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ABSTRACT: Deguelin has been extensively studied for its
anticancer properties; however, its clinical application has been
hindered by concerns about in vivo toxicity. Structural modifica-
tions of deguelin including ring truncation have been explored to
enhance its pharmacological properties. In this study, the design
and straightforward synthesis of a series of B, C, and E (BCE)-ring-
truncated deguelin analogues with deoxybenzoin backbone were
described. The structure−activity relationships (SARs) were
established by evaluation of their inhibitory activities against
three cancer cell lines, A549 (adenocarcinomic human alveolar
basal epithelial cells), HCT116 (human colorectal cancer cells),
and MCF-7 (breast cancer cells). Six derivatives demonstrated
significant and selective inhibitory activities. The ketone derivative 3a showed potency against A549 (IC50 = 6.62 μM) while the
oxime analogue 6a and D-ring-benzylated ketone analogue 8d exhibited activity against HCT116 (IC50 = 3.43 and 6.96 μM,
respectively). Moreover, the D-ring alkylated derivatives 8c and 8e−f were active against MCF-7 cells (IC50 < 10 μM). The potential
suitability of the BCE-ring-truncated deguelin derivatives for drug development was further supported by the favorable in silico
prediction of their physicochemical properties, druglikeness, and toxicity. This study could provide valuable insights for the further
development of novel anticancer agents.

1. INTRODUCTION
Deguelin (Figure 1) is a naturally occurring rotenoid1 that was
originally used as pesticide and fish poison.2 It has emerged as

a promising lead compound for therapeutic optimization and
development due to its remarkable antiproliferative activity and
unique mechanism of action.3 Its favorable biological activity
has been attributed to its role in regulating various tumor cell
signaling transduction pathways. The ability of deguelin to
induce apoptosis, inhibit cell proliferation, and promote tumor
death is correlated to targeting mitogen-activated protein
kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/Akt
signal transduction cascades.4 Recent studies show that unlike
other heat shock protein 90 (HSP90) inhibitors, deguelin
binds to the C-terminal of ATP-binding pocket of HSP90.5

This leads to the downregulation of client proteins, including
p53 (tumor suppressor protein), CDK4 (associated with
cancer prognosis), Akt (critical for cancer cell survival), and
hypoxia-inducible factor 1α (HIF-1α, involved in oxygen
regulation), thus suppressing cell propagation and malignant
transformation.6

The potential of deguelin as an anticancer agent has been
extensively studied;7 however, its clinical utility has been
hindered by concerning in vivo toxicity.8 Derivatization of
deguelin to improve its pharmacological profiles and establish
structure−activity relationships (SARs) has been previously
investigated. Carbonyl group,9 A- and E-ring modifica-
tions,9b,10 and B- and/or C-ring truncation9b,11 were the
major focus of structural alterations of deguelin. In the study of
Chang et al., carbonyl, A-, and E-ring-modified deguelin
analogues were reported to be potent HSP90 inhibitors.9b

However, the complex five-fused rings of deguelin present a
great challenge to its total synthesis and limit its accessibility
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Figure 1. Structure of deguelin with designated A−E-rings.
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for further modifications. The presence of B- and C-rings also
restrict the conformational flexibility of deguelin, consequently
diminishing its potential interaction with HSP90.11m To
address this challenge, Chang et al. introduced a ring
truncation strategy to derive simpler and more synthetically
accessible scaffolds. Through this approach, they successfully
developed novel analogues of deguelin with truncated B- and/
or C-rings which showed antiproliferative properties against
H1299 nonsmall-cell lung cancer cell line and antiangiogenic
activities in zebrafish embryos.9b Kim et al., on the other hand,
delved into the SAR studies of C-ring-truncated deguelin
derivatives by varying the carbonyl group linker, A/B-, and D/
E-rings.11k The derivatives exhibited HIF-1α and antitumor
properties against the H1299 cell line. In the SAR studies
conducted by Yao et al. on the deguelin derivatives with
truncated B- and BC-rings as HSP90 inhibitors, they have
established the importance of the methoxy groups at A-ring
and the nonessential nature of the alkene moiety at the E-
ring.11h The choice of functional groups linking the A- and D-
rings could yield analogues with varying degrees of potency.

Despite reports on the truncated frameworks of deguelin,
the SARs pertaining to the truncation of the BCE-ring in
deguelin have not been previously explored. In this study, the
design of deguelin analogues was further simplified by
truncating B-, C-, and E-rings (Figure 2) resulting in
compounds with a deoxybenzoin backbone. Deoxybenzoin
derivatives have been known for various biological proper-
ties,12 including antioxidant,13 antibacterial,14 immunosuppres-
sive,15 and anti-inflammatory activities.15,16 To the best of our
knowledge, there are no previous studies of their potential
anticancer properties. Thus, the facile synthesis of 15
deoxybenzoin or BCE-ring-truncated analogues was described.
Their inhibitory properties against A549 lung cancer cells,
HCT116 colorectal cancer cells, and MCF-7 breast cancer cells
were evaluated using MTT assay.17 SAR analysis was
conducted by a carbonyl group and A- and D-ring
modifications. The physicochemical properties, druglikeness,
and toxicity of the derivatives were analyzed using
SwissAMDE18 and ProTox-II.19

Figure 2. Design strategy for the BCE-ring truncation of deguelin.

Scheme 1. Synthesis of BCE-Ring-Truncated Ketone Derivatives 3 and 5

Scheme 2. Synthesis of Carbonyl-Modified BCE-Ring-Truncated Deguelin Derivatives 6 and 7
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2. RESULTS AND DISCUSSION
2.1. Synthesis of BCE-Ring-Truncated Deguelin

Analogues. As shown in Scheme 1, BCE-ring-truncated
deguelin analogues 3 and 5 were initially synthesized following
a modified Friedel−Crafts acylation reaction between sub-
stituted phenylacetic acid and dihydroxybenzene using boron
trifluoride ethyl etherate complex as Lewis acid.11h The ketone
derivatives 3a−b and 5 were successfully synthesized in very
good yields.
Subsequent modifications of the carbonyl group of the

ketone derivative 3a were conducted by following the
procedures outlined in Scheme 2. Treatment of 3a with the
appropriate hydroxyl and alkoxy amines produced oxime and
alkylated oxime derivatives 6a−d. Oxime analogue 6a was
obtained when 3a was treated with hydroxylamine hydro-
chloride and NaOAc in MeOH.20 The synthesis of the
alkylated oxime derivatives 6b−d was achieved by treating 3a
with methoxy-, O-benzyl-, and (carboxymethyl)hydroxyl-amine
hydrochloride, respectively. Derivative 3a was reduced to
alcohol derivative 7 in 90% yield using NaBH4 as the reducing
agent.
Modifications at the D-ring moiety were also explored by

selective alkylation of the p-hydroxy group (Scheme 3).11h The
ketone derivative 3a was treated with various primary alkyl
halides to obtain O-alkylated derivatives 8a−f via the SN2
reaction. O-Acylated derivative 9 was produced using acetic
anhydride, Et3N, and DMAP in DCM. The analogues were
obtained in good yields and characterized by using various
techniques such as 1H and 13C nuclear magnetic resonance

(NMR) spectroscopy and high-resolution mass spectrometry
(HRMS).
2.2. In Silico Prediction of ADME-Tox Properties of

BCE-Ring-Truncated Deguelin Derivatives. Table 1 shows
the predicted absorption, distribution, metabolism, excretion,
and toxicity (ADME-Tox) properties of the synthesized
compounds using SwissADME18 and ProTox-II.19 The
molecular weights (MW < 500), number of rotatable bonds
(nRB ≤ 10), number of hydrogen bond acceptors (nHBA ≤
10) and donors (nHBD ≤ 5), and topological polar surface
area (20 < TPSA < 130 Å2) of the compounds were all below
the threshold. The lipophilicity values (i log P ≤ 5) were
around 1.7 to 3.6, indicating the good permeability of the
compounds to cell membrane.21 Moreover, the synthesized
analogues showed high gastrointestinal absorption with no
violations of Lipinski’s rule of five, suggesting its good oral
bioavailability. In addition to the ADME properties of the
compounds, their acute mammalian toxicity was also predicted
using ProTox-II.19 Indicated by their lethal dose 50 (LD50)
values ranging from 1000 to 2000 mg/kg, the synthesized
BCE-ring-truncated analogues were categorized as Class IV
(2000 mg/kg > LD50 > 300 mg/kg) compounds, implying low
adverse effects.
2.3. Antiproliferative Activities against A549,

HCT116, and MCF-7 Cells. The synthesized derivatives
were evaluated for their inhibitory activities in vitro using MTT
assay.17 MTT assay is used to measure the cellular metabolic
activity of the derivatives as an indicator of their inhibition
efficacy against three cancer cell lines (A549 adenocarcinoma
human alveolar basal epithelial cells, HCT116 human

Scheme 3. Synthesis of Monoalkylated BCE-Ring-Truncated Deguelin Derivatives 8 and 9 (X = Cl or Br)

Table 1. ADME-Tox Predictions of BCE-Ring-Truncated Deguelin Derivatives

compound MW nRB nHBA nHBD TPSA i log P GI absorption Lipinski’s violation LD50 (mg/kg) class

3a 288.3 5 5 2 76.0 1.7 high 0 1520 IV
3b 318.3 6 6 2 85.2 1.9 high 0 1520 IV
5 288.3 5 5 2 76.0 2.0 high 0 2000 IV
6a 303.3 5 6 3 91.5 2.1 high 0 2000 IV
6b 317.3 6 6 2 80.5 2.6 high 0 2000 IV
6c 393.4 8 6 2 80.5 3.3 high 0 2000 IV
6d 361.4 8 8 3 117.8 1.7 high 0 2000 IV
7 290.3 5 5 3 79.1 2.2 high 0 1000 IV
8a 302.3 6 5 1 65.0 2.9 high 0 1520 IV
8b 316.4 7 5 1 65.0 3.4 high 0 1520 IV
8c 330.4 8 5 1 65.0 3.3 high 0 1520 IV
8d 378.4 8 5 1 65.0 3.6 high 0 1520 IV
8e 396.4 8 6 1 65.0 3.5 high 0 1520 IV
8f 423.4 9 7 1 110.8 3.2 high 0 2000 IV
9 330.3 7 6 1 82.1 2.3 high 0 1520 IV
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colorectal cancer cells, and MCF-7 breast cancer cells). The
half-maximal inhibitory concentrations (IC50) were measured
for all derivatives using deguelin and doxorubicin as the
positive controls. Table 2 shows the mean IC50 values of the
derivatives (n = 3). Compounds that exhibit IC50 < 10 μM
against one or more of the cell lines used were considered
biologically active.22

MTT assay revealed that among the derivatives tested,
compound 3a is the only active derivative against A549 cancer
cells with an IC50 value of 6.62 μM (Table 2). Interestingly, it
is slightly more potent than doxorubicin (IC50 = 7.38 μM), a
known anticancer drug, and has comparable potency with
deguelin (IC50 = 6.47 μM), a known potent compound against
lung cancer cells.23 Derivative 5, on the other hand, a structural
isomer of 3a, did not exhibit inhibitory activity against the
A549 cancer cell line.
Modifications at the carbonyl group, such as conversion to

its oxime (6a), alkyloxime (6b−d), and alcohol (7) derivatives,
generally led to decreased potency against the A549 cell line.
Introducing alkyl substituents in the p-hydroxy group of the D-
ring also decreased the inhibitory activities of compound 3a.
Notably, a 2-fold decrease in the potency of compound 3a was
observed when O-methylated (8a, IC50 = 15.2 μM). Further
decrease in inhibitory property was observed when the
substituents become bulkier, i.e., ethyl (8b, 35.1 μM) and
propyl (8c, 88.7 μM) groups. No potent activity was observed
for compounds containing benzyl derivatives (8d−e).
The inhibitory properties of the derivatives were assessed

against HCT116 human colorectal cancer cells. As presented
in Table 2, the oxime derivative 6a displayed higher potency
(IC50 = 3.43 μM) than deguelin (IC50 = 26.2 μM) and
doxorubicin (IC50 = 6.41 μM). However, substitution of the
hydroxy moiety of 6a resulted in a loss of activity [IC50 = 93.3
μM for methyloxime (6b) and 30.2 μM for benzyloxime (6c)
derivative]. These results suggest that the hydroxy moiety of
the oxime derivative plays a crucial role in its antiproliferative
property against colon cancer cells. Moreover, compound 7,
the alcohol analogue of compound 3a, did not exhibit an
inhibitory activity.
In contrast to the trend observed in oxime derivatives,

alkylation of the p-hydroxy group of the D-ring of 3a led to a
significant increase in potency. Bulky groups proved to be
beneficial in enhancing the potency of O-alkylated derivatives
against HCT116 cancer cells. Compound 8a (O-methylated)
for instance, gave an IC50 value of 68.7 μM, while compounds
with propyl (8c) and benzyl (8d) groups exhibited even
greater potency with IC50 values of 13.3 and 6.96 μM,
respectively. Acylated compound 9, however, was inactive, as it
showed an IC50 value >100 μM.
The derivatives were also evaluated against MCF-7 breast

cancer cell lines (Table 2). The parent compound 3a is
inactive against MCF-7 cells (IC50 > 10 μM), whereas the
other ketone derivatives 3b and 5 displayed better IC50 values
of 36.0 and 40.2 μM, respectively. These findings indicate that
the position of the OH group and the presence of an additional
−OCH3 group could be important factors in improving the
antiproliferative activity against breast cancer cells. Similarly, all
of the oxime derivatives 6a−c and alcohol analogue 7 lacked
efficacy against breast cancer cells.
Similar to the trend observed in the HCT116 cell line, there

was a dramatic increase in the antiproliferative activity against
MCF-7 cancer cells upon the O-alkylation of compound 3a.
Increasing the carbon chain length resulted in improved

Table 2. Experimentally Measured IC50 Values of BCE-
Ring-Truncated Deguelin Derivatives against A549,
HCT116, and MCF-7 Cancer Cell Lines

aAll compounds were purified using column chromatography. bIC50
values were determined as the mean of triplicate experiments. cn.s. =
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activity, with O-propylated compound 8c (IC50 = 5.09 μM)
showing the highest potency. Remarkably, it exhibited higher
activity than deguelin (IC50 = 33.8 μM) and doxorubicin (IC50
= 5.89 μM). Introducing a much bulkier benzyl group (8d,
IC50 = 12.0 μM) decreased the activity by 2-fold. However, the
presence of deactivating substituents in the para position of the
benzyl group improves their potency [p-fluorobenzyl- (8e),
IC50 = 4.36 μM and p-nitrobenzyl- (8f), IC50 = 8.41 μM]. O-
Acetylated derivative 9 did not show antiproliferative activity
against breast cancer cells.
In summary, a total of six BCE-ring-truncated deguelin

derivatives�3a, 6a, 8c, 8d, 8e, and 8f�were identified to
have potent (IC50 < 10 μM) inhibitory activities against the
cancer cell lines tested. Addition of alkyl groups to the p-
hydroxy of the D-ring of 3a generally enhanced the inhibitory
activity. Alkylation of the oxime derivative 6a on the other
hand was not advantageous, as the alkyloxime analogues did
not show potency against all three cancer cell lines.

3. CONCLUSIONS
The facile synthesis of a series of structurally simple BCE-ring-
truncated deguelin derivatives (3a−9) bearing a deoxybenzoin
backbone is presented in this study. Their antiproliferative
activities against three cancer cell lines (A549, HCT116, and
MCF-7) were investigated using MTT assay. The structure−
activity relationship was explored by generating carbonyl-
containing derivatives with substituted A- and D-rings,
modifying the carbonyl group to oxime, alkyloxime, and
alcohol derivatives and O-alkylation of the D-ring. Six out of
the 15 compounds studied, namely, 3a, 6a, 8c, 8d, 8e, and 8f,
displayed enhanced and selective antiproliferative activities.
The ketone derivative 3a demonstrated potency against A549
(IC50 = 6.62 μM), whereas oxime analogue 6a and D-ring-
benzylated ketone analogue 8d exhibited activity against
HCT116 (IC50 = 3.43 and 6.96 μM, respectively).
Furthermore, the D-ring-alkylated derivatives 8c and 8e−f
were active against MCF-7 cells (IC50 < 10 μM). In silico
analysis of the physicochemical properties and toxicity of the
derivatives revealed druglike attributes that are within
predefined thresholds. The promising in vitro assay results
and favorable predicted ADME-Tox properties indicate the
potential of these derivatives as anticancer agents. Ongoing and
future work includes in vivo and ADME-Tox assays to validate
their efficacy and safety and conducting comprehensive
biological assays and in-depth mechanistic studies.

4. EXPERIMENTAL SECTION
4.1. General Information. All reagents were purchased

and used as received, unless otherwise specified. 1H and 13C
NMR spectra were recorded on a Varian 500 MHz
spectrometer using deuterated dimethyl sulfoxide (DMSO-
d6). 1H and 13C chemical shifts are expressed in parts per
million (ppm) and are referenced at 2.50 and 39.5 ppm,
respectively. Data are presented as follows: chemical shift (δ),
multiplicity (s = singlet, d = doublet, dd = doublet of doublet, t
= triplet, q = quartet, and m = multiplet), coupling constants
(J) in Hz, and integration. The exact mass was analyzed using a

Waters Acquity UPLC H-Class-Xevo G2XS Quadrupole Time-
of-Flight High-Resolution Mass Spectrometer in positive ion
mode electrospray ionization. Melting points were determined
using a Cole Parmer Electrochemical IA9200 and reported as
uncorrected.
4.2. Synthesis of BCE-Ring-Truncated Deguelin

Derivatives. 4.2.1. General Method for the Preparation of
Compounds 3a−b and 5. Compounds 3a−b and 5 were
prepared following the Friedel−Crafts acylation procedure
reported by Yao et al.11h Phenylacetic acid (1.0 g, 1.0 equiv),
dihydroxybenzene (1.0 equiv), and boron trifluoride ethyl
etherate (15 mL) were placed in a round-bottom flask and
stirred at 90 °C for 3 h under N2 gas. Afterward, an ample
amount of ice-cold 10% aqueous sodium acetate solution was
added to the reaction mixture to precipitate out the product.
The precipitate was collected by vacuum filtration and purified
by column chromatography in a gradient elution of ethyl
acetate/n-hexane (0:100 → 30:70) to obtain the ketone
derivatives.

4 . 2 . 1 . 1 . 1 - ( 2 , 4 - D i h y d r o x y p h e n y l ) - 2 - ( 3 , 4 -
dimethoxyphenyl )ethanone (3a ) . Using 2-(3 ,4-
dimethoxyphenyl)acetic acid (1.0 g, 5.1 mmol, 1.0 equiv)
and resorcinol (0.56 g, 5.1 mmol, 1.0 equiv), compound 3a
was obtained as a pale yellow solid (1.3 g, 86% yield). The
isolated compound matched the reported 1H NMR data.11h

MP = 178 °C; 1H NMR (500 MHz, DMSO-d6) δ 12.9 (s, 1H),
10.73 (s, 1H), 7.95 (d, J = 8.6 Hz, 1H), 6.90 (s, 1H), 6.87 (d, J
= 7.9 Hz, 1H), 6.78 (d, J = 7.9 Hz, 1H), 6.38 (d, J = 8.6 Hz,
1H), 6.25 (s, 1H), 4.19 (s, 2H), 3.71 (s, 6H). 13C NMR (126
MHz, DMSO-d6) δ: 202.5, 165.2, 164.8, 148.7, 147.7, 133.7,
127.6, 121.6, 113.4, 112.2, 111.9, 108.4, 102.6, 55.6, 55.6, 43.8.
HRMS (ESI) m/z: calcd for [M + H]+ C16H17O5: 289.1071,
found: 289.1076.

4 . 2 . 1 . 2 . 1 - ( 2 , 4 - D i h y d r o x y ph en y l ) - 2 - ( 3 , 4 , 5 -
trimethoxyphenyl)ethanone (3b). Using 2-(3,4,5-
trimethoxyphenyl)acetic acid (63.3 mg, 0.28 mmol, 1.0
equiv) and resorcinol (17.7 mg, 0.28 mmol, 1.0 equiv), 3b
was obtained as a white solid (89.1 mg, 81% yield). MP = 180
°C; 1H NMR (500 MHz, DMSO-d6) δ 12.5 (s, 1H), 10.7 (s,
1H), 7.96 (d, J = 8.9 Hz, 1H), 6.61 (s, 2H), 6.40 (dd, J = 2.3,
8.9 Hz, 1H), 6.26 (d, J = 2.3 Hz, 1H), 4.21 (s, 2H), 3.73 (s,
6H), 3.63 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ 202.0,
165.0, 164.6, 152.8, 136.2, 133.5, 130.7, 112.2, 108.3, 107.0,
102.5, 60.0, 55.9, 44.3, 39.5. HRMS (ESI) m/z: calcd for [M +
H]+ C17H19O6: 319.1181, found: 319.1209.

4 . 2 . 1 . 3 . 1 - ( 2 , 5 - D i h y d r o x y p h e n y l ) - 2 - ( 3 , 4 -
d imethoxypheny l )e thanone (5 ) . Using 2 -(3 ,4 -
dimethoxyphenyl)acetic acid (50.0 mg, 0.28 mmol, 1.0
equiv) and hydroquinone (17.7 mg, 0.28 mmol, 1.0 equiv),
5 was obtained as a pale yellow solid (83.8 mg, 83% yield). MP
= 125 °C; 1H NMR (500 MHz, DMSO-d6) δ = 9.47 (s, 1H),
8.65 (s, 1H), 6.96 (d, J = 1.9 Hz, 1H), 6.92 (d, J = 8.3 Hz,
1H), 6.89 (dd, J = 8.9, 2.3 Hz 1H), 6.87 (dd, 8.2, 1.9 Hz, 1H),
6.76 (dd, J = 8.9, 2.3 Hz, 1H), 6.57 (s, 1H), 3.81 (s, 2H), 3.75
(s, 3H), 3.74 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ:
170.7, 155.0, 149.8, 148.6, 147.9, 142.7, 126.4, 122.4, 121.5,
115.7, 115.6, 113.2, 111.8, 55.5, 55.5, 39.7. HRMS (ESI) m/z:
calcd [M + H]+ C16H17O5: 304.1180, found: 304.1212.

4.2.2. General Procedure for the Preparation of
Compounds 6a−d. Following the procedure reported by
Zhao et al.,20 hydroxylamine/alkoxyamine hydrochloride (1.2
equiv) and sodium acetate (1.2 equiv) were added to a 10 mL
round-bottom flask containing a solution of 3a (1.0 equiv) in

Table 2. continued

nonsigmoidal means that the compound does not follow the
sigmoidal fit curve; thus, IC50 cannot be determined.
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dry methanol (5 mL). The mixture was stirred for 18 h at 65
°C and then cooled to room temperature. The resulting
solution was treated with water and extracted with ethyl
acetate (3 × 10 mL). The combined organic phases were dried
over magnesium sulfate, and the solvent was removed in vacuo.
The collected solid was purified by column chromatography in
a gradient elution of ethyl acetate/n-hexane (0:100 → 35:65)
to obtain the oxime/alkyloxime analogues.

4 . 2 . 2 . 1 . 1 - ( 2 , 4 - D i h y d r o x y p h e n y l ) - 2 - ( 3 , 4 -
dimethoxyphenyl)ethanone Oxime (6a). Hydroxylamine
hydrochloride (24.3 mg) was used to obtain 6a as a white
solid (74.3 mg, 70% yield). MP = 202 °C; 1H NMR (500
MHz, DMSO-d6) δ 11.79 (s, 1H), 11.45 (s, 1H), 9.72 (s, 1H),
7.32 (d, J = 8.6 Hz, 1H), 6.92 (d, J = 1.9 Hz, 1H), 6.82 (d, J =
8.3 Hz, 1H), 6.73 (dd, J = 8.2, 1.9 Hz, 1H), 6.27 (d, J = 2.5 Hz,
1H), 6.25 (s, 1H), 4.10 (s, 2H), 3.70 (s, 3H), 3.68 (s, 3H). 13C
NMR (126 MHz, DMSO-d6) δ: 159.4, 159.4, 159.3, 148.7,
147.3, 129.5, 129.3, 120.2, 112.6, 112.0, 110.0, 105.9, 103.0,
55.5, 55.4, 29.4. HRMS (ESI) m/z: calcd for [M + H]+
C16H18NO5: 304.1180, found: 304.1212.

4 . 2 . 2 . 2 . 1 - ( 2 , 4 - D i h y d r o x y p h e n y l ) - 2 - ( 3 , 4 -
dimethoxyphenyl)ethanone O-Methyloxime (6b). Methoxy-
amine hydrochloride (35.1 mg) was used to obtain 6b as a pale
yellow solid (94.4 mg, 85% yield). MP = 151 °C; 1H NMR
(500 MHz, DMSO-d6) δ 11.04 (s, 1H), 9.85 (s, 1H), 7.29 (d, J
= 8.4, 1H), 6.86 (s, 1H), 6.82 (d, J = 8.1 Hz, 1H), 6.66 (d, J =
3.2 Hz, 1H), 6.26 (d, J = 7.1 Hz, 2H), 4.07 (s, 2H), 3.95 (s,
3H), 3.69 (s, 3H), 3.67 (s, 3H). 13C NMR (126 MHz, DMSO-
d6) δ: 160.1, 159.9, 159.0, 148.7, 147.3, 130.2, 128.7, 112.3,
111.9, 109.7, 107.2, 103.0, 62.0, 55.5, 55.4, 30.5. HRMS (ESI)
m/z: calcd for [M + H]+ C17H20NO5: 318.1336, found:
318.1340.

4 . 2 . 2 . 3 . 1 - ( 2 , 4 - D i h y d r o x y p h e n y l ) - 2 - ( 3 , 4 -
dimethoxyphenyl)ethanone O-Benzyloxime (6c). O-Benzyl-
hydroxylamine hydrochloride (165.2 mg) was used to obtain
6c as a pale yellow solid (90.9 mg, 66% yield). MP = 140 °C;
1H NMR (500 MHz, DMSO-d6) δ 10.96 (s, 1H), 7.42−7.30
(m, 6H), 6.83 (s, 1H), 6.80 (d, J = 8.3 Hz, 1H), 6.68 (d, J =
8.3 Hz, 1H), 6.28 (m, 2H), 5.20 (s, 2H), 4.11 (s, 2H), 3.67 (s,
3H), 3.61 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ: 160.4,
160.0, 159.1, 148.8, 147.4, 137.4, 130.2, 128.8, 128.6, 128.5,
128.2, 120.4, 112.4, 112.0, 109.7, 107.4, 103.1, 75.8, 55.5, 55.4,
30.6. HRMS (ESI) m/z: calcd for [M + H]+ C23H24NO5:
395.1732, found: 395.1702.

4 .2 .2 . 4 . 2 - ( ( ( 1 - (2 , 4 -D ihydroxypheny l ) -2 - (3 , 4 -
dimethoxyphenyl)ethylidene)amino)oxy)acetic Acid (6d).
O-(Carboxymethyl)hydroxylamine hemihydrochloride (151.8
mg) was used to obtain 6d as a pale yellow solid (96.1 mg,
76% yield). MP = 189 °C; 1H NMR (500 MHz, DMSO-d6) δ
10.7 (s, 1H), 9.93 (s, 1H), 7.27 (d, J = 7.5, 1H), 6.98 (s, 1H),
6.79 (s, 2H), 6.26 (m, 2H), 4.73 (s, 2H), 4.11 (s, 2H), 3.68 (s,
3H), 3.66 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ: 171.4,
160.7, 160.1, 159.0, 149.0, 147.6, 130.6, 129.0, 120.8, 112.6,
112.1, 110.0, 107.6, 103.3, 70.8, 55.7, 31.0. HRMS (ESI) m/z:
calcd for [M + H]+ C18H20NO5: 362.1240, found: 362.1239.

4.2.3. Procedure for the Synthesis of 4-(2-(3,4-Dimethox-
yphenyl)-1-hydroxyethyl)benzene-1,3-diol (7). Sodium bor-
ohydride (53 mg, 1.4 mmol, 4.0 equiv) was added to a solution
of 3a (100 mg, 0.35 mmol, 1.0 equiv) in dry methanol (5 mL)
at 0 °C. The reaction was monitored using TLC. After
completion, the reaction was quenched with saturated
ammonium chloride solution, treated with water, and extracted
with ethyl acetate (3 × 10 mL). The combined organic phase

was dried over magnesium sulfate, and the solvent was
removed in vacuo to afford 7 as a white solid powder (100 mg,
90% yield). No further purification was performed. MP = 262
°C (decomposed); 1H NMR (500 MHz, DMSO-d6) δ 9.24 (s,
1H), 9.13 (s, 1H), 7.00 (d, J = 7.9 Hz, 1H), 6.78 (d, J = 7.7
Hz, 1H), 6.67 (s, 1H), 6.66 (m, 2H), 6.20 (s, 1H), 6.17 (d, J =
8.1, 1H), 4.94 (t, J = 4.9 Hz, 1H), 4.89 (s, 1H), 3.68 (s, 3H),
3.65 (s, 3H), 2.79 (dd, J = 13.7, 8.1, 1H), 2.64 (dd, J = 7.9, 3.0
Hz, 1H). 13C NMR (126 MHz, DMSO-d6) δ: 157.1, 155.1,
148.4, 147.3, 132.7, 127.8, 122.8, 121.8, 113.7, 111.9, 106.4,
102.6, 69.1, 55.9, 55.7, 44.1. HRMS (ESI) m/z: calcd for [M −
OH]+ C16H17NO4: 273.1132, found: 273.1125.

4.2.4. General Procedure for the Preparation of
Compounds 8a−f. O-Alkylated derivatives 8a−f were
prepared following the methylation procedure reported by
Yao et al.11h The alkyl halide (1.0 equiv) and potassium
carbonate (1 equiv) were added to a 10 mL round-bottom
flask containing a solution of 3a (100 mg, 0.35 mmol, 1.0
equiv) in dry acetone (5 mL), and the mixture was heated
under reflux for 12 h. The mixture was then allowed to cool to
room temperature. The solvent was removed under reduced
pressure, and the residue was treated with water and extracted
with ethyl acetate (3 × 10 mL). The combined organic phase
was dried over magnesium sulfate, and the solvent was
removed in vacuo. The crude residue was purified by column
chromatography in a gradient elution of ethyl acetate/n-hexane
(0:100 → 25:75) to obtain the mono-O-alkyl derivatives.

4.2.4.1. 2-(3,4-Dimethoxyphenyl)-1-(4-methoxy-2-
hydroxyphenyl)ethenone (8a). Methyl iodide (21.8 μL) was
used to obtain 8a as a white solid (26.4 mg, 25% yield). MP =
121 °C; 1H NMR (500 MHz, DMSO-d6) δ 12.59 (s, 1H), 8.02
(d, J = 9.0 Hz, 1H), 6.90 (d, J = 1.9 Hz, 1H), 6.87 (d, J = 8.3
Hz, 1H), 6.78 (dd, J = 1.8, 8.2 Hz, 1H), 6.53 (dd, J = 2.5, 9.0
Hz, 2H), 6.47 (d, J = 2.5 Hz, 1H), 4.24 (s, 2H), 3.81 (s, 3H),
3.71 (s, 3H), 3.71 (s, 3H). 13C NMR δ (126 MHz, DMSO-d6)
δ 202.8, 165.7, 164.5, 148.6, 147.7, 133.1, 127.3, 121.6, 113.4,
113.1, 111.9, 109.6, 107.4, 100.9, 55.8, 55.1, 55.48, 43.9.
HRMS (ESI) m/z: calcd for [M + H]+ C18H19O5: 303.1232,
found: 303.1257.

4.2.4.2. 2-(3,4-Dimethoxyphenyl)-1-(4-ethoxy-2-
hydroxyphenyl)ethenone (8b). Ethyl iodide (28.1 μL) was
used to obtain 8b as a white solid (96.3 mg, 87% yield). MP =
96 °C; 1H NMR (500 MHz, DMSO-d6) δ 12.60 (s, 1H), 8.01
(d, J = 9.0 Hz, 1H), 6.91 (d, J = 1.9 Hz, 1H), 6.87 (d, J = 8.3
Hz, 1H), 6.79 (dd, J = 1.8, 6.4 Hz, 1H), 6.52 (dd, J = 2.5, 6.5
Hz, 1H), 6.45 (d, J = 2.0 Hz, 1H), 4.24 (s, 2H), 4.08 (q, J = 7.0
Hz, 2H), 3.72 (s, 3H), 3.71 (s, 3H), 1.32 (t, J = 7.0 Hz, 3H).
13C NMR (126 MHz, DMSO-d6) δ: 202.7, 165.0, 164.5, 148.6,
147.6, 133.1, 127.3, 121.5, 113.4, 112.9, 111.8, 107.6, 101.3,
63.8, 55.5, 55.4, 43.9, 14.4. HRMS (ESI) m/z: calcd for [M +
H]+ C18H21O5: 317.1384, found: 317.1338.

4.2.4.3. 2-(3,4-Dimethoxyphenyl)-1-(2-hydroxy-4-
propoxyphenyl)ethenone (8c). Propyl iodide (34.0 μL) was
used to obtain 8c as a white solid (93.7 mg, 81% yield). MP =
111 °C; 1H NMR (500 MHz, DMSO-d6) δ 12.54 (s, 1H), 8.00
(d, J = 9.1 Hz, 1H), 6.92 (d, J = 1.9 Hz, 1H), 6.87 (d, J = 8.3
Hz, 1H), 6.80 (dd, J = 1.8, 6.4 Hz, 1H), 6.52 (dd, J = 2.5, 6.5
Hz, 1H), 6.45 (d, J = 2.5 Hz, 1H), 4.23 (s, 2H), 3.96 (t, J = 6.6
Hz, 2H), 3.73 (s, 3H), 3.71 (s, 3H), 1.70 (m, 2H), 0.95 (t, J =
7.5 Hz, 3H). 13C NMR (126 MHz, DMSO-d6) δ 202.7, 165.2,
164.6, 148.7, 147.7, 133.1, 129.1, 127.3, 121.5, 113.4, 111.8,
107.6, 101.3, 69.5, 55.4, 43.9, 21.8, 10.2. HRMS (ESI) m/z:
calcd for [M + H]+ C19H23NO5: 331.1540, found: 331.1545.
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4.2.4.4. 1-(4-(Benzyloxy)-2-hydroxyphenyl)-2-(3,4-
dimethoxyphenyl)ethenone (8d). Benzyl bromide (41.6 μL)
was used to obtain 8d as a white solid (107.3 mg, 81% yield).
MP = 106 °C; 1H NMR (500 MHz, DMSO-d6) δ 12.60 (s,
1H), 8.03 (d, J = 9.0 Hz, 1H), 7.44 (d, J = 7.7 Hz, 2H), 7.40 (t,
J = 7.3 Hz, 2H), 7.34 (t, J = 7.3 Hz, 1H), 6.92 (s, 1H), 6.87 (d,
J = 8.2 Hz, 1H), 6.80 (d, J = 8.2 Hz, 1H), 6.61 (d, J = 9.0 Hz,
1H), 6.57 (s, 1H), 5.18 (s, 2H), 4.24 (s, 2H), 3.72 (s, 3H),
3.71 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ 202.8, 164.7,
164.4, 148.6, 147.7, 136.3, 133.2, 128.5, 128.1, 127.8, 127.3,
121.6, 113.4, 113.2, 111.9, 107.9, 101.9, 69.7, 55.5, 55.5, 43.9.
HRMS (ESI) m/z: calcd for [M + H]+ C23H23NO5: 379.1540,
found: 379.1552.

4.2.4.5. 2-(3,4-Bimethoxyphenyl)-1-(4-((4-fluorobenzyl)-
oxy)-2-hydroxyphenyl)ethanone (8e). 4-Fluorobenzyl bro-
mide (40.7 μL) was used to obtain 8e as a pale yellow solid
(108.2 mg, 78% yield). MP = 88 °C; 1H NMR (500 MHz,
DMSO-d6) δ 12.51 (br. s, 1H), 7.97 (d, J = 9.1 Hz, 1H), 7.45
(dt, J = 3.1, 6.4 Hz, 2H), 7.18 (dt, J = 2.5, 9.1 Hz, 2H), 6.84
(m, 2H), 6.75 (dd, J = 2.1, 8.2 Hz, 1H), 6.57 (dd, J = 2.5, 9.1
Hz, 1H), 6.49 (d, J = 2.6 Hz, 1H), 5.11 (s, 2H), 4.18 (s, 2H),
3.67 (s, 6H). 13C NMR (126 MHz, DMSO-d6) δ 203.5, 165.1,
164.8, 149.0, 148.1, 133.7, 132.9, 130.7, 130.6, 127.2, 122.1,
116.0, 115.8, 113.7, 113.7, 112.3, 108.5, 102.4, 69.5, 56.0, 56.0,
44.4. HRMS (ESI) m/z: calcd for [M + H]+ C23H22FO5:
397.1451, found: 397.1497.

4.2.4.6. 2-(3,4-Dimethoxyphenyl)-1-(2-hydroxy-4-((4-
nitrobenzyl)oxy)phenyl)ethanone (8f). 4-Nitrobenzyl bro-
mide (41.6 μL) was used to obtain 8f as a pale yellow solid
(112.6 mg, 76% yield). MP = 148 °C; 1H NMR (500 MHz,
DMSO-d6) δ 12.6 (s, 1H), 8.26 (d, J = 8.6 Hz, 1H), 8.05 (d, J
= 9.0 Hz, 2H), 7.71 (d, J = 8.6 Hz, 2H), 6.91 (d, J = 1.6 Hz,
1H), 6.87 (d, J = 8.2 Hz, 1H), 6.79 (dd, J = 1.6, 8.2 Hz, 1H),
6.64 (dd, J = 2.4, 9.0 Hz, 1H), 6.58 (d, J = 2.4 Hz, 1H), 5.37
(s, 2H), 4.25 (s, 2H), 3.71 (s, 3H), 3.71 (s, 3H). 13C NMR
(126 MHz, DMSO-d6) δ 202.9, 164.3, 164.2, 144.2, 133.3,
128.3, 127.7, 123.7, 121.5, 113.5, 113.4, 111.8, 111.8, 109.6,
107.8, 102.0, 68.4, 55.5, 44.0. HRMS (ESI) m/z: calcd for [M
+ H]+ C23H22NO7: 424.1396, found: 424.1374.

4.2.5. Procedure for the Synthesis of 4-(2-(3,4-
Dimethoxyphenyl)acetyl)-3-hydroxyphenyl Acetate (9). Fol-
lowing the acylation procedure reported by Yao et al.,11h acetic
anhydride (41.6 μL, 0.35 mmol, 1.0 equiv) and triethylamine
(41.6 μL, 0.35 mmol, 1.0 equiv) were added to a solution of 3a
(100 mg, 0.35 mmol, 1.0 equiv) in dry DCM (5 mL) at 0 °C.
A catalytic amount of DMAP was added and stirred for 15 min
and then at room temperature for 2 h. After the reaction was
completed, saturated sodium bicarbonate solution was added
to quench the reaction, treated with water, and extracted with
ethyl acetate (3 × 10 mL). The combined organic phase was
dried over magnesium sulfate, and the solvent was removed in
vacuo. The crude residue was purified by column chromatog-
raphy with a gradient elution of ethyl acetate/n-hexane (0:100
→ 25:65) to obtain 9 as a white solid (85.6 mg, 74% yield).
MP = 106 °C; 1H NMR (500 MHz, DMSO-d6) δ 12.1 (s, 1H),
8.08 (d, J = 8.6 Hz, 1H), 6.91 (d, J = 1.8 Hz, 1H), 6.88 (d, J =
8.3 Hz, 1H), 6.79 (dd, J = 2.0, 8.2 Hz, 1H), 6.77 (d, J = 2.1 Hz,
1H), 6.75 (dd, J = 2.3, 8.6 Hz, 1H), 4.33 (s, 2H), 3.72 (s, 6H),
2.27 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ: 203.0, 168.5,
162.2, 156.0, 148.6, 147.7, 132.6, 126.9, 121.7, 118.1, 113.5,
113.3, 111.8, 110.7, 55.5, 55.4, 45.0, 20.9. HRMS (ESI) m/z:
calcd for [M + H]+ C18H19O6: 332.1249, found: 332.1220.

4.3. MTT Assay. MTT assay, a colorimetric assay used to
analyze the metabolic activity of a cell after exposure to a
compound, was used to determine the inhibitory activity of the
synthesized compounds against A549 lung cancer, HCT116
human colorectal carcinoma cells, and MCF-7 breast cancer
cells. In this assay, doxorubicin served as the positive control,
while dimethyl sulfoxide (DMSO) served as the negative
control. Adapting the procedure of Mosmann,17 the cells were
seeded in a 96-well plate with a seeding density of 4 or 6 × 103
cells/mL and were incubated at 37 °C for 24 h and 5% CO2.
The samples were then prepared via 8-fold dilution starting
from 100 μg/mL down to 0.78 μg/mL. After incubation, each
well was treated with the diluted samples and was again
incubated for 72 h in a humidified atmosphere in 5% CO2 at
37 °C. The spent media was then removed and 10 μL of 5 mg/
mL MTT dye in phosphate-buffered solution was added to
each well. The plate was incubated again in 5% CO2 at 37 °C
for 4 h, and 10 μL of DMSO was added to the culture well to
solubilize the formazan product. After gentle shaking, the
absorbance of each well was measured at 570 nm. The half-
maximal inhibitory concentration or IC50 values were
computed by employing a nonlinear regression curve fit on
the computed percent inhibition per log concentration of the
sample. Compounds with an IC50 of less than or equal to 10
μM were considered active.
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