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Abstract

As fetal gestational age increases, other modalities such as ultrasound have demonstrated

increased levels of heterogeneity in the normal placenta. In this study, we introduce and

apply ROI-based texture analysis to a retrospective fetal MRI database to characterize the

second-order statistics of placenta and to evaluate the relationship between heterogeneity

and gestational age. Positive correlations were observed for several Haralick texture metrics

derived from fetal-brain specific T2-weighted and gravid uterus T1-weighted and T2-

weighted images, confirming a quantitative increase in placental heterogeneity with gesta-

tional age. Our study shows the importance of identifying baseline MR textural changes at

certain gestational ages from which placental diseased states may be compared. Specifi-

cally, when evaluating for placental invasion or insufficiency, findings should be evaluated in

the context of the normal placental aging process, which occurs throughout gestation.

Introduction

The human placenta is a complex structure with unique capabilities. It has a 40-week average

life span during which it facilitates the exchange between the maternal and fetal cardiovascular

systems [1]. The placenta undergoes extensive growth and remodeling through trophotroph-

ism and maturation of the maternal-fetal units within the intervillous spaces of the cotyledons.

These events have been extensively studied through in vitro assessments and pathologic evalu-

ation [2]. However, the development and maturation of the human placenta during pregnancy
is relatively unknown and quantitative studies describing growth and aging characteristics of

the placenta throughout the gestational period are lacking [3]. This is an important area of

research because abnormal placental growth and function are related to serious conditions

such as preeclampsia, gestational diabetes, preterm labor and birth, and stillbirth. In addition,

the high-risk clinical scenario of invasion and the morbidly adherent placenta in women with
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previous cesarean delivery has become increasingly prevalent, and imaging plays a significant

role in its detection [4,5].

The placenta becomes significantly more heterogeneous with fetal gestational aging, both

through the maturation of the cotyledons and other processes associated with aging, such as

fibrin accumulation and calcification [6]. The degree of placental maturity has historically

been assessed by an ultrasound placental grading system (Grannum classification) [7]. Mag-

netic resonance imaging (MRI) has become a powerful diagnostic tool, offering excellent soft-

tissue contrast, large field-of-view, and the ability to enhance different tissue types or biological

function using various acquisition protocols. The MR imaging techniques and protocols have

advanced to generate fetal images with unprecedented image quality [8,9], and improvements

will continue as 3T imaging of the gravid female becomes increasingly more routine [10–12].

When abnormalities are observed initially with sonography, fetal MR imaging has been

incorporated into routine clinical practice to answer specific questions, because of its superior

spatial resolution of the fetus and the placenta. At our institution, 5–10 MR fetal imaging stud-

ies are performed on average per week to evaluate suspected fetal abnormalities. These studies

include routine T2 weighted (T2W) and T1 weighted (T1W) imaging of the entire gravid

uterus including the fetus and the placenta, followed by dedicated imaging to characterize the

potential underlying anomalies. Each MRI study to evaluate fetal brain for suspected ventricu-

lomegaly will include T2W and T1W imaging of the entire gravid uterus, followed by orthogo-

nal fetal brain acquisitions with T2W, T1W, and diffusion-weighted (DW) images. Often,

these dedicated imaging techniques include the placenta in the imaging field of view. Such

fetal MR studies performed across pregnancy provide a potentially rich and untapped dataset

of placental structure and function. Mild abnormalities of the fetal central nervous system

presently are not known to affect placental pathology.

In recent years, structural and statistical analyses have been applied more routinely in medi-

cal imaging, particularly in the context of computer-aided diagnosis [13]. The Haralick texture

analysis technique has been used for the evaluation of image texture, or the spatial arrange-

ment of image patterns that provide the visual appearance of texture (smoothness, coarseness,

etc.) in satellite imagery and aerial photography applications [14]. Recent applications of tex-

ture analysis in medical MR imaging have been in the evaluation of T2W, DWI, and DWI-

derived apparent diffusion coefficient (ADC) images for multiple cancer evaluations [15–19].

It has been shown that texture analysis, through quantification of gray-level patterns and pixel

inter-relationships within an image, is sensitive to tissue heterogeneity and potentially can aid

in detection, diagnosis and tumor treatment response. The Haralick texture technique works

by evaluating the spatial relationships between neighboring image pixels with second-order

statistics, computing resultant gray-level co-occurrence matrix (GLCM), and calculating

GLCM-derived textural features for each image (Fig 1) [20]. By comparing changes in texture

feature values with specific parameter, relationship between these features (Table 1) and

parameters can be evaluated. Texture features can also be used as an indication of image (or

region of interest (ROI)) contrast or heterogeneity (i.e. entropy, which describes how the gray-

level is distributed).

Thus, the purpose of our study was two fold. First, we introduce and assess the feasibility of

applying textural analysis on placenta ROIs from the standard gray-scale clinical fetal MR

images. In order to distinguish between normal placental aging from pathology, the under-

standing of placental textural changes with gestational age is important. For our second

aim, we characterize the placenta as a function of fetal gestational age based on the textural

properties, and compare the results with the existing information that placenta heterogeneity

increases with fetal aging.

Textural analysis of placental MR images
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A preliminary report of this work was presented in an abstract form at the 25th annual

meeting of the International Society for Magnetic Resonance in Medicine (ISMRM) [21].

Materials and methods

Imaging dataset

The UT Southwestern Institutional Review Board approved this study. The approval number

is STU 022016–018: Determining the MRI Features and Diffusion Characteristics of Normal

Fig 1. Haralick texture features are calculated from the gray-level co-occurrence matrix (GLCM). Example of how the GLCM is calculated for a given 4x4 pixel

image (a) with the corresponding numerical gray-level pixel intensities (b) is shown here. GLCM is computed by going in horizontal direction with one pixel

separation and recording the number of occurrences in which a pixel intensity of 2 is horizontally next to a 1 and allocated in the co-occurrence matrix (c).

Figure adapted from ref. [20].

https://doi.org/10.1371/journal.pone.0211060.g001

Table 1. The 13 Haralick texture features [14] that were calculated using the Python-based in-house developed

software, pyOsirix, which was integrated into the DICOM viewer, Osirix.

Abbreviation Haralick texture feature

f1 Angular second moment

f2 Contrast

f3 Correlation

f4 Sum of squares

f5 Inverse difference moment

f6 Sum average

f7 Sum variance

f8 Sum entropy

f9 Entropy

f10 Difference variance

f11 Difference entropy

f12 Information measures of correlation

f13 Information measures of correlation

https://doi.org/10.1371/journal.pone.0211060.t001
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Placenta and Placental Invasion. Written and informed consent were obtained from all partici-

pants. Fetal MRI examinations including DWI of the placenta and fetal brain were retrieved

from our database spanning from 2006–2016. Written informed consents were obtained

before all fetal MRI studies, and no sedation was administered during the examinations. The

retrospective study was approved by the Institutional Review Board (IRB). Studies with

extreme fetal movements resulting in MR artifacts were excluded from the dataset. For our ini-

tial evaluation, forty-four fetal imaging studies were selected from our MR database with the

following inclusion criteria: singleton pregnancy, gestational age ranging from 23 to 36 weeks,

normal or mild ventriculomegaly MR finding, MR acquisitions included T2W, T1W, DWI,

and ADC with substantial inclusion of the placenta in the imaging field of view. A board-certi-

fied radiologist with 30 years of obstetric and gynecologic ultrasound and MR experience

curated the dataset based on the described criteria. Gestational age was based on the current

practice of last menstrual history and ultrasound dating. Of the forty-four cases, twenty-five

were determined to be normal and nineteen had mild ventriculomegaly of the central nervous

system. Ventriculomegaly was defined as atrial measurement greater than 10 mm in the axial

MR plane of the fetal brain [22]. Characteristics of the study population are described in Fig 2.

All imaging data were acquired on a 1.5T MRI scanner (Avanto, Siemens Healthcare,

Erlangen, Germany) with a body array coil for signal reception. Subjects were positioned in

the lateral decubitus position, and all imaging was performed with maternal free breathing,

except for fetal brain specific T1W acquisition. All subjects received T1W, T2W acquisitions

capturing the gravid uterus including the fetus and the entire placenta, followed by fetal brain

specific acquisitions with substantial inclusion of the placenta in the imaging FOV of T2W,

T1W (breath-hold), and DWI using two b-values (b = 0, 800 s/mm2). Parameters for the T2W,

T1W, and DWI sequences are described in Table 2. The ADC maps were automatically gener-

ated from the DWI series using the vendor provided tool on the main MR console.

Fig 2. Demographics of the imaging cohort included 25 cases determined to be normal and 19 cases with mild

central nervous system (CNS) ventriculomegaly based on MR findings. The gestational age ranged from 23 to 36

weeks.

https://doi.org/10.1371/journal.pone.0211060.g002
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Placenta segmentation and data analysis

All MR images were archived to the Radiology Research PACS system (iPACS, inVicro, Bos-

ton, Massachusetts) and then retrieved using a DICOM viewer (OsiriX version 5.8.2, Pimeo

SARL, Bernex, Switzerland) running on Mac OSX for further processing. Volumetric placental

ROIs were drawn on the T1W and T2W series covering the gravid uterus. For fetal brain spe-

cific acquisitions, single slice placental ROIs were drawn; the image had to include a large area

of placenta within the uterine area as seen in Fig 3. All the ROIs were manually drawn by one

researcher and confirmed by a board-certified radiologist (Fig 3). Placental volume and pla-

cental mean ADC values were extracted using OsiriX.

In order to evaluate the SNR of the DW images, signal intensity values of the placental

region and area outside of the tissues (image background) were taken (Fig 3). The SNR of the

DW images at the two b values were calculated using the following equation [23]:

SNR ¼ 0:655�
Placental Signal

Standard deviation of the background noise
ð1Þ

The average value of SNR over a cohort of five subjects was computed to assess the reliabil-

ity of DWI-derived ADC maps. SNR of T1W and T2W images were computed similarly in a

cohort of five different subjects.

Python code for an Osirix-based plugin (pyOsirix) was developed to extract 13 Haralick

texture features (Table 1) using the Mahotas library from manually segmented placental ROIs

[24,25]. These features were calculated from the GLCM, with a spatial relationship defined as:

distances = 1, 2; orientations = 0˚, 45˚, 90˚, 135˚. All metrics were exported to a CSV file for

offline statistical analysis. Average value of the four angle GLCM was calculated. Due to image

Table 2. MRI parameters of the standard T2W, T1W, and DWI.

Acquisition Sequence TR (msec) TE (msec) Slice Thickness (mm) Matrix size Resolution

T1 FLASH 112–128 4.8 5–7 256x256 1.17x1.17

T2 HASTE 1100 77–84 5–7 256x256 1.17x1.17

DWI DW-EPI 5100–8600 104 5 192x192 1.56x1.56

https://doi.org/10.1371/journal.pone.0211060.t002

Fig 3. Left to Right: Representative T2W, T1W, DWI (b = 800 s/mm2), and ADC map of a 24-week (top row) and

a 34-week (bottom row) gestation with their respective placental ROIs (green). For DW images SNR calculation,

the image background noise ROI (yellow) is drawn outside of the tissue. The 24-week fetus was identified to have mild

CNS ventriculomegaly; the 34-week fetus had normal MR findings.

https://doi.org/10.1371/journal.pone.0211060.g003

Textural analysis of placental MR images

PLOS ONE | https://doi.org/10.1371/journal.pone.0211060 January 22, 2019 5 / 11

https://doi.org/10.1371/journal.pone.0211060.t002
https://doi.org/10.1371/journal.pone.0211060.g003
https://doi.org/10.1371/journal.pone.0211060


quality variation between the generated ADC maps, texture metrics from DWI and ADC series

were calculated both with and without intensity normalization and histogram equalization

[26]. Intensity normalization and histogram equalization have been described as appropriate

pre-processing steps for minimizing inter-subject variance due to scanner parameters, as

opposed to biological variance [27]. In compliance with a recent radiomics standardization

initiative [28], our second order statistics analysis process can be summarized as the following:

the ROI was analyzed slice by slice (2D), gray level co-occurrence matrix was extracted, and

histogram equalization was used for image intensities discretization.

Statistical analysis

Correlations between extracted Haralick texture features and gestational age as well as compar-

isons between normal and mild ventriculomegaly cases were investigated using Spearman’s

correlation coefficient (ρ). False discovery rate (FDR) adjusted p values (q values) were calcu-

lated. The q values less than 0.05 were considered statistically significant. The statistical analy-

sis was performed using SAS software (Version 9.4, SAS Institute Inc., Cary, NC).

Results

Table 3 shows Spearman’s correlation coefficient for the Haralick texture features found to be

significantly (q <0.05) associated with gestational age. Of the 13 textural features investigated,

only 5 of them showed significant correlation, with at least one MRI acquisition (Table 3).

Among the MR acquisitions, only the T2W (brain specific single slice), T1W & T2W (gravid

uterus) features were associated with gestational age in the entire cohort. No significant corre-

lations were observed between Haralick texture features of DW image, DWI-derived ADC

map, T1W (breath-hold) image and gestational age. We investigated the SNR of DW image

acquired at each b value. We found that SNR for the b = 0 s/mm2 was 32 and comparable to

the average SNR of T1W (SNR = 20.3) and T2W (SNR = 38) images. The SNR of b = 800 s/

mm2 images was 8, which was sufficiently high for reliable ADC map derivation [29,30]. No

significant correlations were observed between mean ADC values and gestational age (Fig 4).

Histogram normalization of DWI ROIs before texture extraction did not impact correlation

with gestational age.

Discussion

In this paper, we investigated the feasibility of applying texture features based on second order

statistics on retrospective clinical fetal MR images. We demonstrated that Haralick texture fea-

tures, derived primarily from clinically acquired T1W and T2W MRI acquisitions, correlate

with gestational age. The importance of taking into account gestational age specific textural

Table 3. Spearman correlation coefficient between the Haralick texture features that were found to be significant from placental MR acquisitions and gestational

age. The corresponding q values (FDR adjusted p-values) are provided in brackets. Correlation coefficient values that were statistically significant are highlighted.

Acquisitions f3

Correlation

f4

Sum of squares

f7

Sum variance

f8

Sum entropy

f9

Entropy

Entire Placenta T1W 0.42 (0.04) 0.35 (0.11) 0.36 (0.11) 0.35 (0.11) 0.47 (0.03)

Entire Placenta T2W 0.42 (0.04) 0.24 (0.24) 0.25 (0.23) 0.27 (0.19) 0.47 (0.03)

Single Slice T1W 0.33 (0.15) 0.1 (0.63) 0.14 (0.49) 0.07 (0.69) -0.09(0.63)

Single Slice T2W 0.36 (0.11) 0.47 (0.03) 0.47 (0.03) 0.47 (0.03) 0.31 (0.18)

Single Slice DWI (b = 800 s/mm2) -0.19 (0.34) -0.25(0.23) -0.26(0.23) -0.25(0.24) -0.2 (0.32)

Single Slice ADC map 0.11 (0.57) 0.14 (0.48) 0.14 (0.48) 0.34 (0.13) 0.29 (0.18)

https://doi.org/10.1371/journal.pone.0211060.t003
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changes was eluded in Dahdouh et al [31] where texture analysis of longitudinal T2W placental

scans was used to study fetal growth restriction condition. Placental MR relaxation parameters

such as T1, T2, and T2� have been shown to correlate with gestational age [32,33]. However, in

clinical setting, longitudinal or prolonged acquisitions to generate quantitative T1, T2 maps

are challenging for fetal MRI. Using gray scale routine fetal MR images that are clinically

acquired, we are in essence defining the aging of the normal placenta with MR based on

textural analysis. This will serve as a baseline for normal characteristics in order to compare

diseased states, most importantly placental insufficiency and placental invasion. The heteroge-

neity significantly changes later in pregnancy as already described by ultrasound [6,34] and

therefore the MR finding of invasion or insufficiency must be made in this context.

The MR findings of increased heterogeneity on textural analysis are based on the spatial

relationship between pixels in an ROI. These variations in signal intensities are felt to represent

aging of the cotyledon, the maternal fetal unit. On the macroscopic level, these changes in the

cotyledon are manifest as better definition of the septa, and increased as well as decreased sig-

nal intensities of calcifications and fibrin deposition. On the physiologic level, hemodynamics,

oxygenation, and exchange functions of the maternal-fetal unit are assumed to be constant.

Therefore, it may be the physiology of tissue aging that is observed. The placental analysis dif-

ferences between the total placenta volumes compared to single slice are likely because of the

large differences in the size of the dataset. Clearly, a larger prospective placenta-specific study

would enable a standardized approach to fetal placental imaging and address the differences.

For our study, we did not find a statistically significant correlation between gestational age

and texture features of gravid uterus DWI and ADC ROIs or between gestational age and

mean ADC placental values. Texture features derived from ROIs that went through intensity

normalization and histogram equalization were investigated but neither improved the statisti-

cal outcome for DWI or ADC maps. We found a positive correlation between placental vol-

ume and gestational age, in agreement with existing literature [35]. It was previously thought

that the relative ADC values were stable during gestation, an implication that water diffusion

in the normal placental tissue is not affected by the amount of connective tissue or calcifica-

tion, felt to represent the aging process [36]. However, Capuani et al [37] recently described a

negative correlation between ADC values of placental ROIs and gestational age for GA�30

week. In our study, we did not observe this trend. The discrepancy may come from the differ-

ence in ROI coverage of the placenta. Our study measured the average ADC across the total

Fig 4. Placental volume of the imaging cohort showed the expected correlation between placental volume and

gestational age (ρ = 0.62, p<0.0001). No significant correlation was observed between mean ADC value and

gestational age (ρ = -0.06, p = 0.69).

https://doi.org/10.1371/journal.pone.0211060.g004
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placenta in the slice and we did not segment the placenta into 3 different groups, as their study

did. Furthermore, Capuani et al. also used a bi-exponential fit on 7 b-values DW images to

compute the ADC values, while our study was limited to the routine clinical DWI with 2 b-val-

ues acquisitions and the corresponding mono-exponential fitting for ADC derivation.

Second-order statistics was performed to measure how different gray levels are positioned

relative to each other, essentially searching for heterogeneity. Use of second-order statistics

was able to determine that directional anisotropy does not impact analysis, which emphasizes

that planar orientation of images is not important [38]. Of all the functional textural measures,

function 9 represents entropy, which is a measure of randomness. Therefore, it makes sense

that increasing visual heterogeneity that we see in the MR images would correlate with ran-

domness. The structural features that affect heterogeneity would include differences in con-

trast and organizational appearance of the placental cotyledons. Thus, characterization of the

placenta based on Haralick texture features is potentially useful, evident in its growing applica-

tion in the field of cancer so far.

Our study group did not include women with placental insufficiency or placental invasion.

The MRI’s had normal fetal findings or only subtle increased measurement of the lateral ven-

tricle of the central nervous system. Fetuses with isolated mild ventriculomegaly have an

overall good prognosis. However, there are many functions of the placenta of which we are

not yet aware, and may be found to be associated with the condition. This and the lack of out-

comes are weaknesses of our study that should be acknowledged. The number of women

included in this study is low and the result would require validation on a larger dataset. Nev-

ertheless, we found in this small series that increasing heterogeneity of the placenta as the

result of the aging process can be seen with MR texture analysis. Characterization of the pla-

centa in abnormal states should therefore be performed in the context of fetal gestational and

placental age.

Another limitation of present study is the small subset of texture features evaluated for our

cohort. The Haralick texture features are the most classical of an ever-growing family of image

descriptors. In addition to other statistical texture metrics that describe second-order image

statistics, more recently developed texture metrics, such as syntactic, structural, or spectral tex-

ture features, could likewise be applied to the human placenta. In a recent application of tex-

ture analysis to fetal MR images, 15300 texture metrics per ROI were generated and analyzed

[39]. It is not yet clear which texture metrics are optimal for characterization of the normal pla-

centa and how best to avoid over-fitting and inherent redundancy [40]. We therefore sought

to explore the thirteen classical Haralick texture features in this preliminary study as a proof-

of-concept [40].

Conclusions

From this retrospective study, we were able to confirm the increase in placental heterogeneity

with gestational age by comparing Haralick texture features on MR images. Gestational age is

the confounding variable for any type of placental analysis. The importance of this study is to

identify baseline MR textural changes at certain gestational ages from which placental diseased

states may be compared. Specifically, when evaluating for placental invasion or insufficiency,

findings should be evaluated in the context of the placental aging process, which occur

throughout gestation.
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