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Background: We evaluated whether maternally-derived antibodies to a malarial vaccine candidate,
Plasmodium falciparum Schizont Egress Antigen-1 (PfSEA-1), in cord blood interfered with the develop-
ment of infant anti-PfSEA-1 antibodies in response to natural exposure.
Methods: We followed 630 Tanzanian infants who were measured their antibodies against PfSEA-1 (aa
810-1023; PfSEA-1A) at birth and 6, 12, 18, and 24 months of age, and examined the changes in anti-
PfSEA-1A antibody levels in response to parasitemia, and evaluated whether maternally-derived anti-
PfSEA-1A antibodies in cord blood modified infant anti-PfSEA-1A immune responses.
Results: Infants who experienced parasitemia during the first 6 months of life had significantly higher
anti-PfSEA-1A antibodies at 6 and 12 months of age compared to uninfected infants. Maternally-
derived anti-PfSEA-1A antibodies in cord blood significantly modified this effect during the first
6 months. During this period, infant anti-PfSEA-1A antibody levels were significantly associated with
their P. falciparum exposure when they were born with low, but not higher, maternally-derived anti-
PfSEA-1A antibody levels in cord blood. Nevertheless, during the first 6 months of life, maternally-
derived anti-PfSEA-1A antibodies in cord blood did not abrogate the parasitemia driven development
of infant anti-PfSEA-1A: parasitemia were significantly correlated with anti-PfSEA-1A antibody levels
at 6 months of age in the infants born with low maternally-derived anti-PfSEA-1A antibody levels in cord
blood and borderline significantly correlated in those infants born with middle and high levels.
Conclusions: Maternal vaccination with PfSEA-1A is unlikely to interfere with the development of natu-
rally acquired anti-PfSEA-1A immune responses following exposure during infancy.

� 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Malaria remains a leading killer of children globally with an
estimated 219 million cases and 435,000 deaths reported in 2017
[1]. Among species of the genus Plasmodium, P. falciparum is both
the most common cause of human malaria infection and the most
deadly [1]. The development of a malaria vaccine is considered an
important public health goal to prevent malaria morbidity and
mortality, nevertheless, vaccine development has focused on a
highly restricted repertoire of antigens [2], while vaccine candi-
dates at the latest stages of development confer only modest pro-
tection against P. falciparum malaria [3,4].

Clinical P. falciparum malaria is uncommon in infants less than
5 months of age [5–10], and P. falciparum infection in infants less
than 6 months of age born to mothers with existing immunity in
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malaria endemic regions is generally found to be of low para-
sitemia (<100 parasites/lL of blood) [7,8,11–13]. These subclinical
infections usually self-resolve, leading to the hypothesis that
young infants are equipped with efficient means to control both
parasitemia and morbidity [8,10,12,14]. Risk of clinical symptoms
increases after 3–6 months of age as demonstrated in studies con-
ducted in sub-Saharan Africa [8,9,11,15,16]. It is thought that pas-
sive transfer of maternal antibody during gestation affords
protection from malaria among young infants. Immune responses
to a number of antigens have been evaluated in mother-infant
pairs in the context of placental malaria or malaria in pregnancy
[17–22]. While several have focused on the impact of placental
malaria on malaria outcomes during infancy [2–4,6,23], few stud-
ies have investigated the influence of maternal antibodies on infant
antibody acquisition.

P. falciparum Schizont Egress Antigen-1 (PfSEA-1) has emerged
as a promising vaccine candidate antigen. PfSEA-1 is a 244-kDa
acidic phosphoprotein expressed in schizont-infected red blood
cells and is essential for blood-stage replication. Antibodies against
PfSEA-1A arrest parasite egress of late-stage schizont infected ery-
throcytes in an in vitro growth assay. In human studies, antibodies
to recombinant PfSEA-1A (aa 801-1023; PfSEA-1A) predict
decreased incidence of severe malaria in Tanzanian children and
significantly reduced parasite densities in Kenyan adolescents
and adults [24]. Moreover, we have recently reported that high
maternally-derived anti-PfSEA-1A antibody levels in cord blood,
which were highly correlated with anti-PfSEA-1A antibody levels
in maternal peripheral blood, significantly reduced the risk of sev-
ere malaria in infants up to the age of 12 months [25]. In endemic
areas, exposure to parasite antigens results in the development of
anti-PfSEA-1A antibodies [24]. Given that anti-PfSEA-1A antibodies
protect against severe malaria, we hypothesized that maternally-
derived anti-PfSEA-1A antibodies could cross the placenta and
interfere with the active production of anti-PfSEA-1A antibodies
by the infant. Moreover, studies of several standard childhood
immunizations have raised the concern that infant seroconversion
could be inhibited by the presence of maternal antibodies [26–28].
Therefore, understanding whether maternally derived antibodies
interfere with early acquisition of immune responses to PfSEA-1
is critical when considering strategies for maternal or infant vacci-
nation [29].

Several studies have observed the dynamics of maternally-
transferred and naturally acquired antibodies against P. falciparum
in infants [30–32], however, the dynamics of antibody responses to
current vaccine candidates, including PfSEA-1, have not been
reported. The objectives of this study were to evaluate the role of
natural exposure to parasites on anti-PfSEA-1A antibody levels
and to examine whether maternally-derived anti-PfSEA-1A anti-
bodies in cord blood modify or interfere with the development of
infant anti-PfSEA-1A immune responses following natural expo-
sure to P. falciparum.
2. Materials and methods

2.1. Study participants

The study participants were enrolled in a birth cohort known as
the Mother-Offspring Malaria Study (MOMS) Project. Details of the
MOMS project have been described in other publications
[24,25,33,34]. Briefly, this project was carried out in the Muheza
district of Tanzanian, a region with high malaria transmission,
from September 2002 through October 2005. The participants con-
sisted of pregnant women, delivered at Muheza Designated District
Hospital, and their children born within the study period. Children
were followed from birth until 4 years of age. Blood sample collec-
tions were routinely performed every 6 months. Children were
examined for P. falciparum infection using blood smear analysis
at birth, biweekly during infancy, monthly after infancy, and any
time they were sick. A total of 785 children were followed for up
to 3.5 years from birth. Our study population included only infants
and children whose cord blood anti-PfSEA-1A levels were mea-
sured and whose peripheral anti-PfSEA-1A levels were measured
at least once before 24 months of age.

Of the 785 children enrolled, we excluded 155 children whose
anti-PfSEA-1A antibody levels in cord blood were not captured or
who were not observed at least once after birth, resulting in an
analytic sample of 630 children. These subjects provided 1225
infant or child anti-PfSEA-1A antibody measurements and 2357
parasite density examinations.

This study was approved by the Institutional Review Boards of
Rhode Island Hospital and Medical Research Coordinating Commit-
tee of the National Institute for Medical Research, Tanzania. Writ-
ten informed consent was obtained from each child’s mother
before participation for herself and her newborn.

2.2. Sample collection, processing and anti-PfSEA-1 assays

Blood samples were collected by venipuncture and plasma was
stored at �80 �C after centrifugation. Parasitemia and parasite den-
sity [asexual stage parasites/200 white blood cells (WBCs)] for
P. falciparum were determined by a Giemsa-stained blood smear
prepared from venous or capillary blood. Anti-PfSEA-1A antibody
levels were measured using a fluorescent bead-based assay as pre-
viously described [34]. Briefly, 100 mg of rPfSEA-1A or 100 mg of
Bovine Serum Albumin (BSA) was conjugated to 1.25 � 107micro-
spheres (Luminex) and were pooled and lyophilized in single use
aliquots. Reconstituted beads were incubated for 30 min at 37 �C
with human plasma samples at 1:80 dilution in Assay Buffer E
(ABE, Phosphate Buffered Saline pH 7.4 containing 0.1% BSA,
0.05% Tween-20, and 0.05% sodium azide) in microtiter filter bot-
tom plates (Millipore). Beads were washed three times in ABE by
vacuum filtration and incubated for 30 min at 37 �C with biotiny-
lated anti-human immunoglobulin G (IgG) (Pharmingen) diluted
1:1000 in ABE. Beads were washed three times in ABE by vacuum
filtration and incubated for 10 min at 37 �C with phycoerythrin
conjugated streptavidin (Pharmingen) diluted 1:500 in ABE. Beads
were washed three times in ABE by vacuum filtration, re-
suspended in ABE and analyzed on a BioPlex 200 multi-analyte
analyzer. Fluorescence values for BSA beads were subtracted from
rPfSEA-1A beads (unit: relative fluorescence unit, RFU).

2.3. Statistical analyses

The outcome of interest was anti-PfSEA-1A antibody levels in
infants and young children. Predictors of interest were maternal
anti-PfSEA-1A antibody levels measured in cord blood, and para-
sitemia indicating exposure to natural infection. Parasitemia was
defined by average number of parasites on samples enumerated
in each time frame. For statistical analysis, we constructed three
additional predictors: tertiles of maternal anti-PfSEA-1A antibody
levels, a binary parasitemia predictor (presence/absence) in the
first 6 months of life, and tertiles of parasitemia during the preced-
ing 6-month window, captured for each distinct window at 6, 12,
18, and 24 months after birth. We then examined the relationships
between each of these predictors and infant and young child anti-
PfSEA-1A antibody levels using two-way repeated measures analy-
sis of variance.

To examine whether maternally-derived anti-PfSEA-1A anti-
body levels in cord blood modified infant immune responses, we
tested interactions between tertiles of maternally-derived anti-Pf-
SEA-1A antibody levels in cord blood and parasitemia at 6 and



Fig. 1. Effects of maternally-derived anti-PfSEA-1A antibodies in cord blood on
endogenous anti-PfSEA-1A antibodies measured in infants. Infants were grouped by
tertiles of anti-PfSEA-1A antibodies in cord blood. Anti-PfSEA-1A antibody levels
were natural log-transformed. Error bars represent 95% confidence intervals.
*P < 0.01.
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12 months of age, and then performed Spearman correlation anal-
ysis between parasitemia and infant anti-PfSEA-1A antibody levels
in each maternally-derived antibody tertile. In addition, we per-
formed mediation analysis to examine whether maternally-
derived anti-PfSEA-1A antibody levels in cord blood interfered with
the development of infant anti-PfSEA-1A antibodies in response to
parasitemia according to tertiles of maternally-derived anti-PfSEA-
1A antibody levels in cord blood at 6 months of age.

Anti-PfSEA-1A antibody levels and parasitemia were skewed
with a long right tail and therefore were natural log-transformed
after adding integer 1 to each value for statistical analysis. We per-
formed mediation analysis using Mplus 8 statistical software
(Muthén and Muthén, 1998–2017). We performed all other statis-
tical analyses using SAS 9.4 (SAS Institute, Cary, NC). P val-
ues < 0.05 were considered statistically significant.

3. Results

Potential confounders were not significantly different across the
tertiles of maternally-derived anti-PfSEA-1A antibody levels in
cord blood (Table 1). As expected, infant anti-PfSEA-1A antibody
levels decreased during the first 6 months of life and then gradu-
ally increased and reached a peak at 24 months (Fig. 1). Prior to
24 months of age, peripheral anti-PfSEA-1A antibody levels did
not differ across the tertiles of maternally-derived anti-PfSEA-1A
antibody levels in cord blood. At 24 months of age, children born
with the middle tertile of maternally-derived anti-PfSEA-1A anti-
bodies had significantly higher anti-PfSEA-1A antibody levels than
those with low (P value = 0.007) and high (P value = 0.003) tertiles.

Infants who experienced parasitemia at least once during the
first 6 months of life had significantly higher anti-PfSEA-1A anti-
body levels at 6 and 12 months of age compared to those children
who did not experience parasitemia during the first 6 months of
life (Fig. 2). We next evaluated the impact of parasitemia in the
preceding 6 months on anti-PfSEA-1 antibody levels. Infants or
Table 1
Characteristic of the study participants.

Levels o

Variable Low (N

Range of anti-PfSEA-1A antibodies in cord blood, fluorescence units 0–256
Maternal characteristics
Parity, %
Primigravid 21.4
Secundigravid 21.9
Multigravid 56.7

Children characteristics
Male, % 50.5
Transmission season at birth, %
High 48.6
Low 51.4

Hemoglobin genotype, %
AA 83.8
AS or SS 16.2

Parasitemia (asexual stage parasites/200 WBCs)*

Between 0 and 6 months 8.1 (3.6
Between 6 and 12 months 34.3 (19
Between 12 and 18 months 46.6 (23
Between 18 and 24 months 32.0 (13

Subjects with antibody measurement, N (%)
Birth 210 (10
6 months 134 (63
12 months 116 (55
18 months 98 (46.7
24 months 73 (34.8

NA: not applicable.
* Means (95% confidence intervals).

y Tested by Chi-square or two-way repeated measures analysis of variance.
children with high parasitemia in the preceding 6-month window
had significantly higher anti-PfSEA-1A antibody levels measured at
6, 12, and 24 months after birth compared to individuals with low
or no parasitemia (Fig. 3).

To determinewhether maternally-derived anti-PfSEA-1 levels in
cord blood altered the relationship between parasitemia and subse-
quent anti-PfSEA-1 levels in infants and children, we fit interaction
terms for these variables in our repeated measures models.
Maternally-derived anti-PfSEA-1A antibody levels in cord blood sig-
nificantlymodified the effect of parasitemia on infant anti-PfSEA-1A
antibody levels only at 6 months of age (Fig. 4, P value = 0.043).
Specifically, when stratified by tertile of maternally-derived
f anti-PfSEA-1A antibodies in cord blood

= 210) Middle (N = 210) High (N = 210) P valuey

257–919 920–26,389

29.5 27.1 0.23
24.3 21.0
46.2 51.9

51.0 47.1 0.70

41.9 49.5 0.23
58.1 50.5

86.7 81.0 0.28
13.3 19.0

0.73
–12.6) 11.5 (3.0–20.1) 11.2 (5.5–17.0) 0.96
.4–49.2) 45.0 (26.7–63.3) 44.0 (14.2–73.8) 0.62
.7–69.5) 57.9 (33.2–82.6) 69.6 (38.2–101.0) 0.29
.5–50.6) 66.6 (37.1–96.2) 42.1 (18.3–65.9) 0.16

0) 210 (100) 210 (100) NA
.8) 145 (69.0) 142 (67.6)
.2) 100 (47.6) 101 (48.1)
) 94 (44.8) 85 (40.5)
) 78 (37.1) 59 (28.1)



Fig. 2. Effects of P. falciparum parasitemia experienced from birth to six months of
age on anti-PfSEA-1A antibody levels. Anti-PfSEA-1A antibody levels were natural
log-transformed. Error bars represent 95% confidence intervals. *P < 0.05 and
**P < 0.001 compared with non-parasitemic.

Fig. 3. Effects of parasitemia for 6 months prior on anti-PfSEA-1A antibody levels.
At 6 months, infants were grouped into parasitemic and non-parasitemic, because
of low prevalence of parasitemia (30.6%). At later time points, infants were grouped
into tertiles of parasitemia. Anti-PfSEA-1A antibody levels were natural log-
transformed. Error bars represent 95% confidence intervals. *P < 0.05, **P < 0.01,
and ***P < 0.001.
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anti-PfSEA-1A in cord blood, parasitemia measured from birth to
6 months of age was more strongly correlated with anti-PfSEA-1A
antibody levels at 6 months in the infants with low maternally-
Fig. 4. Effects of parasitemia from birth to 6 months of age on anti-PfSEA-1A antibody le
blood anti-PfSEA-1A antibody levels. Anti-PfSEA-1A antibody levels and parasitemia wer
correlation between parasitemia and anti-PfSEA-1A antibody levels in each tertile. The
parasitemia from birth to 6 months of age, had a significant effect on anti-PfSEA-1A ant
derived anti-PfSEA-1A antibody levels in cord blood (Fig. 4A,
r = 0.31, P value < 0.001) and this relationship was attenuated at
middle (Fig. 4B, r = 0.14, P value = 0.08) and high (Fig. 4C, r = 0.16,
P value = 0.05) maternally-derived anti-PfSEA-1A antibody levels
in cord blood. Of note, all three groups had similar anti-PfSEA-1A
antibody levels at six months of age (Figs. 1 and 4) such that the dif-
ferences in slopes across the three tertiles ofmaternal antibodywere
driven by a larger increase in anti-PfSEA-1A antibodies among
infants born to women with lower levels of antibody.

Consistent with this result, mediation analysis indicated that
both maternally-derived anti-PfSEA-1A levels in cord blood and
parasitemia in the first 6 months of life had significant direct
effects on offspring’s anti-PfSEA-1A levels at 6 months of age in
infants in the low maternal antibody tertile (Fig. 5). This was not
indirectly mediated by maternally-derived anti-PfSEA-1A levels
in cord blood. However, neither maternally-derived anti-PfSEA-
1A levels in cord blood nor parasitemia in the first 6 months of life
had significant effects on offspring’s anti-PfSEA-1A levels at
6 months of age in infants in the middle or high maternal antibody
tertiles.

4. Discussion

We evaluated the impact of maternally-derived anti-PfSEA-1A
antibody levels in cord blood and parasitemia on the development
of anti-PfSEA-1A antibodies among infants and children living in a
malaria holoendemic region of Tanzania. Infant anti-PfSEA-1A anti-
body levels decreased during the first 6 months of life and then
increased for up to 24 months consistent with the decay of
maternally-transferred anti-PfSEA-1 antibodies followed by the
acquisition of endogenous antibody produced in response to para-
site antigen exposure.

Several studies have reported the rapid decay of
transplacentally-derived antimalarial antibodies during infancy
[31,32,35,36]. Riley et al. [35] reported that maternally derived
antimalarial antibodies to crude P. falciparum schizont antigen
measured monthly in 143 children became undetectable in 75%
of children by 22 weeks of age in a holoendemic region of southern
Ghana. Using the same data, a mathematical modelling study
demonstrated that antibody titers to the antigens apical mem-
brane antigen 1, merozoite surface protein 1 and 2, and circum-
sporozoite protein decay in the first months of life (maternal
antibody half-lives: 46, 33, 27, and 24 days, respectively) [32]. Sim-
ilarly, antimalarial antibodies targeting three antigens (merozoite
surface protein 3 and glutamate-rich protein [R0 and R2]) mea-
sured every 3 or 6 months in 140 children declined rapidly
between one and 4 months of age in a holoendemic region of Burk-
ina Faso [31].
vels at 6 months of age according to tertiles (A: low, B: middle, and C: high) of cord
e natural log-transformed. Spearman correlation analysis was used to examine the
interaction term between tertiles of cord blood anti-PfSEA-1A antibody levels and
ibody levels (P value = 0.043).



Fig. 5. The relationship among cord blood anti-PfSEA-1A antibody levels, parasitemia, and anti-PfSEA-1A antibody levels at 6 months of age stratified by tertiles (A: low, B:
middle, and C: high) of cord blood anti-PfSEA-1A antibody levels. Anti-PfSEA-1A antibody levels and parasitemia (asexual stage parasites/200 WBCs) were natural log-
transformed. Numbers next to arrows indicate unstandardized coefficient (95% confidence interval), P value.
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Concordant with these reports, we demonstrate that anti-Pf-
SEA-1A antibody levels declined during the first 6 months of life.
Importantly, maternally-derived anti-PfSEA-1 antibody levels in
cord blood were unrelated to anti-PfSEA-1 antibody levels
measured at 6 months of age, suggesting that maternal vaccination
with PfSEA-1 is unlikely to impact the production of endogenous
anti-PfSEA-1 by the infant. The low levels of anti-PfSEA-1A
antibody at 6 months may reflect the low incidence of malaria,
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possibly due to protection by maternal antibodies [5,25,30], imma-
turity of the infant immune system [37], or a combination of these
factors.

Following anti-PfSEA-1A antibody decay, infant anti-PfSEA-1A
antibody levels gradually increased over the subsequent two years
of life. Parasitemia in the first 6 months of life was a strong predic-
tor of anti-PfSEA-1 levels measured at 6 and 12 months (Fig. 1).
Similarly, parasitemia in the preceding 6 months was a strong pre-
dictor of anti-PfSEA-1 levels measured at 6, 12 and 24 months.
These results are consistent with the induction and boosting of
anti-PfSEA-1 antibody levels by natural exposure.

Of note, we found that maternally-derived anti-PfSEA-1A anti-
bodies in cord blood modified the development of anti-PfSEA-1A
antibodies by the infant in response to P. falciparum exposure only
in the first 6 months of life. During this period, anti-PfSEA-1A anti-
body levels were significantly related to P. falciparum exposure in
infants born with low, but not higher, maternally-derived anti-Pf-
SEA-1A antibody levels in cord blood (Fig. 4). Given all three groups
ultimately had similar anti-PfSEA-1A antibody levels at six months
of age (Figs. 1 and 4), the difference in the correlations between
natural exposure (parasitemia) and infant antibody levels across
the tertiles of cord blood antibody levels were driven by a larger
increase in anti-PfSEA-1A antibodies among infants born to women
with lower levels of antibody, rather than a significant decline in
antibody levels among infants born to mothers with higher anti-Pf-
SEA-1A antibody levels. This suggests that PfSEA-1 may be more
immunogenic in infants with low maternally-derived anti-PfSEA-
1A antibody levels [30], possibly due to antigen clearance in infants
with higher maternal antibody levels. Maternally-derived anti-Pf-
SEA-1A antibody levels, however, do not interfere with the mainte-
nance or development of antibody levels at six months of age
among infants with higher maternal antibody levels. Consistent
with this interpretation, mediation analysis indicated that
maternally-derived anti-PfSEA-1A antibodies in cord blood did
not influence anti-PfSEA-1A antibody levels in response to P. falci-
parum exposure (indirect effect) in infants born with any level of
maternal antibody.

To our knowledge, this is the first study to investigate the
dynamics of maternally-transferred and naturally acquired anti-
bodies to PfSEA-1, a promising vaccine candidate antigen for con-
trolling P. falciparum infection. Nevertheless, our study has
several limitations. First, we did not directly determine the relative
proportion of maternally-transferred antibodies versus endoge-
nous, naturally acquired antibodies in infants and children.
Instead, we relied on the decline followed by rise in concentration
of anti-PfSEA-1 antibody to infer their source. In addition, we only
evaluated anti-PfSEA-1 IgG response. While some studies report
minimal detection of Pf-specific IgM in cord blood [19,38,39],
others report detecting Pf-specific IgM in nearly 30% of African
neonates [40–43]. Several studies have found Pf-specific cord blood
IgM to be altered in response to in utero malaria exposure [41,43],
but how these alterations may impact early childhood infection
remains unknown. Further, recent published data suggests that
placental malaria may result in maternal microchimerism making
it difficult to classify IgM antibodies as truly fetal as they may be
maternal IgM due to in utero exposure [44]. Second, we did not
measure anti-PfSEA-1A antibody levels at additional time points
between birth and 6 months of age, and thus, we cannot define
at what point these young infants reached their antibody nadir.
Third, the availability of serum samples resulted in loss to
follow-up such that 18.1% (n = 117) of the total study population
were not followed after 6 months. However, their maternally-
derived anti-PfSEA-1A antibody levels in cord blood and
parasitemia during the first 6 months were not different from the
children followed past 6 months (Wilcoxon rank-sum test,
P values > 0.7). Fourth, our study does not take into consideration
the effect sub-patent parasitemia may have on antibody produc-
tion because parasitemia was determined by microscopy and not
polymerase chain reaction (PCR). Despite the limit of detection
for the method used, we do detect a significant difference in
anti-PfSEA-1A antibody levels between infants designated as
non-parasitemic and parasitemic at 6 and 12 months. PCR determi-
nation could potentially expose differences in antibody production
at later time points (18 and 24 months) and should be considered
in future studies.

In conclusion, our study demonstrates that natural exposure to P.
falciparum increases the levels of naturally acquired anti-PfSEA-1A
antibodies in infants andyoung children living in aholoendemic set-
ting. Importantly, maternally derived anti-PfSEA-1A antibodies did
not interfere with the development of endogenous anti-PfSEA-1
responses in infants. This observation, taken together with our
recently published data demonstrating that maternal vaccination
with PfSEA-1 conferred protection upon P. bergheimalaria challenge
to the pups [25], diminishes the concern that the use ofmalaria vac-
cines before or during pregnancymight interferewith acquisition of
antibodies by their offspring.
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