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Simple Summary: Pancreatic cancer is a highly lethal malignant disease with a dense stroma, called
the tumor microenvironment. Accumulating evidence indicates the important role of sympathetic,
parasympathetic, and sensory nerves in the tumor microenvironment of various cancers, including
pancreatic cancer. Cancer cells and neural cells interact with each other to form a complex network
and cooperatively promote cancer growth and invasion. In this review article, we describe the current
understanding of the role of nerves in the tumor microenvironment.

Abstract: Pancreatic cancer is one of the most lethal malignant diseases. Various cells in the tumor
microenvironment interact with tumor cells and orchestrate to support tumor progression. Several
kinds of nerves are found in the tumor microenvironment, and each plays an essential role in tumor
biology. Recent studies have shown that sympathetic, parasympathetic, and sensory neurons are
found in the pancreatic cancer microenvironment. Neural signaling not only targets neural cells,
but tumor cells and immune cells via neural receptors expressed on these cells, through which
tumor growth, inflammation, and anti-tumor immunity are affected. Thus, these broad-range effects
of neural signaling in the pancreatic cancer microenvironment may represent novel therapeutic
targets. The modulation of neural signaling may be a therapeutic strategy targeting the whole tumor
microenvironment. In this review, we describe the current understanding of the role of nerves in the
tumor microenvironment of various cancers, with an emphasis on pancreatic cancer. We also discuss
the underlying mechanisms and the possibility of therapeutic applications.
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers and is
estimated to be the second leading cause of cancer-related deaths in the United States by
2040 [1]. Despite the advances in diagnosis and treatment, the 5-year survival rate still
stands at 11% [2].

The tumor has a heterogeneous population of tumor cells and stromal cells called
tumor microenvironment, which includes immune cells, fibroblasts, endothelial cells,
extracellular matrix, and secreted factors [3]. The tumor microenvironment of PDAC is
characterized by its dense stroma with various cells such as fibroblasts, immune cells,
blood vessels, and nerves [4,5]. These cells in the tumor microenvironment and tumor
cells interact with each other to form a complex network and support tumor progression
by providing nutrition [6], growth factors, and cytokines/chemokines [7], suppressing
anti-tumor immunity [8], and inhibiting efficient drug delivery [9].

The role of nerves in cancer has been implicated, because the infiltration of nerves in
tumor stroma and neural invasion is often found in many cancers, including PDAC [10,11].
Recent studies have demonstrated the important roles of autonomic nerves such as sympa-
thetic and parasympathetic nerves in the tumorigenesis of prostate cancer [12,13], ovarian
cancer [14], gastric cancer [15,16], and basal cell carcinoma [17]. Accumulating evidence
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suggests interactions of nerves and various cells in the tumor microenvironment, including
non-tumor cells. In this review, we provide an overview of the role of nerves in the tumor
microenvironment, with an emphasis on PDAC.

2. Nerves in the Normal Pancreas and PDAC

Sympathetic and parasympathetic nerves innervate the pancreas [18]. Both exocrine
and endocrine cells are regulated by sympathetic and parasympathetic nerve systems.
Sympathetic nerve stimulation leads to a decrease in insulin and an increase in glucagon
to maintain glycemic levels during stressful conditions [19–21]. Parasympathetic nerve
activation increases insulin secretion [22]. The vagal nerve regulates pancreatic exocrine
secretion [23]. In addition, sensory nerves also innervate the pancreas and may be involved
in perceiving pain associated with chronic pancreatitis [24]. Neurotrophins, including nerve
growth factor (NGF), brain-derived neurotrophic factor (BDNF), NT-3, and NT-4, play key
roles in inducing nerve growth and axonal guidance in normal conditions [25]. For example,
NGF is known to attract sympathetic and sensory nerves [26,27]. These molecules bind
to different receptors, including the tropomyosin-related kinase (TRK) family of tyrosine
receptor kinases and the low-affinity p75NTR [28].

Tumoral innervation is reportedly associated with patient prognoses in many cancers,
such as breast [29–32], gastric [15,16], head and neck [33,34], ovarian [35], prostate [12,13,36–38],
and pancreatic cancer [39–43]. Especially in the PDAC microenvironment, tumoral inner-
vation is an important hallmark: increased neural density and hypertrophy compared with
a normal pancreas was observed in a PDAC specimen and was associated with a poor
prognosis [27,44]. These studies suggest a tumor-promoting interaction between nerves
and cancer cells (Figure 1). In addition, perineural invasion is another important feature of
PDAC, which is a disseminating process through lymphatic vessels along nerves supported
by various cells in the perineural niche [45,46]. Intra- and extra-pancreatic perineural
invasion by cancer cells is present in 70–100% of PDAC resection specimens and is associ-
ated with worse prognoses such as tumor recurrence and shorter patient survival [47,48].
Notably, the prevalence and severity of perineural invasion in PDAC were reported to be
the highest among gastrointestinal malignancies [47], suggesting the highly neurotropic
feature of PDAC.
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Figure 1. The interaction of neural cells and tumor cells. A schematic figure depicting the interaction
of cancer cells and neural cells via various molecules.

3. The Effect of Neural Signaling on Tumor Progression

Molecules released by various neural cells infiltrating the tumor microenvironment,
such as neurotransmitters, have been shown to affect various aspects of tumor cell activity,
such as migration, invasion, and metastasis [49,50]. Accumulating evidence suggests that
nerves can directly promote cancer cell proliferation, as suggested by studies in which the
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co-culturing of dorsal root ganglia (DRG) and cancer cells led to the increased proliferation
of prostate and PDAC cells [38,43]. Subsequent studies have shown that various molecules
secreted from nerves affect both tumor and non-tumor cells in the tumor microenvironment
(Table 1). PDAC is innerved by sympathetic nerves, parasympathetic nerves, and sensory
nerves, which have different roles in the tumor microenvironment (Figure 2).

Table 1. Molecules secreted by nerves and their effects on target cells.

Type of Nerves Name of Molecules Target Cells Effect References

sympathetic nerves norepinephrine, epinephrine cancer cells tumor progression [29,35,39,51–54]

immune cells immune suppression [29,55–57]

endothelial cells angiogenesis [13,14,58,59]

GABA cancer cells tumor suppression [60]

tumor progression [61]

dopamine endothelial cells suppression of angiogenesis [62–65]

NGF, BDNF cancer cells tumor progression [66,67]

GFRα1 cancer cells tumor progression [68,69]

CX3CL1 cancer cells tumor progression [70]

parasympathetic nerves acetylcholine cancer cells tumor progression [12,16,71,72]

cancer cells tumor suppression [29,40,73]

immune cells immune activation [29,40,74]

sensory nerves substance P cancer cells tumor progression [34,75–79]

endothelial cells suppression of angiogenesis [77,80]

CGRP endothelial cells angiogenesis [81]

CCL/CXCL chemokines immune cells immune suppression [82]

sympathetic/sensory nerves serine cancer cells tumor progression [83]
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3.1. Sympathetic Nerves and Stress

The effect of sympathetic nerves on tumor development has been reported in various
cancers. For example, chemical or surgical sympathectomy and the genetic deletion of
stromal β2 and β3 receptors decreased prostate tumor development in mice [12], suggesting
the role of sympathetic nerve signaling in early prostate tumorigenesis. Furthermore, it
has been shown that β2 adrenergic signaling on tumor endothelial cells induces metabolic
switch and promotes tumor angiogenesis [13]. Breast cancer growth and progression were
accelerated following the stimulation of sympathetic nerves in tumors [29]. PDAC is also
innervated by sympathetic nerves, and the surgical removal or pharmacological inhibition
of β2 adrenergic signaling decreases PDAC development through the direct stimulation of
tumor cells and indirect effects of the upregulated secretion of NGFs [39].

Catecholamines (norepinephrine and epinephrine) are neurotransmitters for sympa-
thetic nerves. Sympathetic nerve signaling is mediated by α- and β-adrenergic receptors,
which are widely expressed in the body. It has been shown that catecholamines stimulate
ovarian cancer cells via β3-adrenergic receptors, and cancer cells, in turn, produce BDNF to
promote tumor innervation, forming a feed-forward loop [35]. Gastric cancer growth and
metastasis in mice were inhibited by the blockade of β2-adrenergic receptor signaling [51].
Similarly, catecholamines could induce PDAC cell proliferation, invasion, and perineu-
ral invasion through β-adrenergic signaling in vitro [52,53] and in vivo [54]. Specifically,
PDAC cells are stimulated via β2-adrenergic receptors to exhibit increased invasion and
proliferation [39,53], and PDAC cells, in turn, produce NGFs and BDNFs to promote tumor
innervation [39]. The blockade of β2-adrenergic receptors suppressed tumor growth, tumor
innervation, and perineural invasion, and prolonged the survival of mice with PDAC [39].

Catecholamines are induced by physiological and psychological stress, and epi-
demiological studies have suggested that stress is related to cancer incidence and tumor
growth [84]. It has been reported that stress increases cancer mortality [85], and PDAC
patients suffer from higher levels of stress than other types of cancers [86]. Stress has
been shown to promote cancer progression in several cancer models, including ovarian
cancer [14], prostate cancer [87], and PDAC [54,88], supporting the role of stress in tumor
development and progression through adrenergic signaling. It has also been shown that
stress induced by the housing temperature of mice bearing PDAC xenografts affected their
sensitivity to cytotoxic therapies [89]. Interestingly, increased levels of stress in cancer
patients were associated with cancer-related pain [90], suggesting the involvement of pain
in increased levels of adrenergic signaling.

Thus, inhibitors or antagonists of adrenergic receptors might have inhibitory effects on
tumor progression in a clinical setting. α- and β-adrenergic receptors are widely expressed
on both normal and neoplastic cells, including in PDAC [91], and it has been reported that
β-blockers may prolong the survival of patients suffering from colon cancer [84], breast
cancer [92,93], ovarian cancer [94], melanoma [95], prostate cancer [96], and PDAC [97,98].
However, the effect of β-blockers on cancer prognosis seems to be tissue- or subtype-
specific [99]. Thus, in future research, it is necessary to find the population in which
β-blockers are the most effective.

Gamma-aminobutyric acid (GABA) is a molecule that negatively regulates β-adrenergic
signaling. Although GABA has been reported to suppress PDAC cell proliferation [60],
another study reported that GABA stimulated PDAC growth through overexpressing the
GABA receptor pi subunit [61].

3.2. Parasympathetic Nerves

The role of parasympathetic nerves seems to be different depending on the type of
cancer. In prostate cancer, it was reported that the stimulation of parasympathetic nerves
increased tumor metastasis and invasion [12]. In this study, type 1 muscarinic receptor
signaling in the stroma was shown to be critical for tumor progression, suggesting the
importance of neural signaling in non-tumor cells in the tumor microenvironment. For
gastric cancer, it was shown that vagal nerve signaling promoted gastric cancer through type
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3 muscarinic-receptor-mediated Wnt signaling [16]. Similarly, type 3 muscarinic signaling
promoted small cell lung carcinoma growth via mitogen-activated protein kinase (MAPK)
and Akt signaling [71]. Type 3 muscarinic receptor signaling promoted the migration and
invasion of colon cancer cells via the activation of matrix metalloproteinase-7 (MMP-7) and
epidermal growth factor receptor [72].

In contrast, the stimulation of parasympathetic nerves decreased the tumor growth
of breast cancer [29]. For PDAC, it has been suggested that vagal nerve activity, indexed
by heart rate variability, is associated with the prolonged survival of metastatic PDAC
patients [100]. Surgical vagotomy or parasympathetic nerve stimulation via type 1 mus-
carinic receptors resulted in suppressed pancreatic tumor development in mice [40,73], by
inhibiting the release of tumor necrosis factor-α (TNFα) from macrophages, decreasing
MAPK and phosphatidylinositol-3 kinase (PI3K) activity in tumor cells, and suppressing
the expansion of cancer stem cell populations.

3.3. Sensory Neurons

Sensory neurons in the pancreas convey signaling related to pain. Contributions
of sensory nerves to tumor progression have been reported in several studies. Sensory
neuron ablation in a mouse model of PDAC induced by neonatal capsaicin injection
prolonged the survival of the mice while suppressing inflammatory signals from the
tumor to the central nervous system [41], suggesting the effect of sensory signaling from
PDAC on immune systems. Head and neck squamous cell carcinomas are innerved by
sensory neurons, which are promoted by exosomes containing an axon guidance molecule,
EphrinB1, released from tumor cells [33]. Sensory denervation by surgery in a mouse
model of oral cavity squamous cancer led to decreased tumor growth [34]. Several other
studies have reported contributions of sensory nerves to tumor growth in cervical, skin,
and thyroid cancers [17,101,102]. Substance P, a pain-associated tachykinin, and its high-
affinity receptor NK-1R, are highly expressed in various cancer cells such as HER2-positive
breast cancer, and contribute to cancer progression [75]. A subpopulation of pancreatic
preneoplastic lesions expresses NK-1R, and substance P secreted by sensory neurons
promoted tumor growth via the activation of JAK2 and STAT3 [76]. NK-1R is reported to
also be expressed on tumor-associated blood vessels in various neoplasms [80]. Treating
mice bearing a PDAC xenograft by substance P analogs decreased the tumor volume
and angiogenesis [77]. Substance P is produced in both DRG neurons and PDAC cells,
promoting the outgrowth of neurites and cancer cell proliferation and invasion [78,79].
Calcitonin gene-related peptide (CGRP) is another neuropeptide released from sensory
neurons and has been shown to promote angiogenesis in lung cancer [81].

It has also been reported that sensory and sympathetic nerves in the PDAC microenvi-
ronment provide nutritional support to cancer cells by secreting serine and several other
amino acids in serine/glycine-deprived conditions [83], suggesting a novel role of nerves
in the tumor microenvironment. In cancer cells, glucose is processed via glycolysis and
converted to pyruvate, then to lactate [103,104]. Some human PDACs lack an enzyme that
converts glucose to serine and is thus are dependent on an external supply of serine to syn-
thesize glycine, which enables the production of NGFs to increase tumor innervation [83].

4. The Effect of Neural Signaling on Non-Tumor Cells

As mentioned above, autonomic neural signals can not only affect tumor cells but also
other types of cells, especially immune cells. The inflammatory status in the body is regu-
lated via humoral and neuronal pathways [105–107]. For example, inflammatory responses
to endotoxins are inhibited by vagal nerve stimulation and the release of acetylcholine [108].

4.1. Immune Cells

Associations between neuronal and immune systems have been reported to influence
tumor immunity [109,110]. Neurogenic signatures were shown to be associated with
immunosuppressive phenotypes [111].
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The function of T cells, especially cytotoxic CD8+ T cells, is critical for anti-tumor im-
munity [112]. Some studies have suggested that neural signaling plays a role in controlling
anti-tumor T cell functions. The ablation of sympathetic nerves decreased programmed
death-1 (PD-1) and FOXP3 expression on T cells in breast cancer [29]. Accordingly, the
parasympathetic stimulation of breast cancer cells decreased PD-L1 expression on tumor
cells and PD-1 on T cells and increased CD8+/regulatory T (Treg) cells [29]. Another study
demonstrated that the inhibition of β2-adrenergic receptor signaling on immune cells led
to increased CD8+ T cells and decreased PD-1 expression on T cells [55]. In prostate cancer,
PD-L1 expression on nerves in the tumor microenvironment was inversely correlated with
the prevalence of CD8+ T cells and patient prognosis [113].

Macrophages infiltrating the tumor microenvironment are called tumor-associated
macrophages (TAMs), which exert various effects to promote tumor initiation and progres-
sion [114]. In breast cancer, β-adrenergic nerve stimulation induces infiltration and the
differentiation of tumor-promoting macrophages in the tumor microenvironment, leading
to tumor progression and angiogenesis [56]. In contrast, cholinergic signaling suppresses
the CD11b+ myeloid cell population and TNFα expression in the PDAC microenvironment,
indicating the tumor suppressive and anti-inflammatory effect of cholinergic signaling [40].
Macrophages in the PDAC microenvironment are recruited by C-C chemokine receptor type
2 (CCR2) and colony-stimulating factors and secrete GDNFs to promote cancer migration
and nerve invasion [115].

Myeloid-derived suppressor cells (MDSCs) are activated neutrophils and mono-
cytes which have immune suppressive functions to promote tumor progression [116].
In melanoma, inhibition of β3-adrenergic receptor signaling attenuated regulatory T cells
and MDSC increased the number and cytotoxicity of natural killer (NK) cells and increased
the ratio of M1/M2 macrophages and N1 granulocytes [57]. Sensory neurons have been
reported to secrete several CCL and CXCL chemokines in the melanoma microenvironment,
attracting MDSCs to promote immune-tolerant conditions [82]. In colon cancer, cholinergic
stimulation prevents colon cancer progression by inducing anti-inflammatory peptide
trefoil factor 2 secretion from memory T cells to suppress MDSC expansion [74].

NK cells also play an important role in innate tumor immunity [117]. NK cells and
nerves interact in the context of the degeneration of damaged sensory neurons through
the NK cell receptor NKG2D and retinoic acid early-inducible 1 (RAE1) gene [118]. Due
to β2 adrenergic receptor signaling, NK cells and other leukocytes are mobilized into
circulation [119].

Eosinophils are granulocytes involved in innate immunity and have been shown
to interact with neurons [120]. Nerves recruit eosinophils through the stimulation of
neuropeptides, cytokines, and chemokines; eosinophils release cationic proteins, neu-
rotrophins/neuropeptides, and ROS to induce nerve growth and neuropeptide synthesis.
In the tumor microenvironment, the role of eosinophils seems to be context-dependent [121].
In some cancers, including melanoma, eosinophils exhibit anti-tumorigenic roles in mouse
models, suggesting a novel therapeutic strategy.

4.2. Tumor Endothelial Cells (TECs)

Angiogenesis during tumor development has also been reported to be promoted by
neural inputs. Vascular organization during development has been shown to be affected by
sensory neurons [122], as well as signaling via neuropeptide Y [123]. In the tumor microen-
vironment, sympathetic nerve signaling induces angiogenesis, and TECs, in turn, promote
tumorigenesis by secreting cytokines and growth factors [58]. Systemic sympathetic nerve
stimulation by the chronic restrain model revealed increased vascular endothelial growth
factor (VEGF) expression and angiogenesis via β2-adrenergic receptor signaling in ovarian
tumor cells [14]. Catecholamines signaling through β-adrenergic receptors also induced
expression of VEGF and IL-6 in breast cancer cells [59]. In prostate cancer, β2-adrenergic
receptor signaling on endothelial cells promoted tumor angiogenesis and tumor progres-
sion [13], suggesting a mechanism involving immune regulation by sympathetic nerves



Cancers 2022, 14, 4269 7 of 18

through endothelial cells. In addition, catecholamine treatment induced the alternatively
activated M2 polarization of macrophages to secrete VEGF and promote tumor angiogene-
sis in a lung cancer mouse model [124]. On the other hand, dopamine, a neurotransmitter of
sympathetic nerves, downregulates VEGF receptor 2 signaling in endothelial cells [62] and
inhibits colon cancer angiogenesis and growth [63]. Similarly, gastric cancer and ovarian
cancer mouse models have shown decreased tumor angiogenesis and tumor growth after
dopamine treatment [64,65]. Collectively, in the tumor microenvironment, sympathetic
innervation promotes angiogenesis supporting tumor progression.

4.3. Cancer-Associated Fibroblasts (CAFs)

CAFs are key components in the tumor microenvironment and have been exten-
sively investigated and shown to have various functions, including modifying matrix
deposition, reciprocal signaling, and interacting with cancer cells and immune cells to
promote cancer progression [125]. CAFs have also been shown to secrete several axon-
guidance molecules. Exosomes derived from head and neck cancer cells induced NGF
expression in fibroblasts [126]. Pancreatic stellate cells also produce neurotrophic factors
NGFs and artemin in response to transforming growth factor β (TGF-β) to induce neurite
outgrowth [127–129]. In pancreatic cancer, CAFs expressing NetrinG1, an axon-guidance
molecule, have been shown to metabolically support tumor growth by affecting gluta-
mate/glutamine metabolism and inhibiting NK-cell-mediated tumor killing via the Akt
and p38 pathways [130]. CAFs in the pancreatic cancer microenvironment have been
reported to secrete an axon guidance molecule, SLIT2, to induce neural outgrowth [131].
These studies suggest that CAFs are an important mediator of tumor innervation and
neural remodeling in the tumor microenvironment.

4.4. Cancer-Associated Adipocytes(CAAs)

In adipocytes, β-adrenergic signaling, especially β3, is involved in the lipolytic mobi-
lization of fatty acids [132,133]. In the cancer microenvironment, CAAs have been reported
to promote tumor growth, angiogenesis, and migration through the secretion of hormones,
cytokines, adipokines, and growth factors [134].

5. Origins of Nerves in the Tumor Microenvironment

The mechanism of how neural cells expand in the tumor microenvironment is not
clearly understood. One possibility is that pre-existing nerves directly innervate from
the surrounding tissue. Co-culturing neural ganglia and cancer cells promote neurite
outgrowth [38,39]. Such innervation might be induced by neurotrophins including nerve
growth factors. Another possibility is the trans-differentiation of cells in the tumor mi-
croenvironment. Amit and colleagues reported that loss of TP53 in oral cancer induced
the trans-differentiation of tumor-associated sensory neurons into adrenergic neurons [34].
Another study suggested the possibility of the trans-differentiation of cancer cells into neu-
ral cells in the tumor microenvironment of prostate cancer [135]. Lastly, neural progenitor
cells might be recruited to the tumor microenvironment from distant organs. Mauffrey and
colleagues reported that doublecortin (DCX)-positive neural progenitors from the central
nervous system infiltrated prostate primary tumors and metastases [136].

6. The Molecular Mechanisms Involved in Nerve Expansion in the Tumor
Microenvironment

Various molecules, including neurotrophins, axon guidance molecules, and cytokines,
are reportedly involved in the development and function of nerves in the tumor microenvi-
ronment (Figure 3).
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6.1. Neurotrophins

Nerve growth is physiologically mediated by molecules such as neurotrophins [25],
axon guidance molecules [137], and other growth factors. In cancer development, in
addition to neural cells, cancer cells aberrantly produce neurotrophins to promote further
innervation into the tumor microenvironment in various cancers, including breast cancer
and PDAC [10,15,30,35,39,138–140]. Recent studies have shown that neurotrophins also
induce the proliferation, migration, and invasion of tumor cells, including breast, colon,
ovarian, and prostate cancer, and PDAC [10,138,141–149]. Thus, neurotrophins released
from tumor cells can induce both tumor innervation in a paracrine manner and tumor
progression in an autocrine manner, whereas Schwann cells and nerves also release NGFs
and glial cell line-derived neurotrophic factors (GDNFs) to facilitate cancer progression in
nerves [66,67]. In addition, pancreatic stellate cells were reported to secrete NGFs [127] and
BDNFs [128], increasing neural density in DRG in vitro [129].

The expression of NGF or its precursor, proNGF, and its receptors have been associated
with reduced survival in several cancers [36,141,150,151]. NGF depletion by anti-NGF anti-
bodies [152], NGF siRNA [153], or an antagonist of TRK receptors [39] reduced progression,
metastasis, tumor innervation, and prolonged survival in mouse models of PDAC. TRKB, a
high-affinity receptor for BDNF shows increased expression on metastatic PDAC cells [154]
and is associated with higher invasion [145]. NT-3 is reported to be expressed mainly in
the stroma of PDAC [145], whereas its receptor, TRKC, was expressed on PDAC cells and
intratumoral nerves [155]. Blocking NT-3 suppressed the growth of PDAC in a xenograft
mouse model [146].

6.2. GDNFs

GDNF family members [156] are axon guidance molecules, consisting of GDNF, ner-
turin (NRTN), artemin (ARTN), and persephin (PSPN). These molecules are reported to be
associated with advanced diseases and perineural invasion in PDAC [67,68,157–159]. Stud-
ies suggest that GDNF family receptor α1 (GFRα1) is released from nerves and facilitates
the binding of nerves and PDAC cells via GDNF–RET interactions [68,69]. Interestingly,
tumor-associated macrophages also secrete GDNFs, which stimulate RET on cancer cells to
promote perineural invasion [115].
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6.3. Semaphorins

Semaphorins are a family of axon guidance molecules [160]; some semaphorins have
been associated with tumor innervation. Semaphorin 4F overexpression in prostate cancer
cells induces cancer-related neurogenesis [38]. In PDAC, frequent copy number variations
and mutations of semaphorin 3A and 3E have been observed [161]. Semaphorin 3A was
found to be expressed in PDAC cells and nerves in cancerous specimens and is associated
with poor prognoses [162]. Semaphorin 3D, secreted by PDAC cells, acts on Plexin D1 on
neural cells to induce tumor innervation and proliferation [42]. Other semaphorin family
members, such as semaphorin 3E [163], 5A [164], and 6C [165] were also reported to affect
PDAC progression, although the involvement of nerves in the tumor microenvironment
was not demonstrated.

6.4. SLIT/ROBO Signaling

Cancer-associated fibroblasts (CAFs) are suggested to be another source of neu-
rotrophins and axon guidance molecules [126,130]. CAFs in PDAC secrete an axon guidance
molecule, SLIT2, which induces repulsion and enhanced migration of neural cells [166],
and takes part in neural remodeling in the tumor microenvironment [131]. SLIT/ROBO
signaling has been suggested to be required to preserve pancreatic cell identity [167]. In
PDAC, frequent mutations or copy number losses of SLIT2, ROBO1, and ROBO2 were
identified in human PDAC analyses [161]. In addition, lower levels of expression of ROBO2
were associated with poor prognoses in PDAC patients [161]. Another study confirmed
that SLIT2 expression was reduced in PDAC, and showed that restoring SLIT2 inhib-
ited the neural invasion and metastasis of PDAC [168], suggesting its suppressive role in
nerve–cancer interactions.

6.5. Cell Adhesion Molecules

Neural cell adhesion molecule 1 (NCAM1) is expressed in neurons and developing
Schwann cells, and helps neural growth, adhesion, and regeneration [169]. NCAM expres-
sion is correlated with neural invasion [170] and decreased survival in PDAC [171]. In
addition, it has been suggested that NCAM1 expressed on Schwann cells could promote
the migration and dispersion of cancer cells [66].

L1 cell adhesion molecule (L1CAM) is another adhesion molecule expressed on neural
cells. L1CAM is highly expressed in PDAC cells, the expression levels of which are
correlated with cancer progression, metastasis, and neural invasion via the induction of
metalloproteinase-2 (MMP-2) and MMP-9 in cancer cells [172–175].

6.6. Cytokines/Chemokines and Exosomes

Some cytokine/chemokines have been shown to induce tumor innervation. Granulocyte-
colony stimulating factor (G-CSF) was reported to suppress sympathetic nerve damage
and promote parasympathetic nerve growth in the prostate cancer microenvironment [37].
Colony-stimulating factor (CSF-1) and CCL2–CCR2 axis were also reported to attract
macrophages or monocytes and promote cancer cell migration and nerve invasion [115].
CCL is also released from nerves to induce the neural invasion of prostate cancer [176].
CX3CL1 is expressed in neural cells to act on PDAC cells through CX3CR1 and promote
neural invasion and dissemination along nerves [70].

Exosomes, which are small, membrane-bound vesicles and contain molecules such
as proteins, lipids, DNAs, and RNAs, are reportedly secreted from tumor cells to affect
various cells in the tumor microenvironment [177]. Tumor–nerve interactions may be
mediated by exosomes, as shown in one study where Madeo and colleagues reported that
EphrinB1 is released from head and neck cancer cells packaged in exosomes and induces
tumor innervation [33]. Exosomes were also reported to mediate innervation in cervical
carcinoma [101,178]. More recently, miR-34a-3p contained in extracellular vesicles has
been shown to suppress the trans-differentiation of tumor-associated sensory nerves into
sympathetic nerves in head and neck cancer [34].
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7. Clinical Applications of Nerve-Targeting Therapy

Revealing the molecular mechanisms underlying nerves in the tumor microenviron-
ment leads to novel therapeutic targeting, although only a limited number of molecular-
targeting drugs have been approved in the field of tumor-associated nerves. Inhibitors of
TRK receptors (pan-TRK inhibitors; entrectinib and larotrectinib) have been approved for
solid tumors with TRK fusion [179–181]. The effect of a multi-kinase inhibitor sitravatinib,
which also inhibits Trk activity, on advanced solid tumors is currently being investigated
(NCT02219711) [182]. Although these drugs target TRK receptor signaling in cancer cells,
they may exert inhibitory effects on innervation and tumor–nerve interactions in the tumor
microenvironment, which should be determined in future studies.

Clinical trials to examine the effects of muscarinic agonists on PDAC (NCT03572283)
and β-blockers in both non-metastatic and metastatic prostate and pancreatic cancer pa-
tients (NCT02944201, NCT03152786, NCT03838029, and NCT04245644) are ongoing. In
addition, NK-1R antagonists have been suggested to exert anti-cancer effects both in a
pre-clinical and clinical setting [183]. Although these studies mainly target neural signaling
in cancer cells, autonomic nerve signaling may also affect other targets including immune
systems. In addition, CCR2 inhibitor treatment has been reported to enhance anti-tumor
immunity in PDAC [184], and has shown tolerability in PDAC patients [185], possibly also
having inhibitory effects on neural invasion or tumor innervation.

The most commonly observed serious treatment-related events were cognitive dis-
orders in entrectinib [180], suggesting a possible adverse effect on neural cells outside
tumors by nerve-targeting drugs; moreover, muscarinic agonists or β-blockers may affect
the cardiovascular function and bowel movements via autonomic nerve signaling. As such,
for novel therapeutic agents targeting nerves, attention should be focused on avoiding
adverse effects on normal neural activity.

Future studies should test multiple pathways and interactions in the tumor mi-
croenvironment discussed above. Surgical or pharmacological denervations of sympa-
thetic/parasympathetic nerves or sensory neurons, and targeting immune–nerve or CAF–
nerve interactions, may warrant future clinical studies. Overcoming suppressed anti-tumor
immunity by modulating neural signaling may pave the way for novel immunotherapies in
PDAC or other immunologically “cold” tumors. Metabolites secreted from nerves may also
be an important therapeutic target, as the PDAC tumor microenvironment places a high
demand on nutrients and might be dependent on the continuous supply of metabolites
from stroma, including nerves.

Due to the complexity of the heterogeneity in the tumor microenvironment, deter-
mining an appropriate target is a critical process for developing novel therapeutic agents.
Considering the higher incidence of perineural invasion and its impact on patient prog-
nosis [47,48], it is important to elucidate the PDAC-specific mechanism by which PDAC
becomes a more neurotropic tumor. One possibility may be the contribution of desmoplas-
tic stroma, which characterizes PDAC. CAFs in PDAC have been shown to be a highly
heterogeneous population [186]; thus, subpopulations of CAF may provide niche fac-
tors to maintain and expand neural cells and facilitate interactions between tumors and
neural cells.

8. Conclusions

Due to the complex interactions between nerves and multiple types of cells in the
tumor microenvironment, developing treatments targeting nerves has proven difficult.
Recent studies have revealed the important role of nerves in the tumor microenvironment;
therefore, nerves and neural signaling seem to be attractive therapeutic targets in PDAC,
which could have multi-dimensional effects such as tumor inhibition, immune modulation,
and controlling angiogenesis. The close cooperation of researchers and physicians is vital to
further understanding the mechanism underlying nerves in the tumor microenvironment
and the development of novel and effective therapeutic options.
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