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Abstract
Purpose  The impact of a germline BRCA1/2 pathogenic variant (gBRCApv) on baseline or late post-treatment AMH con-
centrations in breast cancer patients has been extensively studied, yielding mixed conclusions. However, whether the AMH 
decline during neo-adjuvant chemotherapy reflects differences in chemotherapy susceptibility between gBRCApv carriers 
and non-carriers remains unexplored.
Methods  A monocentric, retrospective, longitudinal study was conducted on breast cancer patients carrying a gBRCApv 
(n = 12) or wild-type (WT) (n = 35) who received a neo-adjuvant sequential chemotherapy (CT) with anthracyclines followed 
by taxanes. Serum AMH levels were measured at baseline (AMH0) and at three time points during CT by a hypersensitive 
assay. Tumor size change was assessed via imaging. The impact of genetic status on AMH decline was evaluated using a 
linear mixed model with post hoc analysis.
Results  The change of AMH concentrations from baseline to the end of CT tended to be influenced by the genetic status 
(BRCA​ * time interaction, p = 0.058). The slope between AMH0 and the end of anthracyclines (after log transformation) 
was steeper in gBRCApv than in WT patients (mean (SE): − 5.54 (0.63) vs − 3.97 (0.62); p = 0.023). Tumor size change 
was positively and significantly correlated with the change in AMH levels (AMH MidCT-AMH0) in gBRCApv patients (r = 
0.93, p < 0.001) but not in WT patients (r = − 0.05; p = 0.84).
Conclusion  Germline BRCA1/2 status influences AMH decline during neo-adjuvant CT with drugs inducing DNA lesions. 
AMH decay is positively related to tumor size change assessed by imaging in gBRCApv patients. However, no conclusions 
can be drawn regarding the relationship with treatment response assessed by histological criteria.
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Introduction

Ovarian toxicity is a common adverse effect of most anti-
cancer treatments and important to consider because of its 
negative impact on future fertility of patients [1]. Whether 
female cancer survivors carrying a genetic deficiency in 
member(s) of the DNA damage response (DDR) system 
such as BRCA1 or BRCA2 are at higher risk of ovarian 
toxicity following treatment is currently being questioned 
[2]. From a biological point of view, the rationale for this 
hypothesis is based on the demonstrated role of BRCA1/2 in 
the repair by homologous recombination (HR) [3] of DNA 
double-strand breaks (DSB) occurring spontaneously in 
human oocytes [4] and, more generally, in the control of 
mouse [5] and human ovarian aging [4–7]. Indeed, BRCA1 
mutant heterozygote mice had a lower number of primordial 
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follicles and accumulated DSB in the remaining follicles 
while aging [5].

However, clinical trials comparing the pool of growing 
ovarian follicles assessed by serum AMH measurement in 
patients with and without germline BRCA1/2 pathogenic 
variant (gBRCApv) have been inconclusive. For exam-
ple, in the Turan meta-analysis [8], when AMH is meas-
ured at baseline, before chemotherapy (CT), gBRCApv 
patients have 25% lower concentrations than WT patients. 
In contrast, two other studies using different assay methods 
reported no significant difference between these two groups 
of patients [9, 10]. When AMH was measured at distance 
from CT, gBRCApv patients showed less recovery (relative 
to baseline) than WT at 1 year after cessation of treatment 
[11]. Similarly, germline BRCA1/2 status is also a predictor 
of amenorrhea at 12, 18, or 36 months after the completion 
of chemotherapy [12]. On the other hand, in a study in which 
AMH was measured longitudinally (before, during, and up 
to 2 years after completion of CT), the probability of having 
undetectable AMH levels at 1 or 2 years after CT did not dif-
fer between gBRCApv and WT patients [13]. Several factors 
may explain these discrepancies. First, in all these clinical 
studies, AMH was measured using conventional assays that 
have a limit of quantitation (LoQ) that is too high [14] to 
provide accurate measurements in the expected range of low 
AMH levels. Second, age at treatment may also influence the 
results of these studies. Finally, various individual suscep-
tibilities to CT may also impact longitudinal AMH levels 
change in young breast cancer women [15].

In this pilot study, we aimed to re-examine the hypothesis 
of a higher risk of ovarian toxicity in gBRCApv patients 
by focusing on the dynamics of serum AMH during neo-
adjuvant chemotherapy (NAC). To achieve this, we analyzed 
AMH slopes in breast cancer patients with a gBRCApv and 
WT using a hypersensitive AMH assay [16]. Given that 
defects in BRCA1/2 sensitize breast cancer cells to sev-
eral DNA-damaging agents [17], we also investigated the 
correlation between AMH decline during NAC and tumor 
response to treatment in both gBRCApv and WT patients.

Materials and methods

Patients

ONCOAMH1 is a retrospective study included young 
patients (ages 18–38 years) diagnosed with breast can-
cer, and undergoing neo-adjuvant CT (NAC) with a lon-
gitudinal follow up of their ovarian function. This was 
assessed both clinically (onset and duration of amenor-
rhea) and biologically by measuring serum AMH levels. 
These patients were previously enrolled in the prospective 
KSF1 study (Cancer et Fertilité, NCT 01614704) [13] or 

were selected from institutional database and had avail-
able serum samples in our biobank. All patients underwent 
genetic testing for BRCA1/2 germline mutation.

All patients included in ONCOAMH1 had received 
NAC according to standard protocols. CT regimen 
included three to four anthracycline-based courses fol-
lowed by three to four taxane-based courses. The first 
sequence consisted of epirubicin and cyclophosphamide 
(three cycles every 3 weeks or four cycles every 2 weeks) 
resulting in a total dose of epirubicin between 300 and 360 
mg/m2 and cyclophosphamide between 1500 and 2400 
mg/m2. The second sequence included three cycles of doc-
etaxel (100 mg/m2 every 3 weeks) or 9 to 12 weekly cycles 
of paclitaxel (80 mg/m2). Patients with HER2-positive 
tumor received 18 courses of adjuvant trastuzumab for 12 
months (3-weekly injections), starting concurrently with 
the taxanes. None of the patients received GnRH agonist 
during CT, and no platinum agents were used in the NAC 
protocol. A total of 47 patients were eligible for the study: 
12 with a gBRCApv and 35 WT patients for whom serum 
samples were available in our biobank. The time points 
studied were AMH0 (before CT), C2 (day1 of cycle 2 of 
the anthracycline regimen), Mid-CT (day 1 of the taxane 
regimen, midway through CT), and End-CT (day 1 of the 
last CT cycle). Oncological data were retrieved from the 
patients’ medical files. The Commission for Clinical Stud-
ies of the Centre Oscar Lambret has approved the study 
under the reference CEC- 2023–022. The study complies 
with the Reference Methodology MR004 of the CNIL 
(Commission Nationale de l’Informatique & des Liber-
tés). We have checked, before inclusion, that no patient 
objected to the use of their medical data or samples for 
research purposes.

Hormonal investigations

AMH was measured on serum samples using a hypersensi-
tive assay (picoAMH, AnshLabs, Tx USA) as previously 
described [16, 18]. The assay limit of quantification is 0.023 
pmol/L; the assay range is 0.023–7.47 pmol/L for undiluted 
samples.

Imaging

All patients underwent initial assessment via breast ultra-
sound and mammography. The same evaluation was per-
formed at the end of CT, prior to surgery. The change in 
tumor size after NAC was calculated by comparing the size 
from the initial (pre-treatment) assessment with the preop-
erative assessment. Tumor response was evaluated according 
to the RECIST criteria.
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Pathologic responses

Pathological response was assessed on surgical specimen 
using the Chevallier classification [19], which was available 
for all patients. This classification is defined as follows:

–	 Chevallier 1: no microscopic invasive or in situ carci-
noma, and no axillary lymph node metastases

–	 Chevallier 2: microscopic in situ carcinoma without inva-
sive carcinoma or axillary lymph node metastases

–	 Chevallier 3: invasive carcinoma with fibrosis or sclerosis
–	 Chevallier 4: no modification of initial tumor

Chevallier 1 and 2 are considered to reflect a pathological 
complete response (pCR).

Statistical analysis

Continuous variables were expressed as median and inter-
quartile ranges (IQR) and compared between gBRCApv and 
WT patients by Mann–Whitney U test. Categorical varia-
bles were expressed as counts (n) and percentages (%) and 
compared using χ2 test or Fisher’s exact test, as appropriate. 
Changes in AMH levels (after applying a log-transforma-
tion) between gBRCApv and WT patients were analyzed 
using a linear mixed model (an unstructured covariance 
pattern model) to account for within-patient correlation 
across repeated measures. The model included time (as a 
categorical variable), BRCA1/2 status, and an interaction 
term (BRCA​ × time) as fixed effects. Post hoc comparisons 
between gBRCApv and WT patients (changes from baseline 
to Mid-CT and End-CT time points) were performed using 
linear contrasts. The association between tumor volume 
change and AMH level change from baseline to Mid-CT was 
evaluated by Spearman’s correlation coefficient, separately 
for each group. Differences in AMH level change from base-
line to Mid-CT between Chevallier classification groups [19] 
were assessed using the Mann–Whitney U test. All statistical 
tests were two-tailed with an alpha risk of 0.05. Statisti-
cal analyses were conducted using the SAS software (SAS 
Institute, version 9.4).

Results

Characteristics of breast cancer patients

Twelve patients with a gBRCApv and 35 WT patients with 
breast cancer were included in the current study. The two 
groups did not differ in terms of age or weight before CT 
(Table 1). Tumor size and stage were also comparable. The 
frequency of lymph node metastasis tended to be higher in 
gBRCApv than in WT patients (67% vs 34%, p = 0.0503). 

As expected, the pattern of hormone receptor and HER- 2 
expression assessed by immunohistochemistry differed 
significantly between the groups, with a majority of triple 
negative tumors among gBRCApv patients (92% vs 17%, p < 
0.001). The patient’s response to NAC, assessed by imag-
ing or pathological examination of the surgically resected 
tumor, was also similar between the two groups. At the time 
of data collection, eight (17%) of the patients has relapsed 
and four(8.5%) had died.

Change of AMH levels during CT

AMH concentration was measured before treatment 
(AMH0) and at three different time points during NAC 
(C2, Mid-CT, and End-CT). Baseline AMH concentra-
tions were similar between the two groups: 18.06 pmol/L 
(median) in gBRCApv patients versus 27.6 pmol/L in WT 
patients (p = 0.36). The change in AMH concentrations dur-
ing NAC, from AMH0 to End-CT, tended to be influenced 
by the genetic status of the patient (BRCA * time interac-
tion, p = 0.058). Post hoc analysis showed that the decline 
in AMH from AMH0 to Mid-CT was steeper in gBRCApv 
than in WT (mean in log AMH value (standard error): − 5.54 
(0.63) vs − 3.97 (0.62), p = 0.024) (Fig. 1). A similar trend 
was observed for the slope between AMH0 and End-CT: 
− 7.17 (0.31) in gBRCApv vs − 6.51 (0.24) in WT, p = 0.027 
(Fig. 1). Despite a visual impression of difference, the slope 
between Mid-CT and End-CT did not significantly differ 
between gBRCApv and WT patients: − 1.62 (0.55) vs − 2.53 
(0.57), p = 0.139.

AMH decay and oncological outcomes

Tumor size change between baseline and End-CT, measured 
by imaging and expressed as median [IQR] was − 25 [− 45; 
− 10] mm in gBRCApv and − 17 [− 32; − 11] mm in WT 
patients, p = 0.48. Since 63% of patients had AMH levels 
below the assay’s LoQ at End-CT, we considered the AMH 
change over the Mid-CT-AMH0 time frame. As shown in 
Fig. 2, in gBRCApv patients, tumor size change was posi-
tively and significantly correlated with Mid-CT-AMH0 
change, r = 0.93 (95% CI 0.66–0.98), p < 0.001 (Fig. 2A), 
whereas no correlation was observed in WT patients (r = 
− 0.05 (95% CI − 0.47–0.39), p = 0.84 (Fig. 2B).

When tumor response was evaluated post-surgically using 
the Chevallier classification [19], we observed that the AMH 
decrease between AMH0 and Mid-CT (expressed in abso-
lute values) was greater in patients with a pCR (Chevallier 
classes 1 and 2) than in those with residual disease (Cheval-
lier classes 3 and 4) regardless of gBRCA​ status: − 30.10 
[− 42.7; − 23.2] pmol/L vs − 12.7 [− 36.9; − 8.8] pmol/L 
(median [IQR]), p = 0.04. However, this difference was not 
observed when AMH decrease was expressed in relative 
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values: − 94.3% [− 99.3; − 93.4] vs − 97.3% [− 99.9, 
− 90.8], p = 0.87. Moreover, AMH0 was not significantly 
different between patients with pCR and non pCR cases: 
32.5 [21.1–42.4] pmol/L vs 16.2 [11.3–41.5] pmol/L, p = 
0.088, respectively.

Discussion

Based on the observation that BRCA1 protein plays a role in 
controlling ovarian aging through its ability to repair DNA 
DSBs by HR [3], we aimed to investigate for the first time 
whether AMH decay curves during NAC differ according 
to germline BRCA1/2 genetic status in young breast cancer 
patients. To date, few studies have explored the gonadotoxic 
effects of chemotherapy in the context of genetic mutations, 

with inconclusive results [11, 12, 20]. To accurately measure 
the expected very low AMH concentrations during NAC, 
we used a hypersensitive assay previously evaluated [16]. 
Consistent with previous reports in young breast cancer 
women [9, 10], baseline AMH concentrations did not differ 
according to the genetic status. This finding rules out any 
influence of initial AMH values on the rate of AMH decline 
as indicated by different mathematical models [21, 22].

Our results highlight a steeper decay of AMH levels in 
young patients in their thirties with a gBRCApv, compared 
to WT patients, both between baseline and Mid-CT (at the 
end of anthracycline treatment) and between baseline and 
End-CT (at the end of taxanes). A heterozygous deficiency 
in DNA DSB repair machinery may thus be sufficient to 
reduce the survival of ovarian growing follicles when fac-
ing genotoxic stress induced by gonadotoxic CT. For most 

Table 1   Clinical characteristics 
of the study population

Values are expressed as median [interquartile range] or frequency (%)
Abbreviations: gBRCApv germline BRCA1/2 pathogenic variant, wt wild type, NA not applicable due to 
frequencies < 5%
a The tumor response for one patient in gBRCApv group was unavailable
b Chevallier classification post-surgery was unavailable for one patient in the gBRCApv group and for two 
patients in the wt group
c Triple negative vs non-triple negative

g BRCA pv patients 
(n = 12)

wt patients (n = 35) p value

Age (years) 31 [28–33] 32 [29–33] 0.68
Weight (kg) 69 [63–68] 69 [58–76] 0.73
Tumor classification at diagnosis
  T1 0 (0) 2 (6) NA
  T2 9 (75] 24 (68)
  T3 2 (17) 7 (20)
  T4 1 (8) 2 (6)

Lymph node status at diagnosis
  N0 4 (33) 23 (66) 0.050
  N +  8 (67) 12 (34)

Immunohistochemical characteristics at 
diagnosis

  RH + HER2- 1 (8) 9 (26)  < 0.0001c

  RH − HER2 +  0 (0) 7 (20)
  RH + HER2 +  0 (0) 13 (37)
  Triple negative 11 (92) 6 (17)
  Tumor size at diagnosis (mm) 35 [25–57] 34 [23.2–51.5] 0.94

Tumor response post chemotherapya

  Complete response 2 (18) 11 (31) NA
  Partial response 8 (73) 23 (66)
  Stable disease 1 (9) 1 (3)

Chevallier classification post-surgeryb

  Complete response 5 (42) 8 (24) NA
  In situ carcinoma 0 (0) 4 (12)
  Invasive carcinoma 6 (50) 17 (52)
  No or few changes of tumor 1 (8) 4 (12)
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patients in both groups, the NAC protocol consisted of three 
cycles of epirubicin plus cyclophosphamide (EC 100) fol-
lowed by three cycles of docetaxel. However, some patients 
received more than six cycles of CT, including four cycles 
of EC 90 and/or 9 to 12 weekly cycles of paclitaxel instead 
of the three docetaxel courses. The higher total number of 
CT cycles in gBRCApv patients should not have influenced 
the AMH decay curve between AMH0 and Mid-CT, as (i) 
the cumulative dose of anthracyclins was approximately 
equivalent in both groups and (ii) the Mid-CT time point 
corresponds to an assessment at the end of the EC sequence 
for all patients. Therefore, we can conclude that our data 
suggest greater gonadal sensitivity in gBRCApv patients to 
the anthracyclines plus cyclophosphamide regimen. In con-
trast, the rate of AMH decline between Mid-CT and End-CT 
did not differ between gBRCApv and WT patients, suggest-
ing similar sensitivity to taxanes in both groups.

From a reproductive perspective, while it remains debated 
whether fertility in young gBRCApv carriers with a history 
of breast cancer could be impaired, the risk of premature 
ovarian aging, compounded by deeper follicular depletion 
due to CT, along with the indication of ovariectomy to pre-
vent ovarian cancer, supports the systematic recommenda-
tion of fertility preservation through oocyte cryopreservation 
[10, 23].

From an oncological perspective, as BRCA1/2 protein 
defects sensitize breast tumor cells to various chemothera-
peutic agents that induce DNA lesions [17, 24, 25], we 
investigated whether there was an association between 
tumor response to NAC and changes in AMH concentra-
tions during NAC in breast cancer patients. Interestingly, 
we observed a strong positive correlation between tumor 
size change and AMH levels decrease between baseline 
and Mid-CT (end of anthracyclines), but this was observed 
only in the group of gBRCApv patients. How can this 
selectivity be explained? The BRCA1/2 pathogenic variant 
is germline in these patients, so both normal ovarian cells 
and breast cancer cells exhibit a deficiency in the DNA 
DSB repair machinery (although the extent of the defi-
ciency likely differs: heterozygous in normal ovarian cells 
and likely homozygous in breast cancer cells due to a sec-
ond genetic event, as suggested by Knudson’s hypothesis). 
Consequently, both cell types should respond similarly to 
chemotherapeutic drugs that induce DNA DSBs, resulting 
in DNA damage accumulation, insufficient repair, apop-
tosis activation, and cell death [26]. In ovarian cells, this 
leads to reduced AMH biosynthesis. In WT patients, any 
DNA repair deficit (if present) would only affect breast 
cancer cells due to somatic BRCA1/2 mutations, explain-
ing the lack of correlation between AMH decrease and 
tumor size reduction. This suggests that in gBRCApv 
patients, ovarian cells mimic the response of breast cancer 
cells to DNA-damaging chemotherapeutic drugs. Whether 

Fig. 1   Change in serum AMH levels (expressed as median and 95% 
CI) between baseline, mid-chemotherapy (Mid-CT), and end of CT 
(End-CT). **p < 0.01; *p < 0.05 by Mann–Whitney U test

Fig. 2   Relationship between tumor size change after chemotherapy 
(CT) and AMH change (in pmol/l) between baseline and Mid-CT in 
breast cancer patients with a gBRCApv (A) or wild-type (wt) (B)
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this conclusion also applies to other DNA-crosslinking 
agents, such as platinum salts, used in breast cancer treat-
ment [27] remains to be determined.

From a clinical perspective, these results suggest that, 
in gBRCApv, monitoring AMH changes during NAC 
(from baseline to Mid-CT) using a hypersensitive assay 
could provide early information on the response of BRCA-
deficient breast cancer cells to the anthracycline regimen. 
Additionally, the performance of this new indicator in 
comparison to other early predictors of tumor response, 
such as ctDNA [28] or FDG uptake changes [29], remains 
to be evaluated. However, no conclusions can be drawn 
regarding the relationship between treatment response, 
assessed by histological criteria, and AMH changes 
between baseline and Mid-CT based on the current data. 
Further studies with larger patient cohorts are necessary.

The strength of this study lies in its first-time investiga-
tion of AMH level changes in BRCA1/2-mutated versus 
non-mutated young breast cancer patients, both at base-
line and during NAC, alongside tumor size changes. We 
observed a significant difference between the two popu-
lations, suggesting higher gonadotoxicity in the mutated 
patients. However, we acknowledge that the retrospective 
design and small size of this pilot study limit the abil-
ity to draw firm conclusions. Nevertheless, these findings 
provide a foundation for future prospective studies with 
larger populations to better understand the mechanisms of 
gonadotoxicity and ovarian aging, and to confirm whether 
tumor response to NAC in gBRCApv patients can be pre-
dicted early through serum AMH level changes.
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