the

brainstem (Critchley et al., 2015). In particular, dorsal medullary

and pontine activity were inversely correlated with heart rate

(Critchley et al., 2015). Some studies demonstrated that activity in

the INS and prefrontal cortex showed an inverse relationship with

beat-to-beat blood pressure fluctuations (Critchley et al., 2015;

Nagai et al., 2010). A study on Macaque has demonstrated that

Von Economo neurons, which correlated with consciousness have

contributed to interoception by providing inhibitory feedback from

INS presumably to earlier (brainstem) levels of interoceptive repre-

sentation and ultimately supports conscious awareness

(Critchley & Seth, 2012; Evrard et al., 2012). Our results demon-

strated that the EA group exhibited stronger increased inhibitory

regulation from the right INS to the brainstem and from the brain-

stem to the right MFG compared with the two nonelite groups.

The findings extended the previous studies to the effective con-

nectivity network in resting-state, and suggested that the EA group

would have an improved capacity of autonomous adjusting the

respiratory and heart rate, which might be related to the inhibitory

causal flow of the cerebral-brainstem circuit. The inconsistent

alterations of the causal flow in the cerebral-brainstem circuit in

the SA group might imply the complex process of the brain func-

tion alterations in the athletes with early stage of training history,

which also needed in-depth research in the future.

4.4 | The consideration of training history stages
issue

The post hoc analysis further indicated that the statistical differences

of both the HRF shape and the conditioned GC values among the

three groups were partly attributed to the differences between the

SA and EA groups (i.e., the athletes of the early stage and advanced

stage of motor skill training). Studies in the cognitive psychology of

expertize have shown that it is necessary to engage in a sufficient

amount of diligent and well-designed deliberate practice to attain

expertize (Clementesuarez et al., 2016) . In various fields, the process

of achieving elite performance through arduous self-improvement

processes takes an average of 10 years, 4 h/day (Lombardo &

Deaner, 2014). Compared with the EA group whose elite performance

is relatively stabilized, the SA group is undergoing the process of self-

improvement of the motor skill performance. Underlying the func-

tional adaptations in the brains of the two athlete groups, the differ-

ential neural mechanisms associated with early and advanced stages

of physical exercise or motor training history are thereby of increasing

interest (Halsband & Lange, 2006). Studies in large samples reported

the decreased FC in the left parietal lobule and frontal–parietal net-

work in athletes who experience a decade of training (Di et al., 2012;

Wang et al., 2015). Moreover, many studies showed the increased FC

in motor areas as well as in the frontal–parietal network in short-term

motor training (Cantou et al., 2018). These results suggested different

resting-state connectivity variations depending on the training period

(Cantou et al., 2018; Sie et al., 2019). Here, we demonstrated direct

evidence of training stage effect on the effective connectivity net-

work of brain in resting state. The motor skill training stages should be

considered as a fundamental issue when studying brain adaptation by

motor training. The longitudinal study would be designed in the future

studies to shed more light on the continuous and incremental neural

plasticity by the sports experience.

4.5 | Limitations

Several limitations of the present study are worth mentioning. First,

the BOLD signal does not correlate perfectly with action potentials,

but rather measures a mix of continuous membrane potentials and

action potentials (Logothetis & Wandell, 2004). Therefore, HRF is a

complex, nonlinear function of the results of neuronal and vascular

changes (Lindquist & Wager, 2007; Logothetis & Wandell, 2004).

The parameters of HRF were affected by many physiological sources

such as circulatory system in addition to neuronal changes

(Lindquist & Wager, 2007; Logothetis & Wandell, 2004; Wager

et al., 2005). This is the methodological drawback in fMRI studies.

However, finding significant differences of the parameters would

still constitute the scientific evidence that may distinguish the

responses of one brain region form another (Lindquist &

Wager, 2007). Second, the athlete groups showed significantly

shorter TTP in the brain regions associated with spatial visual atten-

tion and visual-motor regulation compared with the NC group. Fur-

ther research on the correlation between attentional behavioral

performance and the TTP parameters would be helpful to better

understand the relationship between the latency of neural firing and

the improved ability of the visual attention and visual-motor regula-

tion in the athlete groups. However, we were not able to collect the

attention behavior data in the participants. Future study would take

this into consideration.
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5 | CONCLUSION

Using the resting-state functional imaging techniques, blind deconvolu-

tion approach, conditioned GC analysis, and feature selection method,

the present study first explored the altered HRF shape among the EA,

SA, and NC groups to detect the neuroplastic adaptation of local brain

functional segregation. The results gave the brain functional evidence of

the “neural efficiency” hypothesis from the point of view of HRF in rest-

ing state and suggested that the HRF parameters specified to the early

and advanced training history stages, respectively. Further conditioned

GC analysis showed the neuroplastic alteration of brain functional inte-

gration by means of effective connectivity network in resting state. Spe-

cifically, the results demonstrated an increased excitatory regulation

within the primary visual sensory regions in athletes, suggesting a step-

wise “neural proficiency” from the NC to SA then to EA group. The

results also showed the diversity of the fronto-parietal, fronto-occipital,

and cerebral-brainstem/cerebellum effective connectivity alterations

among the three groups, where the GC values in the EA group had the

trend to regress to the NC levels. This was in agreement with the neural

efficiency hypothesis which supported the idea of an automation pro-

cess of new motor skills in these circuits in EA; therefore, the GC values

in these areas related to motor control and visual attention modulation

had a trend to be at the NC group level. Not like the consistent “neural
efficiency” in local HRF in the athlete groups, the GC results suggested a

more complex pattern, exhibiting the causal connectivity representation

of the complementary neural mechanisms of neural efficiency and neural

proficiency. Moreover, the feature selection results demonstrated the

role of the inhibitory cerebral-brainstem GC circuit for discriminating the

EA subjects, implying the importance of improved capacity of autoregu-

lating the respiratory and heart rate in athletes with advanced skill levels.

The neural mechanisms of functional adaptations in the athletes' brain

with early and advanced stages of motor training might have potential

applications in designing optimal sports coaching methods, in overcom-

ing learning disabilities, and in neurological rehabilitation.
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