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Abstract

Spontaneous brain activity is characterized by bursts and avalanche-like dynamics, with

scale-free features typical of critical behaviour. The stochastic version of the celebrated Wil-

son-Cowan model has been widely studied as a system of spiking neurons reproducing

non-trivial features of the neural activity, from avalanche dynamics to oscillatory behaviours.

However, to what extent such phenomena are related to the presence of a genuine critical

point remains elusive. Here we address this central issue, providing analytical results in the

linear approximation and extensive numerical analysis. In particular, we present results sup-

porting the existence of a bona fide critical point, where a second-order-like phase transition

occurs, characterized by scale-free avalanche dynamics, scaling with the system size and a

diverging relaxation time-scale. Moreover, our study shows that the observed critical behav-

iour falls within the universality class of the mean-field branching process, where the expo-

nents of the avalanche size and duration distributions are, respectively, 3/2 and 2. We also

provide an accurate analysis of the system behaviour as a function of the total number of

neurons, focusing on the time correlation functions of the firing rate in a wide range of the

parameter space.

Author summary

Networks of spiking neurons are introduced to describe some features of the brain activ-

ity, which are characterized by burst events (avalanches) with power-law distributions of

size and duration. The observation of this kind of noisy behaviour in a wide variety of real

systems led to the hypothesis that neuronal networks work in the proximity of a critical

point. This hypothesis is at the core of an intense debate. At variance with previous claims,

here we show that a stochastic version of the Wilson-Cowan model presents a phenome-

nology in agreement with the existence of a bona fide critical point for a particular choice

of the relative synaptic weight between excitatory and inhibitory neurons. The system

behaviour at this point shows all features typical of criticality, such as diverging timescales,

scaling with the system size and scale-free distributions of avalanche sizes and durations,
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with exponents corresponding to the mean-field branching process. Our analysis unveils

the critical nature of the observed behaviours.

Introduction

Spontaneous brain activity shows complex spatio-temporal patterns characterized by a rich

phenomenology, including power-law spectra [1], instabilities and metastability transitions

[2–4], synchronization [5, 6], the presence of multiple spatio-temporal scales [7, 8], etc.

Another striking feature is the occurrence of bursts, or avalanches, as first observed in organo-

typic cultures from coronal slices of rat cortex [9]. This kind of behaviour has been confirmed

in a wide variety of systems, from cortical activity of awake monkeys [10] to human fMRI

(functional Magnetic Resonance Imaging) [11] and MEG (MagnetoEncephaloGraphy) record-

ings [12]. In experiments, the distribution of avalanche size S is characterized by the scaling

law PðSÞ � S� tS with exponent τS’ 1.5, whereas the distribution of the avalanche duration T
follows the scaling PðTÞ � T � tT with τT’ 2. Both these behaviours are consistent with the uni-

versality class of the mean-field branching process [13], where the propagation of an avalanche

can be described by a front of independent sites that can either trigger further activity or die

out.

The hypothesis that some features of the brain activity can be interpreted as the result of a

dynamics acting close to a critical point has inspired several statistical models where a critical

state can be selected by the fine tuning of a parameter [14–16], or is self-organized [17–20].

Numerical data for different neuronal network models well reproduce experimental results.

On the other hand, other stochastic models have been proposed that can reproduce the ava-

lanche dynamics of the neural activity, without invoking the existence of an underlying critical

behaviour. Among these models of spiking neurons, a central role is played by the celebrated

Wilson-Cowan model (WCM), which describes the coupled dynamics of populations of excit-

atory and inhibitory neurons [21–24]. One of the major merits of this model is that it allows

for analytical treatment in the large population size limit [22, 25, 26]. The stochastic version of

this model has been shown to reproduce avalanche dynamics [26] and oscillatory behaviour of

the activity [27]. However, the underlying mechanisms responsible for such phenomenology

have been identified in the noisy functionally coupled structure of the dynamics, rather than in

the presence of a critical point.

Requirements to assess critical behavior

In order to clarify the main requirements for the behaviour of a system to be classified as criti-

cal, here we briefly summarize the fundamental features of criticality [28]. Second order (criti-

cal) phase transitions are characterized by singularities in the proximity of a specific value of a

control parameter, for instance the temperature in thermal phase transitions, in the limit of

infinite system sizes and, generally, for vanishing external fields. More explicitly, fundamental

properties of the system either diverge or go to zero approaching the critical value of the

parameter. In particular, the order parameter of the system goes continuously to zero at the

critical point, being non-zero only on one side of the transition (low temperatures in thermal

systems), whereas the response function, proportional to the fluctuations of the order parame-

ter, diverges. Fundamental requirement of second order phase transitions is that this singular

behaviour is described by a function that in the neighbourhood of the critical point can be

approximated by a power law, neglecting terms of higher order representing corrections to

scaling. This property allows one to define a critical exponent for each quantity of interest and
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therefore a family of critical exponents characterizing the critical behaviour, named universal-

ity class. Different systems can belong to the same universality class if they are described by

Hamiltonians with the same symmetries. Since critical transitions occur in systems of interact-

ing components, the divergence of the response function implies, by fluctuation-dissipation

relations, that at the critical point the spatial and temporal correlation ranges diverge in an

infinite system. The divergence of the temporal correlation range is expression of the well-

known critical slowing down taking place at the critical point, whereas the divergence of the

correlation length expresses the large scale sensitivity of the system to external perturbations.

In finite systems, the spatial correlation range at criticality equals the system size. As a con-

sequence, a diverging (or equal to the system size) correlation length implies that no character-

istic size exists in the system and therefore the extension of the power law regime, namely the

cutoff, must scale with the system size. Therefore, the divergence of the correlation length and

the absence of a characteristic size are reflected in the power law behaviour of characteristic

distributions. Summarizing, to assess that a system exhibits critical behaviour, one must iden-

tify an order parameter going continuously to zero at a critical value of a control parameter. At

the critical point, the fluctuations of the order parameter must diverge, as well as the range of

temporal and spatial correlations. In finite systems criticality implies that the cutoff in power

law behaviour should scale with the system size.

A classic example of a second order phase transition is the ferro-paramagnetic transition

exhibited by the Ising model Hamiltonian in zero external magnetic field. The magnetization

per spin, which plays the role of the order parameter, is different than zero (the ferromagnetic

phase) at low temperature, namely below the critical temperature Tc, vanishes at Tc and

remains zero above Tc (the paramagnetic phase). For this transition the response function is

the magnetic susceptibility, namely the derivative of the magnetization with respect to a van-

ishing external magnetic field. This susceptibility is indeed the spatial integral of the fluctua-

tions of the magnetization and diverges at Tc due to the divergence of the correlation length,

namely the size of clusters of correlated spins. All these singularities approaching Tc behave as

power laws, defining the well-known Ising model universality class [28]. It is interesting to

mention that the Ising model, besides this second order phase transition in zero field, also

shows a first order phase transition for varying non-zero magnetic fields, below Tc. A first

order phase transition is conversely characterized by a discontinuous order parameter and,

eventually, the presence of hysteresis [29]. Increasing fluctuations approaching the transition

can be observed also in this context, but the scaling with the system size is usually lacking,

hampering the definition of critical exponents. The choice of the control parameters is, there-

fore, crucial in determining the order of the phase transition and the two phenomena can

coexist in the same model (see Discussion).

This well-established scenario for equilibrium systems described by a Hamiltonian has

been extended also to non-equilibrium open systems, even in the case where a Hamiltonian is

not defined [30]. In particular, neuronal networks (biological and models) represent an

instance of an entire field of systems where non-equilibrium phase transitions can occur in a

self-organized matter, namely in the absence of a tuning parameter but due to the interaction

of many degrees of freedom [20, 31, 32]. Also in non-equilibrium systems a continuous transi-

tion can be observed, with critical exponents typical of a well-defined universality class. More

specifically, according to the conjecture by Janssen and Grassberger [30], systems with short-

range interactions, exhibiting a continuous phase transition into a single absorbing state,

belong generically to the Directed Percolation universality class, provided that they are charac-

terized by a one component order parameter without additional symmetries and without

unconventional features such as quenched disorder. Different scaling behavior is expected to

occur in systems where at least one of these requirements is not fulfilled. We stress that both
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directed percolation and branching process on a tree, therefore in the mean field approxima-

tion, do provide the same universality class.

Here we reconsider the stochastic WCM in this framework, addressing the central issue

related to its critical behaviour. First, we observe that this model is defined by dynamical equa-

tions which are not derived from a Hamiltonian function describing the energy of the system.

Therefore a real thermodynamic phase transition, where singularities in the second derivative

of the free energy occur, is not expected. However, we present a systematic analysis of the fea-

tures typical of a critical behaviour, showing that a bona fide critical point in the parameter

space of the WCM can be actually identified. In particular, we show that: i) the mean firing

rate plays the role of the order parameter, passing from zero value to a finite value across the

critical point; ii) the correlation time of the order parameter diverges at the critical point; iii)

the avalanche size and duration distributions follow a power-law behaviour; iv) for finite sys-

tems, this power-law regime scales with the system size, as expected at the critical point. More-

over, we show that the critical exponents fall within the universality class of the mean-field

branching process [13].

Results

The stochastic Wilson-Cowan model

The stochastic version of the Wilson-Cowan model [26] describes the coupled dynamics of NE

excitatory and NI inhibitory neurons. The state ai of neuron i can be active active (ai = 1) or

quiescent (ai = 0) and evolves according to a continuous-time Markov process. The transition

rate from an active state to a quiescent state (1! 0) is α for all neurons, while the rate for the

inverse transition (0! 1) is described by the activation function f(si) that depends on the i-th

neuron. The total synaptic input si is defined as

si ¼
X

j

wijaj þ hi; ð1Þ

where wij are the synaptic strengths and the parameter hi plays the role of a small external

input that adds up to the synaptic inputs from the connected neurons and the sum runs over

all neurons. The activation function is given by

f ðsÞ ¼

(
b tanhðsÞ if s > 0;

0 if s � 0;
ð2Þ

where β has the dimension of an inverse time. The quantity s represents the distance of the

membrane potential from the firing threshold and is measured in mV. In Eq (2) s is made a-

dimensional by dividing by 1 mV. In the following we consider that each neuron is coupled

with all other neurons. The synaptic weights wij are equal to wEE/NE for excitatory-excitatory

connections, wIE/NE for excitatory-inhibitory connections, −wEI/NI for inhibitory-excitatory

connections and −wII/NI for inhibitory-inhibitory connections. Therefore the input of a neu-

ron, in the large N limit, only depends on the excitatory or inhibitory type of the neuron,

namely si = sE if the i-th neuron is excitatory, and si = sI if the i-th neuron is inhibitory. In the

following we set α = 0.1 ms−1, β = 1 ms−1, NE = NI = N, hE = hI = h, and consider symmetric

synaptic weights wEE = wIE = wE, wII = wEI = wI. Thus sE = sI = s, with s ¼ wE
N k � wI

N l þ h, and

0� k� N and 0� l� N are respectively the numbers of active excitatory and inhibitory
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neurons [26]. In the following we will focus on the instantaneous firing rate, defined as

R ¼ 1 �
l þ k
2N

� �

f ðsÞ; ð3Þ

so that the mean number of neurons that fire in a small time interval Δt is given by NRΔt.
The temporal evolution of the system can be effectively described in terms of the coupled

non-linear Langevin equations [33]

dk
dt
¼ � akþ f ðsÞðN � kÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
akþ f ðsÞðN � kÞ

p
ZEðtÞ; ð4aÞ

dl
dt
¼ � al þ f ðsÞðN � lÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
al þ f ðsÞðN � lÞ

p
ZIðtÞ; ð4bÞ

where the noises satisfy hηi(t)i = 0, hηi(t)ηj(t0)i = δij δ(t − t0). Following Ref. [26], we make a

Gaussian approximation and set that the number of active neurons is the sum of a determin-

istic component and a stochastic perturbation, i.e. k ¼ NEþ
ffiffiffiffi
N
p

xE and l ¼ NI þ
ffiffiffiffi
N
p

xI .

Introducing the variables S = (E + I)/2 and Δ = (E − I)/2, which represent the total average

activity and the imbalance between excitatory and inhibitory activity, respectively, and

expanding Eq (4) in powers of N−1/2, the leading terms proportional to N provide a set of

dynamical equations for the deterministic components

dS
dt
¼ � aSþ ð1 � SÞf ðsÞ; ð5aÞ

dD
dt
¼ � ½aþ f ðsÞ�D: ð5bÞ

At long times, Δ relaxes to the fixed point value equal to zero, expression of the balance of

excitation and inhibition [34] and direct consequence of the hypothesis of symmetric synaptic

connections. Conversely, S relaxes to the fixed point S0, given by the solution of the equation

aS0 ¼ f ðs0Þð1 � S0Þ; ð6Þ

with s0 = w0S0 + h and w0 = wE − wI. We stress that, by this definition, w0 expresses the relative

balance between the excitatory and inhibitory connection strength, and it will turn out to be

the parameter controlling the critical transition. In addition, terms proportional to N1/2 in Eq

(4), can be written as the linearized Langevin equations for the fluctuating components [22,

25, 26]

d
dt

xS

xD

 !

¼
� 1=t1 wff

0 � 1=t2

 !
xS

xD

 !

þ
ffiffiffiffiffiffiffiffi
aS0

p ZSðtÞ

ZDðtÞ

 !

; ð7Þ

where ξS = (ξE + ξI)/2, ξΔ = (ξE − ξI)/2, the feed-forward term wff = (1 − S0)(wE + wI)f0(s0) and

1=t1 ¼ aþ f ðs0Þ � ð1 � S0Þw0f 0ðs0Þ; ð8aÞ

1=t2 ¼ aþ f ðs0Þ: ð8bÞ

The times τ1 and τ2 represent the correlation times in the linear approximation of the

dynamical equations. Indeed, in such approximation the temporal correlation functions Cxy(t)
= hx(t)y(0)i − hxihyi, where x and y are two observables and where the symbol h� � �i represents

an average over noise in the stationary state (see Methods), can be written as the linear
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combinations of two exponential decays [35] (see Methods for the explicit expressions)

CxyðtÞ ¼ Axy;1e� t=t1 þ Axy;2e� t=t2 : ð9Þ

Note that Eq (6) can have more than one solution. In this case, the relevant one is the one

characterized by positive values of the relaxation times τ1 and τ2, so that the fixed point is

attractive. On the other hand, fixed points characterized by negative values of either τ1 or τ2

are repulsive and not relevant to the dynamics of the system. An accurate analysis of the stabil-

ity properties of the WCM for finite external fields can be found for instance in [36].

Critical point of the dynamical equations

We here discuss the behavior of the system predicted by the linear noise approximation,

namely in the limit of very large system size. When the external inputs h is zero, S0 = 0 is

always a solution of the fixed point Eq (6). However, one can show, by taking the linear

approximation of the hyperbolic tangent, that there is a critical value w0c = αβ−1. This value

expresses the balance between the activation and disactivation characteristic neuronal times

and therefore can be interpreted as an optimal value for excitation/inhibition balance. In par-

ticular, for w0 < w0c (when inhibition dominates) the fixed point S0 = 0 is stable, whereas for

w0 > w0c (when excitation dominates) it is unstable and another stable point S0’ (w0 − w0c)/

w0 > 0 appears continuously from zero at the onset of the transition. When h> 0 there is

always only one attractive fixed point with S0 > 0 and the transition is smoothed out (see

Methods).

In Fig 1A we show the firing rate R0 = (1 − S0)f(w0S0 + h) computed at the attractive fixed

point, as a function of w0 for different external input h. This quantity shows the typical behav-

iour of an order parameter. In particular, for h = 0, R0 = 0 for w0 < w0c, whereas it continu-

ously increases for w0� w0c as R0� (w0 − w0c), according to what expected in a second-order

phase transition. For finite h values, R0 shows a qualitatively similar behaviour characterized

by a continuous increase, and the transition is smoothed out.

Fig 1. Order parameter and its variance. (A) Analytical dependence of the firing rate per neuron at the fixed point on

the value of w0, for different values of h. (B) Normalized variance σRR = Nh(R − R0)2i as a function of w0. (C) Fano

factor σRR/R0. (D) Square coefficient of variation sRR=R2
0
, that is equal to N times the variance of the ratio R/R0. Other

parameters: α = 0.1 ms−1, β = 1 ms−1, wE + wI = 13.8.

https://doi.org/10.1371/journal.pcbi.1008884.g001
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Next we analysed the behaviour of the variance of the firing rate at the fixed point, as a func-

tion of w0 for different h values. For a large number of neurons, the variance of the firing rate

is proportional to N−1 (see Methods), therefore σRR = Nh(R − R0)2i is independent of N, and

can be computed in the linear approximation (see Methods). In Fig 1B we show σRR as a func-

tion of w0 for several values of h. For h = 0 it reaches a maximum at the critical point w0c = 0.1

and sharply vanishes for w0 < w0c. For finite values of h, the variance shows a smooth maxi-

mum close to the critical point. The fact that the variance of the order parameter does not

diverge at the critical point, unusual in the framework of second order phase transitions, can

be attributed to the vanishing of the noise amplitude in Eq (7). This is due to the particular

choice of the activation function. Indeed, different functional forms for f(s) lead to the a non-

zero S0 at the critical point and to diverging fluctuations. However, such a divergence is

observed in the ratio of the variance to the mean value of the order parameter. In Fig 1C we

show the Fano factor of the firing rate, that is the ratio σRR/R0. This quantity is defined as the

ratio of the variance and the mean value, and measures how much the statistics of a variable

deviates from the behaviour expected for a Poissonian variable. In the present case, it diverges

at the critical point for h = 0, with a behaviour σRR/R0� |w0 − w0c|
−1, while it shows a maxi-

mum near w0 = w0c for h> 0.

Moreover, in Fig 1D we show the squared coefficient of variation sRR=R2
0
. Considering that

the linear approximation is derived under the condition that fluctuations are much smaller

than the average firing rate (in this case close to the fixed point value), this quantity can be

interpreted as the limiting value of N for its validity. Indeed, if N � sRR=R2
0
, then the standard

deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðR � R0Þ
2
i

q

is much smaller than the mean R0 and the linear approximation holds

(see below), conversely for N � sRR=R2
0

the opposite is true. Therefore, the divergence of this

quantity near the critical point means that, no matter how large N is, the linear approximation

does not apply.

The critical behaviour in standard critical phenomena is accompanied by the slowing down

of the dynamics. This is evidenced by the divergence of the characteristic time-scales of the sys-

tem. To study the decay of the correlation function close to the critical point, we observe that

when h = 0 and w0’ w0c, S0 and s0 = w0S0 are much smaller than one, so that tanh(s0)� s0.

Using this approximation in Eq (8), we find that t1 �
1

bjw0 � w0c j
both for w0 < w0c and w0 > w0c,

while τ2� α
−1. If h> 0, the divergence of τ1 is rounded up, and one finds a maximum at w0 =

w0c, diverging for h! 0. In Fig 2A and 2B we show the autocorrelation time τ1 in the linear

approximation, where a clear divergence is observed for zero external field.

Fig 2. Divergence of the correlation time at criticality. (A) Analytical result for the decay time τ1 in the linear

approximation, for the same parameters of Fig 1. (B) Contour plot of τ1 as a function of both h and w0. The graphs

show the divergence of the decay time at the critical value w0c = 0.1.

https://doi.org/10.1371/journal.pcbi.1008884.g002
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In conclusion, near the critical point w0 = w0c and for h = 0, both the Fano factor and the

correlation time of the firing rate diverge. Divergence is also found for the Fano factor and

correlation time of other dynamical variables, e.g. the total number of active neurons. These

results provide further evidence that the occurring phenomenology can be rightfully inter-

preted in the framework of critical systems.

Firing rate dynamics

Near the critical point the linear approximation does not hold even for very large system sizes.

We support this conclusion by analysing the instantaneous firing rate (Fig 3) as a function of

time for h = 10−5 and three values of w0, w0 = 1 (upper row), w0 = 0.2 (middle row) and w0 =

0.1 (lower row). For each value of w0 we show two values of N, N = 103 on the left and N = 105

on the right. For w0 = 1 (upper row) the normalized variance is σRR’ 6, so that the dynamics

for N� 6 is always “continuous”, smoothly fluctuating around the attractive fixed point, and

can be accurately described within the linear approximation. For w0 = 0.2 (middle row), the

normalized variance is σRR’ 2400, therefore if N< σRR (left) the dynamics of the system is

irregular and characterized by avalanches. The firing rate frequently hits the value R = 0, and a

“downstate” of the network follows, where the activation of the neurons is controlled only by

the external input h and the activity recovery can take a long time if h is small. On the right,

conversely, N� σRR, and the dynamics becomes “continuous”, as in the previous case. Finally,

near the critical point, for w0 = 0.1 (lower row), the normalized variance is σRR’ 4.6 × 107,

therefore the dynamics is characterized by avalanches up to N = 105 and above.

Fig 3. Firing rate for neuron at the critical point and far from it. Firing rate measured in numerical simulations as a

function of time for wE + wI = 13.8, h = 10−5. Upper row: w0 = 1 (E dominates) (A), middle row: w0 = 0.2 (E

dominates) (C), lower row: w0 = 0.1 (E/I balance) (E), left column: N = 103, right column: N = 105 (B,D,F). Blue lines

represent the firing rate of the network, while gray dots represent single neuron spikes. Red lines show the value of the

firing rate R0 at the fixed point of the dynamics. Note that this value can be quite different from the mean firing rate

(green lines), when large non linear effects are present.

https://doi.org/10.1371/journal.pcbi.1008884.g003
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This qualitative analysis suggests that the occurrence of the avalanche activity in dynamics

of the stochastic WCM is indeed related to the presence of a critical point. If the system is

moved away from the critical point, this kind of behaviour persists as long as the size of the sys-

tem is small enough and disappears for larger sizes. More precisely, the system size must be

smaller than the squared coefficient of variation of the firing rate. In this case, fluctuations of

the firing rate are much larger than the mean value and the dynamics becomes avalanche-like.

Avalanche dynamics

The above conclusions are strengthened by the quantitative analysis of the avalanche dynam-

ics. We study the distribution of avalanches in the WCM simulated by the Gillespie algorithm

[37] (see Methods). We implement two different procedures to define an avalanche and we

start discussing the statistics of avalanches defined by the discretization in time bins of the tem-

poral signal. More precisely, we divide the time in discrete bins of width δ [9] and identify an

avalanche as a continuous series of time bins in which there is at least one spike (i.e., a transi-

tion of one neuron from a quiescent to an active state). The size of the avalanche is defined as

the total number of spikes, while the duration is the number of time bins of the avalanche mul-

tiplied by the width δ of the bins.

In Fig 4 we show the dependence of the size and duration distribution functions on the

time bin δ, for w0 = 0.1, h = 10−6, N = 106. The behaviour of the distribution for small and large

Fig 4. Size and duration avalanche distributions. (A) Distribution function of the avalanche sizes on the whole

observed range. (B) Distribution function of the avalanche sizes on the region where robust power law behaviour is

observed. (C) Distribution function of the avalanche duration as a function of the number of bins. (D) Distribution

function of the avalanche duration as a function of time. Parameters w0 = 0.1, h = 10−6, N = 106. Different curves

correspond to different values of the bin width δ, introduced to define the avalanche (see Methods). (E) Exponents of

size and duration distributions, with error bars, computed using the estimator introduced in [38, 39], for different

values of the lower bound of the fitting window. Error bars are not shown if they are smaller than the symbol size. (F)

Size distribution function of the avalanches for w0 = 0.1, h = 10−6, and different values of the system size N = 103 − 107.

As expected for a critical behaviour in finite systems, the exponential cut-off scales with N.

https://doi.org/10.1371/journal.pcbi.1008884.g004
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avalanche sizes is separately evidenced in Fig 4A and 4B. We notice that at small sizes the slope

of the curves strongly depends on the bin width, as well evidenced also in experimental data

[9–12]. Conversely, at large sizes all the curves exhibit a slope quite independent of the bin

width, according to the power-law dependence PðSÞ � S� tS with an exponent τS very close to

3/2. Analogously, in Fig 4C and 4D the distribution of avalanche durations exhibits a scaling

PðTÞ � T � tT with an exponent τT� 2, which is very robust with the bin width. In Fig 4E we

show the values of both exponents with error bars that best fit the data using the estimator

introduced by Clauset et al. [38] (see Methods). It is evident that, if exponents are evaluated

restricting the procedure to the large avalanche regime, their value converges to the expected

exponents of the mean field branching process universality class, independently of the bin size

[13]. This observation suggests that an underlying mechanism of marginal propagation of neu-

ral activity could be responsible for the avalanche behaviour.

As expected for critical phenomena in finite systems, at the critical point the power-law

behaviour of the avalanche size distribution function presents an exponential cut-off that scales

with the system size. This is clearly shown in Fig 4F for w0 = 0.1 and vanishing external field,

confirming that the power-law behaviour of the distribution is a genuine expression of the

absence of a characteristic size at the critical point. We have also considered a different ava-

lanche definition, through the introduction of a finite threshold in activity [40], confirming

that this can lead to wrong values of critical exponents [41] (see Methods).

In recent years, the scaling properties of the avalanche shape have received wide attention

in the community [42], searching for the collapse onto a universal curve according to a specific

rescaling. Indeed, this analysis has been first proposed in the context of the crackling noise

[43], where the scaling exponent for the avalanche size as a function of its duration has been

derived to be γ = (τT − 1)/(τS − 1). Under this assumption, it is possible to obtain the collapse

of the shapes of avalanches with different sizes onto a universal curve. Here we examine first

the scaling behavior of the avalanche size versus its duration, see Fig 5A and 5C. Results evi-

dence the expected scaling behavior of the avalanche size vs. its duration: The exponent γ is

slightly larger than 2, the value predicted by the previous relation for τT = 2 and τS = 1.5 (γ�
2.1 ± 0.05 for 50% inhibitory neurons and γ� 2.02 ± 0.05 for 20% inhibitory neurons, where

the fit is on the interval T 2 [80, 200]). Moreover, the avalanche shapes for different sizes col-

lapse onto a universal function for durations up to 400 time steps, corresponding to the scaling

regime for the size distributions. However, at variance with the results from crackling noise

[43], the shape is non-parabolic and strongly asymmetrical for all avalanche durations, for

both percentages of inhibitory neurons.

Temporal correlation functions

In order to complete the description of the critical behaviour shown by the WCM, we focus

here on the temporal correlation function of the firing rate simulated by the Gillespie algo-

rithm. At each time we compute the mean total activity S = (k + l)/2N and the difference Δ =

(k − l)/2N. We focus on the correlation function of the mean firing rate R = (1 − S)f[w0S +

(wE + wI)Δ + h] in the stationary state

CRRðtÞ ¼
hRðtÞRð0Þi � hRð0Þi2

hRð0Þ2i � hRð0Þi2
: ð10Þ

In Fig 6 we show the dependence of the correlation function on the number of neurons N
for h = 10−6 and two values of w0, w0 = 0.2 far from the critical point and w0 = 0.1, correspond-

ing to the critical point for h! 0. In both cases, the correlation function simulated by the Gil-

lespie algorithm (dots) tends to the value predicted by the linear approximation (continuous
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line) given by Eq (9) for N!1. However for w0 = 0.2, far from the critical point, numerical

data reproduce the linear approximation as soon as N≳ 105, while for w0 = 0.1 the conver-

gence is much slower. In Fig 7 we show the dependence of the correlation function on h for a

fixed value of the number of neurons, N = 107. Data confirm that at the critical point (w0 =

0.1) the decay of the correlation function slows down in the limit h! 0. As expected, critical

slowing down is not observed for w0 = 0.2.

The maximum correlation time, obtained from an exponential fit of the long time tail of the

functions, is plotted as a function of h in Fig 8A for w0 = 0.1. For a fixed value of the number of

neurons N, the correlation times saturate at a finite value at the critical point w0 = 0.1. The

value at which the time saturates however increases with the system size, so that the range of

agreement of the measured correlation time with the linear approximation prediction extends

toward smaller values of h for increasing N. In the limit N!1 the correlation time is always

given by the linear approximation for any value of h, and therefore diverges for h! 0. In Fig

8B we plot the maximum correlation time as a function of N for h = 10−6 and w0 = 0.1, 0.2. It

Fig 5. Shape of the avalanche distributions. Scaling of the avalanche size S as a function of its duration T for

networks with 50% (A) and 20% (C) inhibitory neurons. Collapse of the avalanche shape for avalanche size in the

scaling regime for notworks with 50% (B) and 20% (D) inhibitory neurons. Parameters w0 = 0.1, h = 10−6, N = 107.

https://doi.org/10.1371/journal.pcbi.1008884.g005

Fig 6. Temporal decay of the firing rate autocorrelation, role of the system size N. Time correlation function of the

firing rate for several values of N, for α = 0.1 ms−1, β = 1 ms−1, wE + wI = 13.8, h = 10−6, and w0 = 0.2 (A), w0 = 0.1 (B).

Dots correspond to the correlation function of the model simulated with the Gillespie algorithm, while the continuous

line corresponds to the linear approximation, that is valid for large values of N.

https://doi.org/10.1371/journal.pcbi.1008884.g006
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can be observed that the relaxation time saturates to the large value predicted by the linear

approximation for N!1 at the critical point w0 = 0.1, whereas it decreases to smaller values

far from the critical point.

Our analysis of the firing rate correlation function provides further evidence of the critical

behaviour occurring in the WCM. In particular, the divergence of the characteristic time is in

agreement with the slowing down of the dynamics in systems close to the critical point.

Discussion

The origin and nature of the power-law behaviour of the spontaneous activity in neural sys-

tems is a long-standing open issue. The observation of this dynamics in real systems is wide-

spread, as well as in different models proposed to explain it. Similar scaling behaviour is

indeed observed in a variety of integrate and fire neuronal network models, either self-orga-

nized, i.e. in absence of a tuning parameter [17, 20], or by adjusting at an appropriate value a

relevant parameter [14, 19]. The central question in this context is whether scale-free phenom-

ena are the mirror image of a genuine critical behaviour or emerge from non linear stochastic

dynamics. Among different approaches, the stochastic Wilson-Cowan model, formulated in

terms of the activity of populations of neurons, describes many interesting phenomena

observed in neural dynamics. Moreover, it presents the advantage of the possibility of being

analysed not only numerically but, most importantly, by an analytical approach under certain

approximations. In previous studies this model was indicated as an example where the emer-

gence of neuronal avalanches in the activity is not associated with a genuine critical point, but

rather the byproduct of the network structure with noisy neuronal dynamics [26]. In order to

clarify this point, we propose to explore a wider range of the parameter space, focusing on the

Fig 7. Temporal decay of the firing rate autocorrelation, role of the external input h. Time correlation function of

the firing rate for several values of h, for N = 107 and w0 = 0.2 (A), w0 = 0.1 (B), other parameters as in Fig 6.

https://doi.org/10.1371/journal.pcbi.1008884.g007

Fig 8. Long time scale behaviour as a function of the system size N and the external input h. (A) Maximum

correlation time extracted from an exponential fit of the long time tail of the correlation function, as a function of h
and for different values of N, for w0 = 0.1. The continuous red line corresponds to the linear approximation. (B)

Maximum correlation time as a function of N for h = 10−6 and w0 = 0.1, 0.2.

https://doi.org/10.1371/journal.pcbi.1008884.g008
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behaviour of different quantities, as the temporal correlation function of the firing rate, in

order to verify if a critical point can be identified, shedding new light on the nature of the phe-

nomenon observed in the model.

Several papers in previous literature have studied the WCM and similar models, evidencing

different kinds of behaviors, as first order phase transitions at the bifurcation point [36, 44,

45]. For instance, in [36], the authors considered the bifurcation transitions appearing upon

varying the (always finite) external voltage inputs. However, the observed first-order transi-

tions occur in a region of the parameter space of the model which does not overlap with that

studied in our work. In particular, the theoretical results show slowing down and increasing

fluctuations close to the bifurcation point and describe real systems in specific conditions,

such as anesthesia, sleep cycles or seizures (see for instance [46]), very differently from the

spontaneous activity state analyzed in the present study, namely in the absence of strong exter-

nal stimulations, such as administration of anesthetic drugs, neither to the case of transitions

between different sleep states, nor to the situation where epileptic crises can occur. In the

review by Breakspear and co-workers [47], the possible different behaviors in brain activity are

discussed. It is shown how the thermodynamic phase transitions in spatially extended systems

are somehow the counterpart of the bifurcation transitions for systems with few components.

This is an interesting remark, since second order phase transitions are observed only in sys-

tems with a sufficiently large number of degrees of freedom, namely in the thermodynamic

limit.

In the light of the above discussion, the first important remark is that critical behaviour is

expected for vanishing external fields. This requirement, together with the limit of very large

system sizes, represents the foundation of the symmetry breaking phenomenon originating

second order phase transitions. Recently critical behavior has been observed in non-zero field

in the presence of self-adaptation mechanisms [20, 48]. Here we analyse the analytical solution

of the WCM for vanishing h and in a wide range of the parameter values w0, searching for a

quantity playing the role of an order parameter. In fact, the linear noise approximation is

derived [22, 26] in the limit of very large N, namely in the thermodynamic limit. The analytical

solution evidences that it exists a particular value of the control parameter w0c above which,

for vanishing h, a second fixed point appears, beside the absorbing state S0 = 0. In the neigh-

bourhood of this critical value w0c, the system activity is small allowing for the linearisation of

the activation function. Interestingly, the critical value w0c = αβ−1 is the ratio of two character-

istic rates, the disactivation rate α and the activation one, β. Criticality is therefore tuned by the

optimal balance between these two (active-inactive) transitions: Below w0c the disactivation

rate is much shorter than the activation rate and the absorbing state attracts the dynamics.

Conversely, for very short activation times global activity becomes self-sustained even in the

absence of external fields. An intriguing alternative interpretation of the expression of the criti-

cal point stems from the consideration that βw0c = α is the characteristic neuronal disactivation

time. The l.h.s. is reminiscent of the product βJ in the Ising model, where β is the inverse tem-

perature (entropic parameter) and J the interaction strength (energetic parameter). Therefore,

the value of the critical point expresses also a non-local balance between the strength of the

connection between pre- and post-synaptic neuron and the activation time in the post-synap-

tic neuron.

Within the linear approximation hypothesis, the analytical solution is able to provide a

coherent description of the system dynamics in terms of the second order phase transition

framework. More precisely, the system firing rate plays the role of the order parameter, going

to zero at w = w0c, the correlation time diverges, evidencing the critical slowing down, as well

as the fluctuations of the firing rate with respect to the fixed point value. Interestingly, the

fixed point value for the variable Δ is Δ0 = 0, independently of w0. This suggests that the
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balance of the activity of excitatory and inhibitory neurons is a necessary but not sufficient

condition for criticality. However, the dynamic Eq (5) are derived under the hypothesis of

equal size populations of excitatory and inhibitory neurons, as well as symmetric connection

strengths between different populations. Therefore, in order to further investigate in the

WCM the role of balance of excitation and inhibition on the activity critical properties, it is

necessary to extend the analytical study and generalize the analytical solutions relaxing the

above hypothesis.

This analysis offers then a coherent scenario to understand the WCM behaviour and pro-

vides as well a tool to infer in which limit the linear approximation fails giving raise to bursty

behaviour. More precisely, in order to observe neuronal avalanches, the coefficient of varia-

tion, measuring the fluctuations of the order parameter, should be much larger than the system

size. In particular, for w0 ≳ w0c (Fig 3C and 3D) neuronal avalanches are found for the smaller

system size, whereas the linear approximation (continuous behaviour) holds for the larger N.

At the critical point (Fig 3E and 3F), fluctuations are larger than any N and avalanches are

always detected. Analogously, far from the critical point (Fig 3A and 3B) the linear approxima-

tion always holds and avalanches are never found. Interestingly, similar results have been

recently found for a different model [49]. Numerical data for the cortical branching model

have evidenced, in fact, that the firing rate goes to zero for a specific value of the control

parameter (the branching parameter), where the susceptibility diverges as well. As expected,

moving away from the critical point these features are no longer found since the system does

not satisfy any more the condition of vanishing external fields and the behaviour ceases to be

critical.

Having clarified under which conditions critical behaviour is to be expected, we address

next the issue of the scaling behaviour of neuronal avalanches. The determination of critical

exponents in experimental systems represent an important challenge in terms of the appropri-

ate tools to identify each avalanche. Common approaches implement the discretization of the

temporal signal in bins. This approach leads to exponents varying with the bin size, as a conse-

quence the optimal bin is identified with the one leading to a branching ratio equal to one, sig-

nature of a critical branching process [12]. Alternatively, a threshold in the amplitude of the

signal can be chosen, defining as avalanche size the area delimited by the signal above thresh-

old. A recent study has shown that special care must be taken implementing this method, in

order to get the right critical exponent values [41]. In the present study we implement both

approaches to identify the avalanche size, in order to verify the existence and robustness of the

universal scaling behaviour. Numerical simulations by the Gillespie algorithm are very efficient

numerically and allow the study of very large system sizes. This advantage turned up to be cru-

cial in identifying an interesting scaling behaviour of the distributions for very large avalanche

sizes. More precisely, by monitoring the value of the exponents as function of the bin size,

without imposing any additional requirement, we evidence that, as expected, τS and τT depend

on the bin size for moderate values of S, however for large avalanche sizes, S> 103, the scaling

of the distribution becomes independent of δ. This surprising result, evidenced only because

the analysis explored seven decades of N values, is in line with what expected from critical phe-

nomena. Indeed, the critical slowing down at the critical point implies the absence of a charac-

teristic time. By rescaling the time variable by a finite δ the temporal signal should be self-

similar and therefore δ-independent. Most importantly, the extension of the scaling regime

correctly scales with the system size. This behaviour can be then considered as a further confir-

mation of the critical nature of the activity in absence of external fields.

The universality class of the scaling behaviour for large avalanche sizes is in agreement with

the mean field branching model universality class. These results are consistent with a variety of

experimental data on different neuronal systems [9–12] and numerical simulations on
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complex networks in finite dimensions [17, 19]. We stress that it could appear surprising the

emergence of a mean field universality class in finite dimension. A possible explanation is the

small-world feature of functional networks, well supported by a number of experimental

results. Moreover, recently it has been shown [50] that, starting from a regular square lattice, a

neuronal integrate and fire model exhibits a crossover from the 2d sand pile behavior to the

mean field branching process universality class. This crossover is due to the interplay between

synaptic plastic adaptation and refractory time which makes the regular lattice evolve into a

tree with negligible loops. In order to clarify this point in the context of the WCM we per-

formed preliminary simulations on a 2d square lattice 32 × 32. On each site of the lattice we

placed one excitatory and one inhibitory neuron, for a total number of neurons N = 2048.

Each neuron can establish an average number of 80 synaptic connections at random, and the

connection probability is proportional to exp(−r/5), where r is the distance between two neu-

rons measured in lattice constant. Preliminary results show that the avalanche activity exhibits

exponents very close to the values detected for the fully connected network. However, due to

the limited system size, the scaling regime is limited to about one decade and the estimation of

the exponents is not fully accurate. Moreover, in this calculation we implemented the value of

the critical point w0c found for the fully connected network, even if a more precise identifica-

tion is necessary since the critical point is not a universal quantity but depends on the network

structure. Therefore, we plan to investigate the WCM behavior in finite dimensions in more

detail and with a better statistics in a future study.

Moreover, we observe that an alternative definition of avalanches, implementing a thresh-

old in the signal amplitude, can indeed lead to wrong exponent values (see Methods). In fact,

we recover the expected behaviour only for vanishing threshold, whereas for finite thresholds

the signal behaves as an Ornstein-Uhlenbeck process. This is an interesting observation since

it suggests that neglecting regions in the signal with small amplitudes provides a signal typical

of an uncorrelated process, in contrast with the feature of the whole neural activity.

The analytical calculation of the firing rate correlation function confirms the existence of a

critical value for the control parameter, w = w0c, where the correlation time diverges for van-

ishing external fields in the linear approximation. Numerical simulations confirm that at the

critical point the correlation function tends to the linear approximation behaviour in the limit

of very large N, with a correlation time which remains finite far from w0c and increases with N
at the critical point. This temporal relaxation behaviour, evidence of the critical slowing down,

confirms the critical features of the firing rate activity. In conclusion, we confirm that the

WCM model, able to reproduce a variety of complex features of neuronal activity, as oscilla-

tions and noisy limit cycles [27], exhibits critical behaviour at a specific value of the tunable

parameter in the thermodynamic limit and for vanishing external fields.

Methods

Stability of the fixed points

From Eq (6) one has that, for h = 0, the fixed point S0 = 0 is unstable if w0 > w0c and stable if

w0 < w0c, where w0c = α/β. Near the transition h = 0, w0 = w0c = α/β, assuming both h and S0

are small, so that a linear approximation of the hyperbolic tangent can be considered, Eq (6)

becomes

bw0S
2

0
þ ða � bw0 þ bhÞS0 � bh ¼ 0: ð11Þ

The only acceptable solutions are those with S0� 0. Since the first and third coefficient have

opposite sign, for h> 0 there is always exactly one acceptable solution. For h = 0, there is

always a solution S0 = 0. When w0� w0c this is the only acceptable solution, while for
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w0 > w0c we have also the solution S0’ (w0 − w0c)/w0 at first order in w0 − w0c. To investigate

the stability of the fixed point, we have to consider the sign of the eigenvalues of the Jacobian,

that is τ1 and τ2 given by Eq (8). These can be written also as

t� 1
1
¼ ð1 � S0Þ

� 1
½a � bw0ð1 � S0Þ

2
þ a2S2

0
w0=b�; ð12aÞ

t� 1
2
¼ að1 � S0Þ

� 1
: ð12bÞ

Note that the expressions (12) are exact. Therefore, eigenvalue t� 1
2

is always positive. At the

fixed point S0 = 0, t� 1
1
¼ bð1 � S0Þ

� 1
ðw0c � w0Þ, namely it is positive for w0 < w0c (fixed point

is stable) and negative for w0 > w0c (fixed point is unstable). For w0 > w0c and at the fixed

point S0’ (w0 − w0c)/w0, one has t� 1
1
’ bð1 � S0Þ

� 1
ðw0 � w0cÞ at first order in w0 − w0c, so

that τ1 is positive and the fixed point is stable.

Alternative definition of avalanches: Role of the threshold. In order to investigate the

robustness of the observed scaling behaviours, we study the avalanche statistics implementing

a different definition of avalanche, which is based on the analysis of the continuous temporal

signal of the firing rate. We set a fixed threshold value Θ, and define the avalanche as an inter-

val of time in which the firing rate is continuously above the threshold. The duration of the

avalanche is the width of the time interval, while the size can be defined in three different

ways: 1) as the total number of spikes observed in the time interval; 2) as the integral of the fir-

ing rate in the time interval; 3) as the integral of the difference between the firing rate and the

threshold value. Definitions 1) and 2) give quite similar results, because the total number of

spikes is proportional to the integral of the firing rate apart from small fluctuations. Fig 9A and

9B show the distributions of avalanche size and durations, defined with Θ = 0. We used defini-

tion 2 or 3 (they coincide in the case of Θ = 0) to measure the size of the avalanches. The expo-

nents obtained with this procedure fully agree with the ones obtained by temporal binning,

and are therefore those of a mean field branching process.

However, as recently pointed out in [41], for continuous-time signals, the introduction of a

finite threshold value in the definition of avalanches can lead to different scaling regimes. In

order to verify this point, we consider the case of finite thresholds, Θ> 0. In our analysis, we

consider as threshold the mean firing rate, Θ = hRi. For w0 = 0.1 and h = 10−6 the mean firing

rates fall within the interval from 0.63 Hz for N = 103 to 0.54 Hz for N = 106 (the firing rate at

the fixed point is R0 = 0.316 Hz), while for w0 = 0.2 and h = 10−3 the mean firing rates take

value in the interval from 11 Hz for N = 103 to 50 Hz for N = 106 (the firing rate at the fixed

point is R0 = 50.3 Hz).

Fig 9. Avalanche size and duration distributions measured from the analysis of the continuous-time series of the

firing ratesignal. The avalanche is defined as a continuous interval of time in which the firing rate is greater than a

zero threshold and its duration is the width of the time interval. (A) Distribution function of the avalanche sizes. (B)

Distribution function of the avalanche duration. Parameters: w0 = 0.1, h = 10−6, N = 106. Exponents of size and

duration distributions, computed using the estimator introduced in [38, 39] with lower bounds of the fitting windows

Smin = 10, tmin = 10 ms, are τS = 1.54 ± 0.03, τT = 2.04 ± 0.04.

https://doi.org/10.1371/journal.pcbi.1008884.g009
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In Fig 10 we show the size and duration distributions for w0 = 0.1 and h = 10−6. The sizes

were measured with the definition 3, that is as the integral of the difference between the firing

rate and the threshold. The observed power-law exponent for the sizes is −4/3, while the expo-

nent for the durations is −3/2, as expected for a random walk or Ornstein-Uhlenbeck process

[41].

Moreover, in Fig 11 we show the size distribution measured according to the definition 2,

that is as the integral of the firing rate, therefore integrating also the area below the threshold.

In this case, consistently with what observed in [41], one finds also for the size distribution an

exponent equal to −3/2, as for the duration distribution.

Our analysis confirms the warning resulting from the discussion presented in [41]: The

introduction of a threshold can lead to an incorrect evaluation of the scaling behavior. In the

present case, choosing the threshold Θ = 0 allows us to recover the same scaling exponents

obtained from the alternative definition of avalanche built on the time binning, in the univer-

sality class of the mean-field branching process. On the other hand, a different choice of Θ
hides this scaling and reveals a behaviour similar to the simple random walk model.

Fig 10. Avalanche size and duration distributions measured from a finite threshold. (A) Size distribution and (B)

duration distribution according to definition 3 for w0 = 0.1 and h = 10−6.

https://doi.org/10.1371/journal.pcbi.1008884.g010

Fig 11. Avalanche size distributions measured from a finite threshold. Distribution of the sizes according to

definition 2 for w0 = 0.1 and h = 10−6.

https://doi.org/10.1371/journal.pcbi.1008884.g011
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Analytic expressions of variances and correlation functions

The covariance matrix σ of the system (7) has elements σij = hξi(0)ξj(0)i with i, j = (S, Δ),

where h� � �i denotes an average in the stationary state, which satisfy the relation [51]

�
aS0 0

0 aS0

 !

¼Msþ sMT
; ð13Þ

where MT
denotes the transpose matrix of

M ¼
� 1=t1 wff

0 � 1=t2

 !

: ð14Þ

Solving Eq (13) one obtains

s ¼
aS0

2

t1 1þ
w2
ff t1t

2
2

t1þt2

� �
wff t1t

2
2

t1þt2

wff t1t
2
2

t1þt2
t2

0

B
@

1

C
A: ð15Þ

The inverse matrix σ−1 then reads

s� 1 ¼
2

aS0

t1 þ t2

2t1t2 þ t
2
2
þ t2

1
ð1þ w2

fft
2
2
Þ

�

t1þt2
t1

� wfft2

� wfft2

t1þt2þw2
ff t1t

2
2

t2

0

B
@

1

C
A:

ð16Þ

The elements of the time correlation matrix CðtÞ are obtained from the equations [51]

CijðtÞ ¼ ðeMtsÞij: ð17Þ

The matrix M has eigenvalues (−1/τ1, −1/τ2) and eigenvectors (1, 0)T and (−wff τ1 τ2/(τ1 − τ2),

1)T. Diagonalizing M, one obtains the matrix exponential

eMt ¼
1 �

wff t1t2
t1 � t2

0 1

 !
e� t=t1 0

0 e� t=t2

 !

�
1 �

wff t1t2
t1 � t2

0 1

 !� 1

¼
e� t=t1 t1t2wff ðe� t=t1 � e� t=t2 Þ

t1 � t2

0 e� t=t2

0

@

1

A:

ð18Þ

Note that in the case of τ1 = τ2 the upper right element in the above matrix becomes te� t=t1 .
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Next, from Eq (17), one obtains the explicit expressions for the cross-correlation functions

CSSðtÞ ¼
aS0t

2
1
t2

2

2ðt2
2
� t2

1
Þ

� ½ðt� 1
1
� t1t

� 2
2
� t1w2

ffÞe
� t=t1 þ t2w2

ffe
� t=t2 �

ð19Þ

CSDðtÞ ¼
aS0t1t

2
2
wff

2ðt2
1
� t2

2
Þ

2t1e
� t=t1 � ðt1 þ t2Þe

� t=t2
� �

ð20Þ

CDSðtÞ ¼
aS0t1t

2
2
wff

2ðt1 þ t2Þ
e� t=t2 ð21Þ

CDDðtÞ ¼
aS0t2

2
e� t=t2 : ð22Þ

Within the linear approximation valid in the limit of large number of neurons that we are

here considering, and in the stationary state when the deterministic components have relaxed

to the attractive fixed point, the firing rate (3) can be written as

RðtÞ ¼ R0 þ N � 1=2xRðtÞ; ð23Þ

where

xRðtÞ ¼ RSxSðtÞ þ RDxDðtÞ; ð24Þ

and

RS ¼
@R
@S

�
�
�
S0 ;D0

¼ w0ð1 � S0Þf
0ðs0Þ � f ðs0Þ ¼ a � t

� 1

1
; ð25Þ

RD ¼
@R
@D

�
�
�
S0 ;D0

¼ ðwE þ wIÞð1 � S0Þf
0ðs0Þ ¼ wff ; ð26Þ

are the derivatives of R computed at the fixed point. The correlation function of ξR(t) is there-

fore given by

hxRðtÞxRð0Þi ¼ RSCSSðtÞ þ RSRD½CSDðtÞ þ CDSðtÞ� þ R2
D
CDDðtÞ: ð27Þ

The variance of R can then be computed as h(R − R0)2i = N−1hξR(0)2i (note the factor N
appearing due to the definition 23), and σRR = Nh(R − R0)2i = hξR(0)2i, so that

sRR ¼ R2
S
sSS þ 2RSRDsSD þ R2

D
sDD; ð28Þ

where σSS, σSΔ and σΔΔ are the elements of the covariance matrix (15).

Numerical simulation methods

The network dynamics is simulated as a continuous-time Markov process, using the Gillespie

algorithm [37]. More precisely, the steps of the algorithm are the following: 1) for each neuron

i we compute the transition rate ri: ri = α if neuron i is active, or ri = f(si) if it is quiescent; 2) we

compute the sum over all neurons r = ∑i ri; 3) we draw a time interval dt from an exponential

distribution with rate r; 4) we choose the i–th neuron with probability ri/r and change its state;

5) we update the time to t + dt.
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For a very large number of neurons N> 107, we optimized the numerical computation by

simulating directly the Langevin Eq (4), with a fixed time step dt = 10−3 ms. In Fig 12 we show

that the two simulation methods coincide perfectly for N = 107.
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