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Objectives: The focus of this study is the classification accuracy of
the Montreal Cognitive Assessment (MoCA) for the detection of
cognitive impairment (CI). Classification accuracy can be low when
the prevalence of CI is either high or low in a clinical sample. A
more robust result can be expected when avoiding the range of test
scores within which most classification errors are expected, with
adequate predictive values for more clinical settings.

Methods: The classification methods have been applied to the
MoCA data of 5019 patients in the Uniform Data Set of the Uni-
versity of Washington’s National Alzheimer’s Coordinating Center,
to which 30 Alzheimer Disease Centers (ADCs) contributed.

Results: The ADCs show sample prevalence of CI varying from 0.22 to
0.87. Applying an optimal cutoff score of 23, the MoCA showed for
only 3 of 30 ADCs both a positive predictive value (PPV) and a negative
predictive value (NPV) ≥0.8, and in 18 cases, a PPV ≥0.8 and for 13
an NPV ≥0.8. Overall, the test scores between 22 and 25 have low odds

of true against false decisions of 1.14 and contains 55.3% of all errors
when applying the optimal dichotomous cut-point. Excluding the range
22 to 25 offers higher classification accuracies for the samples of the
individual ADCs. Sixteen of 30 ADCs showed both NPV and PPV
≥0.8, 25 show a PPV ≥0.8, and 21 show an NPV ≥0.8.

Conclusion: In comparison to a dichotomous threshold, considering
the most error-prone test scores as uncertain enables a classification
that offers adequate classification accuracies in a larger number of
clinical settings.
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INTRODUCTION AND OBJECTIVE
In general, prevalence is a difficult issue to handle when

screening patients for cognitive impairment (CI). If the preva-
lence is low, then it is easy to incorrectly classify patients without
CI and when the prevalence is high, it is easy to misclassify the
patients who have CI.

For most tests, a single cutoff score is proposed. In
most cases, such a dichotomous cutoff score is based on the
quality indices sensitivity and specificity. These indices
provide information about the proportion of correctly
diagnosed patients when given knowledge about the true
status of the patient. Obviously, this latter piece of infor-
mation is not available when screening a new patient.1

Although sensitivity and specificity are useful to indicate the
accuracy of the test, both indicators cannot be used for the
interpretation of the results of individual patients whose true
status is unknown. Predictive values give the answers
required when screening: they provide probabilities for the
presence of the disease, given the obtained test result.1 Pre-
dictive values consequently provide information about the
accuracy of the classification. A positive predictive value
(PPV) or a negative predictive value (NPV) provides a clear
interpretation for the individual patient: it indicates the
probability of correct classification, given the test result.

The independence of prevalence is considered an
important advantage of sensitivity and specificity: when
samples with and without the targeted disease are randomly
drawn from the same population, there is no relation
between sensitivity and specificity and sample prevalence.
For this reason, the accuracy indices sensitivity and specif-
icity are used for the determination of a cutoff score. In the
case of the Montreal Cognitive Assessment (MoCA),
Nasreddine et al2 chose for the balance between sensitivity
and specificity for the determination of the cutoff score,
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resulting in a threshold of 25, with scores of 25 and lower
used for the identification of possible CI. In their validation
study, the sensitivity associated with that threshold was 0.9
for the correct identification of 94 patients diagnosed with
Mild Cognitive Impairment (MCI), whereas specificity was
0.87 for 90 healthy elderly controls with no CI.

Due to their dependence on prevalence, predictive
values are seldom considered as indicators of test accuracy.
They are, however, valid indicators of the proportion of
correctly classified patients, given the test result.1 Com-
monly, when applying a single cutoff score, the PPV of the
MoCA indicates the proportion correctly classified patients
with CI, and NPV the proportion correctly classified
patients without CI. The values of the NPV and PPV can
differ considerably with prevalence.

Although the MoCA is generally considered one of the
best instruments for screening patients for possible CI,3–5

there is a discussion about the proposed cutoff score. Fur-
thermore, this cutoff score is suboptimal in comparison with
the optimal cutoff score that optimizes the Youden index.6,7

The optimized Youden index provides a cutoff score that
maximizes the sum of sensitivity and specificity and mini-
mizes the total amount of classification errors. Several sta-
tisticians have pointed to the fact that different clinical
samples can hardly be considered as taken from a single
population.8,9 When the clinical samples are taken from
populations with a different mix of patients, that is, having a
different spectrum bias,10 different values for sensitivity and
specificity can be expected. In that case, it can be expected
that the values of sensitivity and specificity are not inde-
pendent of prevalence.8,9

Different studies have led to different proposed cutoff
scores. Freitas et al3 proposed a cutoff score of 17 for the
optimal distinction of patients with and without Alzheimer
disease. Damian et al6 proposed an optimal threshold of 26 for
screening in primary care, but for testing in memory disorders
clinics, a lower threshold was proposed. Davis et al7 found that
in 4 studies that used the recommended threshold score of 26
or over for the indication of normal cognition (NC), the
MoCA had high sensitivity of ≥0.94, but low specificity of
≤ 0.60. They suggested a threshold >26 for optimal diagnostic
accuracy in dementia to improve the specificity of the test.

Dealing with the differences in clinical samples is a com-
plicated issue.8,9 Proposals to provide detailed information on
the clinical and demographic characteristics of the study sample
and inclusion and exclusion criteria9,11,12 are most sensible. The
downside of this approach is that when clinical centers must
decide whether the results of a specific study are relevant for
their practice, they must compare their selection of patients with
the selection made in the study. Such a comparison can be
difficult to make, as selections for study purposes can be very
different from the selections that occur in practice.

In this study, the data of 5019 patients are used. Data have
been contributed by 30 Alzheimer Disease Centers (ADCs) to
the Uniform Data Set (UDS), collected by the University of
Washington’s National Alzheimer’s Coordinating Center.13,14

The case-mix of patients with and without CI who were referred
to these centers is highly variable, which allows us to compare
the accuracies of the MoCA as an indicator of the presence of
CI for these clinical samples. First, the usefulness of the appli-
cation of a single cutoff score is evaluated for each of the 30
ADCs. Second, a 3-way classification is proposed, which uses a
class of uncertain test scores to indicate the group of patients for
whom the presence of CI is the most difficult to determine. The
method is described in the Methods section, whereas details of

this method are described in Supplemental File A (Supple-
mental Digital Content 1, http://links.lww.com/WAD/A257).
Because this class of uncertain test scores is the most prone to
error, it contains a surplus of errors. The 3-way classification is
expected to allow better classification accuracy as it allows for
avoiding this abundance of errors. The 3-way classification is
therefore expected to be applicable in a larger number of clinical
centers compared with the more commonly used dichotomous
classification.

METHODS

Data Set
The data used are part of the UDS, collected by the

University of Washington’s National Alzheimer’s Coordinating
Center (NACC), and have been described extensively.13,14 The
MoCA data used in this study have been collected in the period
fromMarch 2015 to August 2018. The start date of version 3 of
the UDS, which includes the MoCA, was March 2015. The
first assessment of each patient has been used. Participants
come from 30 American ADCs, who contributed the MoCA
data of a total of 5531 patients. Consent is obtained at each
individual ADC. It is required that all eligible ADC research
participants be evaluated with the UDS protocol. The UDS is
administered as a standard instrument and complete data col-
lection is expected for each patient annually.15 Some of the
ADCs contributed a relatively small number of participants.
One of the ADC was funded only recently. Other ADCs have
enrolled a few new participants since version 3 of the UDS was
implemented.

The patient’s cognitive status is determined at every visit:
NC, cognitively impaired, but not fulfilling the criteria for
MCI, MCI, and Dementia. The global score of the Clinical
Dementia Rating (CDR) Dementia Staging Instrument16,17 is
calculated using the defined scoring algorithm. This score is
useful for characterizing a patient’s level of CI/dementia, with
score 0 indicating NC functioning.

Gold Standard
The patients with and without CI are defined with their

cognitive status and the global CDR at their first visit to the
ADC. Following Weintraub et al,18 the norm group is defined
with a cognitive status of NC and a global CDR score of 0,
whereas the other patients are defined as having minor or seri-
ous CI (a cognitive status other than NC and CDR>0).
Patients who have received an ambiguous assessment (CDR>0
and a cognitive status of NC, or a CDR of 0, and a cognitive
status other than NC) have been excluded (n=512). Following
Weintraub et al,18 participants in the norm group who achieved
low scores on the MoCA were not removed from the analyses
as the patient’s status was not defined by the test. This resulted
in a healthy norm group of size 2379 and a group with a varying
level of CI of 2640. The prevalence of CI is 0.53.

Optimal Cutoff Score and Uncertain Test Scores
The optimal cutoff score that optimizes the sum of

sensitivity and specificity19 and minimizes the sum of the
errors is 23. Uncertain test scores are defined as a range of
test scores that have about equal densities in the 2 dis-
tributions of patients with and without the targeted disease.
How much uncertainty can be allowed is open for discussion.
This range of test scores is typically found around the point
of intersection of the 2 distributions of patients with and
without the targeted impairment.20–22 The point of inter-
section is equal to the Youden threshold.23 Standardized
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predictive values24,25 are most suitable for the determination
of uncertain test scores. In this paper, standardized NPV or
standardized PPV <0.667 (odds of true against false decision
probabilities lower than two to one) are used for defining test
scores that are too uncertain for making a classification
concerning the presence of CI. This led to the range of test
scores 22 to 25. As this uncertain interval is related to the
Youden threshold, this optimal dichotomous threshold is
used for comparison. Other dichotomous thresholds that do
not minimize the sum of errors lead to higher rates of the
sum of errors. Details of the methods to obtain these cutoff
scores are provided in Supplemental File A (Supplemental
Digital Content 1, http://links.lww.com/WAD/A257).

Statistical Methods
PPV and NPV are used for evaluating the obtained

classification accuracies. Although predictive values are
widely used, the details of the methods are relevant and
described in Supplemental File A (Supplemental Digital
Content 1, http://links.lww.com/WAD/A257). Due to the
classification in > 2 classes, there are minor differences with
the common dichotomous classification. Also, for the test
accuracies, the values of sensitivity and specificity are pre-
sented. An implementation of the statistical methods will be
made available as the function RPV in the package
Uncertain Interval20 for the R statistical language.26

RESULTS
The mixed densities of the 2 distributions of all patients

with and without CI are shown in Figure 1. The patients
with CI form the left distribution (blanc) and the norm
group form the distribution to the right (black). The area
under the curve of the receiver operating characteristics is
0.89. Applying the cutoff score of 25 and lower for the
positive classification of CI results in sensitivity= 0.89,
specificity= 0.67, NPV= 0.85, and PPV= 0.75. The optimal
threshold that maximizes the Youden Index is test score 23,
with test scores ≤ 23 indicating the presence of CI. This
results in sensitivity= 0.77; specificity= 0.86; NPV= 0.77; and PPV= 0.86. Figure 1 shows how several lower scores

(almost) uniquely define the presence of CI, whereas the
higher scores always represent a mix of patients with and
without CI. As a result, Figure 1 shows that when using the
MoCA, the correct classification of patients with CI is easier
than correct classification of patients without CI.

The graphics of the mixed frequencies and densities of
all 30 individual ADCs are displayed in Supplemental File B
(Supplemental Digital Content 2, http://links.lww.com/
WAD/A258). These graphs show that the MoCA results
of the ADCs can have deviations, such as an unexpected
missing score and truncated test scores. These aberrations
occur particularly when the number of observed patients is
low. The plots also show the individual optimal thresholds
(using the optimized Youden index) for each of the ADCs.
These differ considerably, ranging from 19 to 26.

Table 1 shows the results for each of the 30 ADCs
when the optimal cutoff score (maximized Youden index) of
23 is applied, with scores 23 and lower to indicate CI.

The prevalence of CI varies widely from 0.216 to 0.87.
Table 1 shows that the test accuracies specificity and sensitivity
differ considerably, from 0.60 to 1.0 and from 0.45 to 0.91,
respectively. The mean sensitivity is 0.74 and the mean specificity
is 0.87. There is some correlation between prevalence and spe-
cificity (Pearson correlation r=0.16) and between prevalence
and sensitivity (r=−0.10). Relatively low and high values for
sensitivity are found for ADCs with both low and high
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FIGURE 1. Distributions of 5019 patients with and without cog-
nitive impairment. MoCA indicates the Montreal Cognitive
Assessment.

TABLE 1. MoCA Test and Classification Accuracies for 30
Different ADCs When Applying the Optimal Threshold of 23

Prevalence N0 N1 Sp Se NPV PPV

1 0.216 91 25 0.912 0.76 0.933 0.704
2 0.223 94 27 0.830 0.741 0.918 0.556
3 0.283 198 78 0.909 0.91 0.963 0.798
4 0.293 256 106 0.879 0.774 0.904 0.726
5 0.298 139 59 0.921 0.712 0.883 0.792
6 0.325 129 62 0.899 0.806 0.906 0.794
7 0.330 77 38 0.844 0.711 0.855 0.692
8 0.364 49 28 1.000 0.464 0.766 1.000
9 0.369 123 72 0.675 0.889 0.912 0.615
10 0.371 107 63 0.897 0.794 0.881 0.820
11 0.373 151 90 0.775 0.744 0.836 0.663
12 0.375 70 42 0.914 0.500 0.753 0.778
13 0.429 20 15 0.600 0.867 0.857 0.619
14 0.450 105 86 0.762 0.756 0.792 0.722
15 0.465 76 66 0.829 0.909 0.913 0.822
16 0.478 93 85 0.903 0.812 0.840 0.885
17 0.543 37 44 0.919 0.500 0.607 0.880
18 0.561 43 55 1.000 0.691 0.717 1.000
19 0.620 68 111 0.882 0.847 0.779 0.922
20 0.620 30 49 0.900 0.755 0.692 0.925
21 0.622 96 158 0.740 0.816 0.710 0.838
22 0.635 38 66 0.895 0.773 0.694 0.927
23 0.733 40 110 0.950 0.791 0.623 0.978
24 0.737 31 87 0.903 0.701 0.519 0.953
25 0.762 35 112 0.771 0.902 0.711 0.927
26 0.765 43 140 0.907 0.586 0.402 0.953
27 0.821 63 288 0.889 0.781 0.471 0.970
28 0.825 7 33 1.000 0.455 0.280 1.000
29 0.849 21 118 0.810 0.669 0.304 0.952
30 0.870 49 327 0.959 0.847 0.485 0.993

N0, N1: sizes of the samples of patients without and with CI.
ADCs indicates Alzheimer Disease Centers; CI, cognitive impairment;

MoCA, Montreal Cognitive Assessment; NPV, negative predictive value;
PPV, positive predictive value; Se, sensitivity; Sp, specificity.
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prevalence and the same can be observed for specificity.
Although there is no high correlation with prevalence, the values
for sensitivity and specificity of the individual ADCs clearly
differ from the values obtained in the overall file and especially
the values for sensitivity can be very low (numbers 8, 12, 17, 18,
26, 28, and 29 show undesirable low sensitivity<0.7, whereas 9
and 13 show specificity<0.7). Leaving out these 10 ADCs
reduces the correlations with prevalence slightly to −0.09 (sen-
sitivity) and 0.06 (specificity). Using a higher threshold of 25
changes in this situation: a higher threshold increases sensitivity
(number 8 lower 0.7) and lowers specificity (2, 4, 7, 9, 11, 13, 14,
15, 16, 19, 21, 24, and 29<0.7). The use of such a suboptimal
threshold also increases the total number of misclassifications
overall.

The obtained NPV for a negative classification
(scores> 23) varies considerably from 0.28 to 0.96, whereas
PPV for a positive classification varies from 0.55 to 1.0.
There is a strong correlation with prevalence. High values
are found for NPV when the prevalence is low and low
values when the prevalence is high (Pearson r=−0.89). The
reverse is true for PPV (r= 0.77).

When classifying with the MoCA using this single
threshold, the test qualities (sensitivity and specificity), but
especially the values of the correct positive and negative classi-
fications (NPV and PPV), vary between different ADCs. If a
predictive value of 0.8 is considered as a lower limit for positive
or negative classification, 13 of 30 ADCs show an adequate
negative predictive value and 18 show a sufficient positive pre-
dictive value, whereas only 3 ADCs show both a positive and a
negative predictive value ≥0.8 (10, 15, and 16).

When a dichotomous cutoff score of 25 is used, the results
are comparable (not shown). Unsurprisingly, values are generally
higher for sensitivity (mean 0.88) and lower for specificity (mean
0.69) compared with the lower optimal cutoff score. Twenty-one
of the 30 ADCs shows an NPV ≥0.8 and 13 a PPV ≥0.8, but
only 4 of the ADCs have both NPV and PPV ≥0.8.

When applying the Uncertain Interval method (Sup-
plemental File A, Supplemental Digital Content 1, http://
links.lww.com/WAD/A257) with odds of a correct classi-
fication as 2 against 1, the minimum level of both
standardized NPV and standardized PPV is 0.667. The
obtained results for the total sample are shown in Table 2.
The row “Correct classifications” represents the common
NPV and PPV for the negative and positive classifications
(NPV= 0.85; PPV= 0.922).

The scores in the range 22 to 25 lead to odds of 1.14 (true
positive over true negative). Such a value close to 1 indicates that
it is difficult to base classifications on that range of scores.

Although 27.5% of all test scores are found in that range, 55.3%
of all errors are in that range when the optimal cutoff score of 23
is applied. When using another, non-optimal dichotomous cutoff
score, this percentage of errors will be even larger. For instance,
when using cutoff score 25 (score 25 and less indicate CI), 60.6%
of all errors are found in the range 22 to 25.

Positive classifications on the basis of scores 0 to 21 are
far less error prone, with realized odds of 11.8, with a 92.2%
rate of correct classifications. Making correct negative
classifications on the basis of the MoCA scores 26 to 30 is
slightly more difficult than making positive classifications
with an 85% rate of correct classifications. Because the same
range of scores is used for negative classifications, as pro-
posed by Nasreddine et al2 (test result> 25 indicate CI),
accuracy results are equal: specificity is 0.671 and NPV is
0.85. In comparison with the dichotomous cutoff score of
25, the rate of positive classifications when the true status is
positive (sensitivity= 0.616) is lower. The reason for this is
that for the calculation, uncertain scores are considered as
unambiguous errors which consideration is hardly realistic.

Table 3 shows the accuracy results for the 30 ADCs when
the range of uncertain test scores is not used for an explicit
positive or negative classification. In comparison with Table 1,
the values for both NPV and PPV are higher (mean NPV=
0.82; mean PPV=0.90). The results for specificity and sensi-
tivity in Table 3 are relatively lower compared with Table 1.
The reason for this is that for their calculation, the uncertain
test scores are considered as unambiguous errors. The indices

TABLE 2. Obtained Results, Using Standardized Predictive Values
and Trichotomization With Classification Odds of 2

Negative
Classifications Uncertain

Positive
Classifications

Scores 26-30 22-25 0-21
N 1877 1379 1763
Total sample 0.374 0.275 0.351
Correct

classifications
0.850 — 0.922

True negative
status

0.671 0.271 0.058

True positive
status

0.106 0.278 0.616

Realized odds 5.7 1.14 11.8

TABLE 3. Realized Results for Trichotomization, With Test Scores
22 to 25 Considered as Uncertain

Prevalence N0 N1 Sp Se NPV PPV

1 0.216 91 25 0.725 0.600 0.957 0.938
2 0.223 94 27 0.628 0.444 0.967 0.545
3 0.283 198 78 0.717 0.692 0.993 0.885
4 0.293 256 106 0.656 0.623 0.908 0.868
5 0.298 139 59 0.748 0.508 0.929 0.811
6 0.325 129 62 0.721 0.581 0.912 0.923
7 0.330 77 38 0.636 0.632 0.891 0.857
8 0.364 49 28 0.980 0.286 0.814 1.000
9 0.369 123 72 0.504 0.694 0.984 0.735
10 0.371 107 63 0.701 0.603 0.938 0.927
11 0.373 151 90 0.543 0.589 0.891 0.736
12 0.375 70 42 0.729 0.357 0.836 0.882
13 0.429 20 15 0.400 0.867 1.000 0.684
14 0.450 105 86 0.505 0.570 0.898 0.790
15 0.465 76 66 0.553 0.667 0.933 0.936
16 0.478 93 85 0.570 0.659 0.898 0.949
17 0.543 37 44 0.838 0.341 0.738 1.000
18 0.561 43 55 0.884 0.582 0.826 1.000
19 0.620 68 111 0.574 0.766 0.907 0.955
20 0.620 30 49 0.767 0.653 0.767 0.970
21 0.622 96 158 0.615 0.715 0.819 0.904
22 0.635 38 66 0.737 0.712 0.824 1.000
23 0.733 40 110 0.800 0.645 0.744 0.986
24 0.737 31 87 0.613 0.494 0.633 0.977
25 0.762 35 112 0.743 0.741 0.963 0.954
26 0.765 43 140 0.767 0.436 0.541 0.968
27 0.821 63 288 0.873 0.597 0.611 0.983
28 0.825 7 33 0.857 0.364 0.500 1.000
29 0.849 21 118 0.429 0.508 0.346 0.984
30 0.870 49 327 0.878 0.722 0.632 1.000

N0, N1: sizes of the samples of patients without and with CI.
NPV indicates negative predictive value; PPV, positive predictive value;

Se, sensitivity; Sp, specificity.
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sensitivity and specificity are meant for a dichotomous classi-
fication and are cumbersome to apply when using a 3-way
classification.

If a lower limit of 0.8 is considered sufficient for positive
and negative classifications, the NPV for the range of test
scores 26 and higher are for 21 ADCs ≥0.8. For ADC 1 to 16,
18, 19, 21, 22, and 25, the NPV is ≥ 0.8. A PPV ≥0.8 is found
for 25 of the ADCs, with the exception of 2, 9, 11, 13, and 14.
Sixteen ADCs show ≥0.8 for both NPV and PPV values.

The Pearson correlations between prevalence and NPV
and PPV are 0.85 and 0.69, respectively. Although their
absolute values are slightly less than when applying a single
cutoff score, they are still considerable.

CONCLUSIONS AND DISCUSSION
When the handling of uncertain or inconclusive test results

is considered as an important subject that is not adequately
addressed by standard dichotomization approaches, then the
adaptation to a middle range of uncertain test scores offers
several advantages. The lower and upper ranges of test scores
can lead more quickly to the line of action required for patients
with and without CI. The middle range of uncertain test
scores should lead to more restraint. The trichotomization with
2 thresholds is simple to apply and provides therefore a more
cautious procedure than a simple yes/no dichotomous
classification.

It should be clear that it is not intended to abandon
patients with uncertain test scores in any way. Uncertain test
scores should lead to more cautious action. Other tests
should be applied, when these other tests can reduce the
considerable uncertainty about the true status of the patient.
Another possibility is awaiting the further developments of
the patient by either active surveillance or watchful waiting.
Recognizing the uncertainty of the classification and
awaiting further developments is considered best practice in
some fields27,28 and it may prevent overdiagnosis.

Various methods that have been proposed earlier for the
determination of uncertain test scores29–33 have not found broad
acceptance. The proposed method for the determination of the
trichotomous thresholds has as an advantage over earlier pro-
posals that it is clearly related to the dichotomous optimal
threshold,19 which is widely accepted. Although the problem of
comparing tests and their distributions can be approached in
many different ways, the use of the well-known predictive values
may ease the adaptation to the proposed method. Also, the
availability of open-source software as an R package20,26 may be
an attractive feature for test developers. Simulation results21,22

have shown that a range around the dichotomous optimal
threshold identifies the most error prone test scores more effi-
ciently than alternative methods for trichotomization.

The 30 ADCs showed a wide variety in the mix of their
patients with CI, with prevalence ranging from 0.216 to
0.87. The test accuracy of the MoCA seems to be adequate
for the majority of ADCs, largely independent of whether
the prevalence of CI is high or low. However, there are a few
ADCs where the MoCA shows insufficient test accuracies.
This deserves further attention.

As is expected, the accuracies of the classifications are
greatly dependent on the prevalence and can offer insufficient
values for negative classifications of CI when prevalence is
high and insufficient values for positive classifications when
prevalence is low. Although the MoCA is one of the best
screening instruments available, the application of a single
cutoff score is a rather coarse approach for ADCs that vary

considerably in the mix of patients they receive with and
without CI. In most cases, at least one of the predictive values
becomes insufficiently high, causing the number of mis-
classified patients to become too high.

The results of this study demonstrate the usefulness of a
method to detect the most error-prone range of test scores.
Avoiding these uncertain test scores allows for a more robust
classification that can be applied in a considerably larger
number of ADCs compared with a dichotomous classification.
It results in adequate classification accuracies for most of the
clinical centers, although it only slightly reduces the effects of
prevalence on the obtained predictive values.

The best reason for the identification of the range of
uncertain test scores is that patients with a test score within
that range are about equally likely to be classified with or
without CI. In the data set, 27.5% of all patients received
such an uncertain test score, but when the optimal
cutoff score is applied, 55.3% of all erroneous classifications
would have been found in this range. Clearly, this is the
most error-prone range of test scores. Further testing or
awaiting further developments can increase the certainty of
the presence or absence of CI. The strategy to avoid these
classification errors results in better values for the test’s PPV
and NPV compared with the application of the dichotomous
optimal cut-point of 23. Simply changing this single cut-
point to a higher value improves the sensitivity, but lowers
the specificity of the test and does not decrease the number
of classification errors.

This study considers the MoCA as the start of a deci-
sion process. The proposed method is targeted at reducing
random classification errors, but systematic differences
between ADC patients can also be relevant. The application
of a 3-way classification diminishes the relevance of preva-
lence. However, prevalence remains a relevant factor. This
study has not looked at other relevant predictors, such as
relevant covariates or specific underlying diseases. Relevant
differences may arise through disease-related covariates. For
instance, education is often considered a protective factor
against CI. However, the required norms for either well-
educated or low-skilled patients may vary considerably.34,35

Other covariates that are unrelated to the disease may
influence patients’ testing behavior. Hearing and vision
impairments influence the results obtained with the
MoCA.36 It is also well-known that CI test results are dif-
ferent for patients with different underlying diseases, such as
Alzheimer3 and Parkinson disease.37 Stratification of
patients on a variety of relevant predictors is a complex task
and although it may further enhance classification accuracy,
it is not easily applied in primary care. Nevertheless, sys-
tematic differences between samples remain a relevant topic
for future research and more so for identifying groups for
which the test accuracies are insufficient.

The distinction between cognitively impaired and
healthy participants has been based on the concordant
results of the global CDR and the clinical status, both of
which were available for all patients. Defining a gold
standard for CI, especially when the impairment is mild,
remains a fundamental challenge.38 Hopefully, future
research will allow for an even better distinction.
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