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Purpose of review

Senescent cells have recently been identified as key players in the development of metabolic dysfunction. In
this review, we will highlight recent developments in this field and discuss the concept of targeting these
cells to prevent or treat cardiometabolic diseases.

Recent findings

Evidence is accumulating that cellular senescence contributes to adipose tissue dysfunction, presumably
through induction of low-grade inflammation and inhibition of adipogenic differentiation leading to insulin
resistance and dyslipidaemia. Senescent cells modulate their surroundings through their bioactive secretome
and only a relatively small number of senescent cells is sufficient to cause persistent physical dysfunction
even in young mice. Proof-of-principle studies showed that selective elimination of senescent cells can
prevent or delay the development of cardiometabolic diseases in mice.

Summary

The metabolic consequences of senescent cell accumulation in various tissues are now unravelling and
point to new therapeutic opportunities for the treatment of cardiometabolic diseases.
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INTRODUCTION

Cellular or replicative senescence is a protective
response against endogenous and exogenous stress-
ors in which cells permanently arrest their cell-cycle
and undergo phenotypic alterations. The term
senescence was initially introduced in 1961 by Hay-
flick and Moorhead [1] who observed that fibro-
blasts in culture were only able to divide a limited
number of times before entering a state of perma-
nent growth arrest. Compelling in-vivo evidence for
this concept had long been lacking, until the dis-
covery that cellular senescence can act as a potent
cancer defence mechanism that prevents the prolif-
eration of preneoplastic cells [2]. Furthermore, cel-
lular senescence is a fundamental player in a range
of physiological and pathophysiological processes,
including wound healing, embryogenesis, ageing
and the development of age-related diseases [3–
10]. A variety of stimuli can induce cellular senes-
cence, including telomere shortening (replicative
senescence), oncogenic activity (oncogene-induced
senescence) and stressors such as DNA damage,
oxidative stress, inflammatory mediators and
metabolites (stress-induced premature senescence)
uthor(s). Published by Wolters Kluwe
that induce growth arrest via activation of the p53-
p21 and p16Ink4a/Rb tumour suppressor pathways
[11–13]. Senescent cells display several hallmarks,
including upregulation of the cyclin-dependent
kinase inhibitor p16Ink4a, increased senescence-asso-
ciated lysosomal b-galactosidase activity (SA-b-gal)
and a characteristic secretome consisting of pro-
inflammatory cytokines, chemokines, growth
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KEY POINTS

� Senescent cells contribute to adipose tissue dysfunction
leading to systemic metabolic alterations.

� Adipose dysfunction leads to accelerated accumulation
of senescent cells in other tissues.

� Senescent cells contribute to the development and
progression of NAFLD.

� Selective elimination of senescent cells in an
atherosclerotic-prone mouse model results in decreased
lesion formation and increased plaque stability.

Lipid metabolism
factors and proteases, the so-called senescence-
associated secretory phenotype (SASP) [14–19].
The SASP is enriched for components that can
attract immune cells and are thought to mediate
natural elimination of senescent cells. However,
during biological ageing, senescent cells accumu-
late within tissues, presumably due to increased
cellular stress with ageing and deterioration of
the immune system [20–26]. Remarkably, only a
relatively small number of senescent cells seem-
ingly is sufficient to drive tissue dysfunction
throughout the body. Persistent SASP secretion
Table 1. Clarification of the mouse models used to study the rela

Mouse model Description M

BubR1
hypomorphic
mouse
(BubR1H/H)

BubR1 is a core protein of the spindle
assembly checkpoint, a safeguard that
ensures correct chromosome segregation.
BubR1 hypomorphic mice produce 10%
of the BubR1 protein.

B

INK-ATTAC
naturally aged
mouse

The INK-ATTAC transgene allows for
selective elimination of p16Ink4a-positive
cells upon administration of the synthetic
drug AP20187, which induces
dimerization of a membrane-bound
myristoylated FK506-binding-protein-
caspase 8 (FKBP-Casp8) fusion protein
expressed specifically in senescent cells
via the p16Ink4a promoter.

Furthermore, an internal ribosome entry site
(IRES) followed by an open reading frame
(ORF) coding for enhanced green
fluorescence protein (EGFP), which allows
detection and collection of p16Ink4a-
positive senescent cells is incorporated in
the construct.

C

INK-ATTAC
BubR1H/H

mouse

Incorporation of the INK-ATTAC transgene in
the progeroid BubR1H/H mouse.

R
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may trigger senescence in distantly located cells
[8,27,28,29

&&

], thereby perhaps promoting chronic
tissue inflammation and degeneration. In this
review, we delineate what is currently known
about the role of senescent cells in metabolic and
cardiovascular disorders.
CELLULAR SENESCENCE AS A CAUSE OF
METABOLIC DYSFUNCTION

Ageing is the major risk factor for the development
of multiple chronic diseases and decline in physical
functions. The first evidence that senescent cells are
causally involved in ageing came from studies by
Baker et al. [30,31], who examined the budding
uninhibited by benomyl related-1 hypomorphic
mice (BubR1H/H), which show accelerated ageing
due to low levels of the core mitotic checkpoint
protein BubR1 (Table 1) [30,31]. Inducible elimina-
tion of p16Ink4a-positive cells from BubR1H/H mice
delayed the onset of age-related diseases such as
sarcopenia, cataract and lipodystrophy (Table 1).
Later studies in naturally aged mice confirmed this
relationship and demonstrated that elimination of
senescent cells extended life span [8]. Although
senescent cells accumulate with ageing in multiple
tissues, recent studies have raised the possibility that
tionship between senescence and cardiometabolic diseases

ajor findings References

ubR1H/H is a model of accelerated ageing, as mice
show markedly shortened lifespan and display
several age-related diseases, including sarcopenia,
cataracts, fat loss, arterial wall stiffening and
impaired wound healing. BubR1H/H mice
accumulate p16Ink4a-positive cells in several tissues,
including adipose tissue, skeletal muscle and eye.

[30,31]

learance of p16Ink4a-positive cells resulted in
increased lifespan in male and female mice,
delayed tumorigenesis and attenuated age-related
diseases, including lipodystrophy, kidney
dysfunction and cardiac dysfunction.
Mechanistically, elimination of p16Ink4a-positive
cells enhanced adipogenic transcription factors,
reduced circulating levels of activin A and reduced
fat accumulation in the liver of aged mice.

[8,32,33&&]

emoval of p16Ink4a-positive cells in a model of
accelerated ageing resulted in delayed onset of
age-associated features, including sarcopenia,
cataracts and lipodystrophy.

[30]
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cellular senescence in adipose tissue may promote
age-related diseases and frailty [34].
Senescence as inducer of adipose tissue
dysfunction

Adipose tissue is an active and dynamic endocrine
organ that apart from its primary function to store
energy in the form of fats also regulates systemic
metabolism in response to nutrient intake, lifestyle
and environmental changes [35]. With ageing, the
distribution and function of adipose tissue changes
significantly [35]. Old age is associated with a
marked reduction in subcutaneous white adipose
tissue (sWAT) and brown adipose tissue (BAT) and
increased presence of visceral WAT (vWAT), accom-
panied by diminished lipid handling, altered secre-
tion of adipokines, low-grade inflammation,
defective thermogenesis and de-novo adipogenesis,
which combined contributes to the development of
insulin resistance and dyslipidaemia [35–39]. Senes-
cent preadipocytes were shown to accumulate in
BubR1 progeroid mice wherein they were first
shown to cause lipodystrophy [31,40], a finding that
was later confirmed in naturally aged mice [8].
Removal of senescent cells in mice resulted in a
reduction of the pro-inflammatory SASP factor
interleukin 6 (IL-6). Senescent cell accumulation
can be accelerated in mice by excessive calorie
intake and genomic instability [28,41]. In humans,
obesity and diabetes is associated with senescent cell
accumulation in adipose tissue, which correlated
with adipose tissue dysfunction [28,35,41].

Senescent preadipocytes that cease to divide
may limit the ability of the adipose tissue to expand,
a process essential for storage of excess nutrients
and to maintain metabolic health during obesity.
During adipogenesis, preadipocytes can differenti-
ate into insulin-responsive white adipocytes that
store fats or into beige adipocytes that control ther-
mogenesis by converting glucose and fats into heat
[42,43]. The potential to form white and beige
adipocytes declines with age [44–47]. Senescent
adipocyte progenitors from fat pads of elderly
human donors displayed markedly reduced levels
of adipogenic transcription factors [peroxisome
proliferator activated receptor gamma 2 (PPARg2)
and CCAAT/enhancer-binding protein alpha (C/
EBPa)] and mature adipocyte markers (leptin, adi-
ponectin, fatty acid-binding protein 4) as well as
reduced adipogenic capacity of preadipocytes in
culture [32,48]. Activin A, a member of the trans-
forming growth factor beta superfamily and a crit-
ical inhibitor of proliferation and differentiation of
preadipocytes, was identified as an important com-
ponent of the senescent cell secretome and impaired
0957-9672 Copyright � 2019 The Author(s). Published by Wolters Kluwe
adipogenesis in neighbouring, nonsenescent progen-
itors [32,49].

A study by Berry et al. [50
&

] targeting the main
regulators of cellular senescence p21 and p16Ink4a

revealed that upregulation of p21 disrupted the
potential of beige progenitors to differentiate into
cold-induced beige adipocytes in mice. Both dele-
tion and pharmacological inhibition of the p38/
MAPK-p16Ink4a pathway were able to reverse this
phenotype and resulted in improved glucose sensi-
tivity [50

&

]. Similarly, adipocyte-specific deletion of
p53 or inhibition of p53 using pifithrin-a resulted in
enhanced beige adipocyte formation upon cold
exposure, increased energy expenditure and
improved glucose clearance. Mechanistically,
increased expression of p53 in aged adipose tissue
appears to prevent adipocyte beiging through stimu-
lation of mitophagy and prevention of increase in
mitochondrial mass necessary for white-to-beige adi-
pocyte conversion [51]. AP20187 treatment of natu-
rally aged mice carrying the INK-ATTAC transgene,
which allows for selective elimination of p16Ink4a-
positive cells upon administration of AP20187
(Table 1), resulted in reduced circulating levels of
activin A, enhanced expression of adipogenic tran-
scription factors and reduced fat loss, although it
should be noted that clearance of senescent cells
was not demonstrated [32]. Nevertheless, these data
are consistent with the idea that cellular senescence
impairs adipogenesis, which can result in fatty acid
spill over and ectopic lipid deposition in other organs
promoting insulin resistance, nonalcoholic fatty
liver disease (NAFLD) and atherosclerosis [52].

In addition to adipocytes, endothelial cells lin-
ing the microvasculature of the adipose tissue deter-
mine adipose tissue mass. Previous work by Kanda
et al. [53] demonstrated a critical role for endothelial
PPARg in adipose tissue expansion in response to a
high fat diet. Deletion of PPARg from endothelial
cells resulted in reduced adipose tissue mass and
adipocyte size [53]. Accumulating evidence suggests
that cellular senescence can affect the adipose tissue
endothelial cells thereby impairing fatty acid han-
dling and enhancing immune cell infiltration [54].
Interestingly, visceral adipose tissue depots isolated
from obese individuals showed enhanced expres-
sion of pro-inflammatory mediators and senescence
markers and reduced expression of metabolism-
related genes as compared to subcutaneous adipose
tissue [54,55]. Recently, Briot et al. [54] demon-
strated that activation of PPARg using its agonist
rosiglitazone stimulated fatty acid uptake through
expression of fatty acid transporters FATP1, FATP4
and CD36 in endothelial cells isolated from human
adipose tissue. Remarkably, after induction of
replicative senescence, activation of PPARg by
r Health, Inc. www.co-lipidology.com 179
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rosiglitazone promoted expression of pro-inflam-
matory mediators instead of fatty acid transporters
[54]. The molecular events behind this surprising
shift in PPARg transcriptional activity remain to be
elucidated. PPARg was recently identified to act
upstream of methyltransferase SETD8, which catal-
yses methylation of histone H4 at lysine 20
(H4K20me) and thereby silences expression of
p16Ink4a and p21 [56,57]. It remains to be investi-
gated whether this mechanism also plays a role in
endothelial cells.

Senescent cells that accumulate in adipose tissue
during ageing, obesity and diabetes can disrupt the
adipose tissue microenvironment via secretion of
SASP components, thereby promoting adipose tis-
sue inflammation and insulin resistance [35]. Recent
studies highlight the murine double minute 2
(MDM2)-p53 axis as essential player in senes-
cence-associated adipocyte dysfunction. Adipo-
cyte-specific ablation of p53 in a mouse model of
type 2 diabetes mellitus (T2DM) resulted in reduced
senescent cell accumulation, reduced adipose tissue
inflammation and improved insulin resistance.
Conversely, p53 overexpression induced adipocyte
senescence together with a pro-inflammatory envi-
ronment causing impaired insulin sensitivity [41].
Ageing reduces the expression of Mdm2, an
upstream inhibitor of p53 in WAT and BAT [58

&

].
Adipocyte-specific deletion of Mdm2 resulted in age-
dependent lipodystrophy caused by p53-dependent
induction of apoptosis and senescence, which was
associated with development of T2DM, NAFLD and
hyperlipidaemia [58

&

]. Inhibition of p53 attenuated
senescence in adipose tissue, improved adipose
function together with insulin sensitivity and glu-
cose tolerance in a mouse model with elevated DNA
damage due to Polh gene ablation [59]. Suppression of
the janus kinase (JAK)-signal transducer and activator
of transcription pathway, known for its role in regu-
lating cytokine production, in aged mice reduced
both adipose tissue and systemic inflammation, pre-
served fat mass, increased insulin sensitivity and
reduced lipotoxicity [32]. Although these studies
indicate that reduction of adipose inflammation
resolves systemic dysfunction, they do not provide
direct evidence for involvement of senescent cells in
adipose tissue, as p53 or JAK inhibitors have pleiotro-
pic effects on multiple tissues.

Very recently, adverse systemic effects of senes-
cent adipose tissue cells were revealed via trans-
plantation experiments of senescent adipocyte
progenitors into fat tissue of healthy young mice.
Senescent cells conferred senescence induction of
host cells, not only locally but also in other tissues
such as skeletal muscle, resulting in long-lasting
physical dysfunction [29

&&

]. Transplantation of
180 www.co-lipidology.com
small numbers of senescent cells into aged or meta-
bolically stressed mice resulted in more severe sys-
temic dysfunction, accompanied with reduced
survival of older recipients. Interestingly, replace-
ment of senescent adipose tissue from adipocyte-
specific Mdm2 knockout mice by healthy adipose
tissue from wild-type mice largely reversed glucose
intolerance, insulin resistance and hyperlipidaemia
and partially reduced senescence markers in liver
and skeletal muscle [58

&

]. Collectively, these find-
ings indicate adverse effects of senescent cells on
adipose tissue function via induction of low-grade
inflammation and insulin resistance, which could
be accompanied by effects on distant tissues impor-
tant for metabolic control possibly through secre-
tion of SASP factors (Fig. 1).
THE ROLE OF CELLULAR SENESCENCE IN
METABOLIC SYNDROME RELATED
COMPLICATIONS

Accumulation of senescent cells in adipose tissue
seems to play an important causal role in accelerated
development of metabolic syndrome with age. Insu-
lin resistance and dyslipidaemia are important
inducers of metabolic diseases, such as T2DM,
NAFLD and cardiovascular diseases. Here, we will
discuss the latest research regarding the role of
senescence in the pathophysiology of NAFLD
and atherosclerosis.
Role of senescence in nonalcoholic fatty liver
disease

Metabolic syndrome is a major risk factor for the
development and progression of NAFLD, the most
common liver disease worldwide and one of the
most serious diseases associated with obesity with
an estimated worldwide prevalence of 25% [60].
NAFLD is characterized by accumulation of excess
fat within hepatocytes (steatosis). Although in itself
relatively benign, it progresses in approximately
25% of all patients into nonalcoholic steatohepatitis
(NASH), which can eventually develop into more
serious conditions such as fibrosis, cirrhosis and
hepatocellular carcinoma (HCC) [61]. Senescent cell
accumulation has been reported in human livers,
which correlated with T2DM, hepatic steatosis pro-
gression and fibrosis stage [22,62–64]. Excessive
calorie intake in mice resulted in upregulation of
senescence markers in hepatocytes, which was
closely correlated with lipid deposition in the liver
and was ameliorated by both dietary restriction and
exercise [28,33

&&

,41,65,66]. A disturbed metabolic
homeostasis can also trigger senescent cell accumu-
lation associated with liver steatosis as seen in
Volume 30 � Number 3 � June 2019



FIGURE 1. Potential mechanisms by which senescent cells contribute to adipose tissue dysfunction. Healthy adipose tissue is
able to adapt to nutrient availability and environmental changes through adipogenesis providing metabolic flexibility.
Senescent cell accumulation leads to increased secretion of SASP factors which can attract immune cells leading to low grade
inflammation, insulin resistance and decreased formation of white and beige adipocytes. These changes can disturb systemic
metabolic homeostasis. This figure was created using Servier Medical Art (http://smart.servier.com/).
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adipose-specific Mdm2-knockout mice [58
&

] or mus-
cle-specific mitochondrial fusion protein optic atro-
phy 1 (Opa1) deficient mice [67]. Induction of
senescence in isolated primary hepatocytes pro-
moted steatosis due to mitochondrial dysfunction
followed by reduced fatty acid oxidation capacity
[33

&&

]. One of the pathways involved in the devel-
opment of age-associated hepatic steatosis might be
the Cdk4-C/EBPa-p300 axis, as inhibition of cyclin
dependent kinase 4 (Cdk4) reversed hepatic steatosis
via reduction in C/EBPa-p300 complexes, resulting
in reduction of senescent cells and alterations of
chromatin structures in hepatocytes [68]. Impor-
tantly, senescent cells seem to contribute to NAFLD,
as elimination of senescent cells, using the INK-
ATTAC transgene reduced fat accumulation in the
liver of aged, obese and diabetic mice [33

&&

] (Table 1)
(Fig. 2).

A key factor in the transition of NAFLD to NASH
is the activation of innate immune cells, which
initiates and amplifies hepatic inflammation. Senes-
cent cells in the liver can promote inflammation by
secretion of SASP factors. The innate immune-sens-
ing mechanism cyclic GMP-AMP synthase (cGAS)
and stimulator of interferon genes (STING) are
important SASP regulators [69

&

–72
&

]. Loss of the
cGAS-STING pathway in senescent cells greatly
compromises SASP factor secretion [69

&

,71
&

,72
&

].
Consistent with this, NAFLD patients show
0957-9672 Copyright � 2019 The Author(s). Published by Wolters Kluwe
increased expression of STING in nonparenchymal
liver cells [73

&

]. Interestingly, STING activation
induces liver steatosis and inflammation [74

&

] and
STING deficiency attenuated steatosis, fibrosis and
inflammation in murine models of NASH [73

&

,74
&

].
It should be noted that in those studies, the effects
were ascribed to activated macrophages and Kupffer
cells, while senescence was not addressed. Future
studies are required to reveal whether the interplay
between STING activity, SASP and hepatic lipid
accumulation accelerates NAFLD development
and progression.

Together, these studies suggest that senescent
cells in the liver may contribute to the progression of
NAFLD. However, senescence might also have ben-
eficial roles in NAFLD under certain circumstances.
In a toxin-induced liver damage model, senescence
of activated stellate cells limited the progression of
fibrosis [75]. In addition, the role of senescent cells
and cGAS-STING in the development of HCC may
be context-dependent. For example, in a mouse
model of HCC with persistent overexpression of
oncogenic Ras, deficiency of STING resulted in intra-
hepatic tumour formation due to loss of immune-
mediated clearance of premalignant hepatocytes
[69

&

]. However, HCC development was diminished
in the same Sting knockout mice under conditions of
a single dose of carcinogen treatment followed by
30 weeks of high fat diet [70

&

]. Therefore, it is
r Health, Inc. www.co-lipidology.com 181
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FIGURE 2. Potential role of senescent cells in the development of hepatic steatosis. Senescent hepatocytes induce lipid
accumulation. Senescent stellate cells secrete SASP factors, which can trigger activation of immune cells such as Kupffer cells
leading to NAFLD progression. This figure was created using Servier Medical Art (http://smart.servier.com/).
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possible that cGAS-STING activation and SASP from
acutely generated senescent cells promote immune-
surveillance, whereas long-term exposure to SASP
factors of obesity-induced senescent hepatic stellate
cells acts detrimental.
Role of cellular senescence in
atherosclerosis

Ageing is accompanied by proatherogenic changes
in the vasculature, including arterial stiffness, calci-
fication and increased arterial permeability [76]. The
presence of metabolic derangements, such as dysli-
pidaemia, initiates and accelerates atherosclerotic
plaque formation. Interestingly, genome-wide asso-
ciation studies (GWAS) revealed that polymor-
phisms at the chromosome 9p21 locus are the
most robust genetic markers for atherogenesis
[77]. These associations were independent of estab-
lished cardiovascular risk factors, such as blood lipid
levels. Although studies have suggested that this
locus owes its functional relevance to the long cod-
ing RNA ANRIL (antisense noncoding RNA in the
INK4 locus) [78,79], it also encodes the cyclin-
dependent kinase inhibitors and major regulators
of senescence p16INK4A, p15INK4B and the p53 regu-
latory protein p14ARF. Vascular smooth muscle cells
(VSMCs) and vascular endothelial cells derived from
human atherosclerotic plaques display features of
senescence, including SA-b-gal activity, increased
182 www.co-lipidology.com
expression of p16INK4A and p21 and hypophosphor-
ylation of the retinoblastoma tumour suppressor
protein Rb [80–83]. However, it remains unclear
whether cellular senescence also contributes to ath-
erosclerosis development. Mice deficient in p19Arf,
p21 and p53 display accelerated atherosclerosis
development and, although these cell cycle regula-
tors are involved in many processes and findings of
these studies were mainly attributed to effects on
apoptosis [84–86], a role of cellular senescence in
atherogenesis cannot be excluded. Whether cellular
senescence of VSMCs is beneficial or adverse for
plaque development is controversial. Gizard et al.
[87] previously demonstrated protective effects of
cellular senescence due to limiting proliferation and
accumulation of VSMCs in the tunica intima. How-
ever, VSMC proliferation is protective in early and
advanced atherosclerosis [88]. Wang et al. [89]
reported that VSMC senescence promoted athero-
sclerosis development and features of plaque vul-
nerability. Mechanistically, senescent cells might
promote plaque formation and vulnerability via
pro-inflammatory SASP cytokines that could facili-
tate macrophage influx as well as matrix-degrading
SASPs that could trigger plaque rupture [81,90]. The
only conclusive evidence for a role of cellular senes-
cence in atherosclerosis comes from a study by
Childs et al. [91

&

] that used both pharmacological
and INK-ATTAC mediated clearance of senescent
cells in atherosclerosis prone LDL receptor knockout
Volume 30 � Number 3 � June 2019
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mice and convincingly demonstrated that removal
of p16Ink4a-positive foamy macrophages blocks
lesion growth and promotes plaque remodelling
associated with plaque stability. Overall, these find-
ings demonstrate that the role of VSMC senescence
in atherosclerotic plaque development is inconclu-
sive, whereas accumulation of p16Ink4a-positive
foamy macrophages might be detrimental for lesion
progression and stability.
CONCLUSION

Cellular senescence has a causal role in adipose
tissue dysfunction, presumably through induction
of low-grade inflammation and inhibition of adipo-
genic differentiation resulting in insulin resistance,
dyslipidaemia and ultimately development of car-
diometabolic disease. Removal of senescent cells can
potentially play an important role in treatment or
prevention of these diseases. Current senolytic
agents interfere with the pro-survival pathways,
on which senescent cell survival depends. An alter-
native approach might be to target the secretion or
activity of SASP factors, as these are likely to facili-
tate systemic tissue dysfunction.
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