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Colorectal cancer remains one of the commonest and 
most lethal malignancies worldwide (1). Up to 80% of 
patients with colorectal cancer develop liver metastases 
(CRLM), which are the main factor limiting survival (1,2). 
Despite advances in systemic therapy and the emergence of 
multimodal treatment concepts, curative surgical resection 
remains the best therapeutic option and provides the highest 
chance of long-term survival (1,2). However, liver resection 
is associated with perioperative morbidity and mortality, 
while multiple factors affect long-term prognosis (3,4). As a 
result, various predictive models have been developed over 
time, to improve preoperative patient selection and foresee 
unfavourable outcomes.

The first clinical risk scores (CRS) for patients 
undergoing resection of CRLM, were developed more than  
20 years ago, with the aim to predict overall survival (OS) 
and recurrence-free survival (RFS) (2). Early versions 
by Nordlinger et al. (5), Fong et al. (6) and Nagashima 
et al. (7) comprised clinicopathological data, histological 
factors (such as primary tumor nodal status), size and 
number of liver metastases, and serum carcinoembryonic 
antigen (CEA) level. Later models included tumor genetic 
information, such as the RAS (rat sarcoma viral oncogene 
homolog) mutation clinical risk score (m-CS), developed 
by Brudvik et al. (8). Seeking to improve on the prognostic 

power and reduce bias in these models, Sasaki et al. (9) 
proposed a “Metro ticket” model, the tumor burden score 
(TBS). This only included the number and size of liver 
metastases, so that newer scores by Margonis et al. (10) 
and Chen et al. (11) attempted to go further, by combining 
TBS with histological and genetic information, resulting in 
the Genetic and Morphological Evaluation (GAME) and 
Comprehensive Evaluation of Relapse Risk (CERR) scores, 
respectively. Finally, Okimoto et al. developed the Glasgow 
Prognostic Score (GPS), which predicts recurrence after 
liver resection for CRLM, based on systemic inflammation 
and nutritional status (12).

In recent years, artificial intelligence (AI) and machine 
learning (ML) have been increasingly integrated in 
various areas of industry, science, and medicine (13,14). 
Some studies have focused on imaging modalities, such as 
magnetic resonance imaging (MRI), computed tomography 
(CT), or endoscopy, aiming to identify pathological lesions 
(6-8). Others have analyzed digitized histology images to 
predict outcomes or response to chemotherapy (13-15). 
Moreover, medical record digitization and development 
of large registries has enabled “big data” research, where 
various AI applications are being put to the test (13,15).

Naturally, the potential of ML algorithms to predict 
outcomes after liver resection for CRLM has also been 
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explored in recent years. Starting in 2013, Spelt et al. trained 
an artificial neural network (ANN) on 28 pre-, intra-, and 
postoperative variables from a monocentric Swedish cohort 
of patients operated on between 1994–2009. The ANN 
predicted long-term survival based on six of these variables, 
with a C-index of 0.72 (16). In 2020, Paredes et al. trained 
two ML-models based on logistic regression with bagging 
to predict recurrence in a multicentric cohort of patients 
operated on between 2001–2018. Ten preoperative variables 
were selected for model training, including Kirsten rat 
sarcoma viral oncogene homolog (KRAS) status for one 
of the models. Both were found superior to the traditional 
Fong CRS (6) and the m-CS by Brudvik et al. (8), with area 
under the curve (AUC) ranging from 0.67 to 0.69 for 1-, 3- 
and 5-year recurrence (17). A different approach was used 
in a further study on the same cohort: here, Moro et al. used 
classification and regression trees (CART) to predict OS 
using 15 prognostic factors. These were ranked according 
to KRAS status, resulting in different combinations and 
two different models, both of which outperformed the 
Fong score. Specifically, Akaike’s information criterion 
was better in both the KRAS-wildtype (CART 3,334 vs. 
Fong CRS 3,341) and the KRAS-mutated (CART 1,356 vs. 
Fong CRS 1,396) groups (18). Finally, in our own study on 
patients operated for CRLM between 2010–2021, a novel 
gradient-boosted decision tree (GBDT) model was trained 
on 24 preoperative variables to identify patients at risk of 
poor OS. The GBDT model ranked 6 of these variables 
significantly higher than the rest, so that a version trained 
on only these six parameters was able to identify patients at 
risk of significantly reduced OS (23 vs. 52 months, P=0.005) 
with a robust predictive capability (C-index 0.70) (19).

In their paper, Lam et al. present a prognostic ML 
model, based on Cox proportional hazards and least 
absolute shrinkage and selection operator (LASSO) 
regression (20). They included patients undergoing liver 
resection for CRLM between 2009–2018 at four centers, 
with data randomized 70:30 into training and validation sets 
and endpoints being OS and RFS. The model’s predictive 
capability was assessed using Harrel’s C-index and compared 
to that of the Fong CRS. From the significant risk factors 
identified in univariate analysis (27 for OS and 22 for RFS), 
8 variables were selected for the final model: primary tumor 
nodal stage, neoadjuvant treatment for CRLM, Charlson 
Comorbidity Score, pre-hepatectomy bilirubin and CEA 
levels, diameter of the largest liver metastasis, extrahepatic 
metastasis detected on positron emission tomography 
(PET)-scan, and KRAS mutation status. The model, 

named CMAP for “CRLM Machine-learning Algorithm 
Prognostication”, was shown to be stronger than the Fong 
CRS at predicting 1-year (C-index 0.651 vs. 0.571) and 
5-year OS (C-index 0.651 vs. 0.574). 

The study of Lam et al. (20) is a valuable addition to 
the growing field of ML-prognostication for patients 
undergoing resection of CRLM. The advantages of ML 
over traditional statistics and risk scores are discussed in 
the aforementioned studies and boil down to this: AI and 
ML models are able to analyze vast amounts of data and 
go through countless combinations, identifying patterns 
which may be missed by traditional statistics. The latter, 
after all, rely on the human factor (for example in the 
selection of variables and statistical tests), suffer from limits 
to the number of parameters that can be analyzed, or make 
assumptions about risk factors and the distribution of data. 

The natural conclusion would seem to be, that traditional 
risk scores are outdated, and ML-based algorithms are 
the future. However, things are not that simple, and the 
current state of the art is reflected in the limitations of 
these studies, which are not dissimilar to those of Lam  
et al., as acknowledged by the authors themselves (20). 
These include retrospective study designs, limited sample 
sizes, and lack of external validation. The former is 
accompanied by well-known issues, such as bias and missing 
data. The latter two are especially important for ML-
algorithms, to preclude overfitting, where the algorithm is 
particularly well adapted to a limited dataset, but cannot 
make predictions on new, unknown data. Some workgroups 
try to overcome these problems through imputation or 
cross-validation, with varying results (16-19). Furthermore, 
studies differ in the consistency of patient cohorts and 
treatment strategies (e.g., eras of recruitment, frequency of 
major or staged resections, perioperative chemotherapy), 
the endpoints being studied, the way variables are included 
(e.g., serum CEA in continuous form vs. cut-off vs. 
logarithmic transformation), ML-models being employed, 
and statistical techniques used to assess and validate their 
results.

The prevalent inhomogeneity in the field is exposed 
by the differing variables included in models predicting 
the same outcomes. For example, although preoperative 
serum CEA, the number of CRLM, and diameter of the 
largest lesion persist across almost all models, perioperative 
chemotherapy, age, primary tumor lymph node metastases 
and KRAS status are only a part of some. Moreover, Lam  
et al. are the only group to include the Charlson Comorbidity 
Score and preoperative serum bilirubin (20), Paredes et al. 
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alone included primary tumor T-stage (17), Spelt et al. solely 
took hemorrhagic complications into account (16), whereas 
our model was the only one comprising body mass index and 
primary tumor grading (19).

These disparities highlight the need for high-quality, 
multicentric studies, with large and complete datasets. 
These would allow for comparisons between different 
models, external validation, as well as the prediction of 
outcomes other than OS/RFS, such as complications 
or response to chemotherapy (14,21,22). Pragmatically 
speaking, retrospective studies combining data from 
multiple centers and excluding patients with missing 
information are the only way to generate enough data in 
the short term. Concurrently, well-designed prospective 
studies are necessary, to maximize the quality and quantity 
of data made available for model training, such as genetic 
and epigenetic information, radiological and histological 
images, physiological parameters, and body composition 
measurements. The AI models of the future could combine 
all these pieces of information and take part in the decision-
making process, much like a human does. The role which 
generative AI models (such as ChatGPT) could play in this 
process, is particularly intriguing.

As of the time being, the “old” is still very much useful 
and the “new” is not quite ready to displace it. Nevertheless, 
change is inevitable.
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