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Abstract
Purpose This study aims to evaluate the ability of an autonomous artificial intelligence (AI) system for detection of the most com-
mon central retinal pathologies in fundus photography.
Methods Retrospective diagnostic test evaluation on a raw dataset of 5918 images (2839 individuals) evaluated with non-mydriatic 
cameras during routine occupational health checkups. Three camera models were employed: Optomed Aurora (field of view — FOV 
50º, 88% of the dataset), ZEISS VISUSCOUT 100 (FOV 40º, 9%), and Optomed SmartScope M5 (FOV 40º, 3%). Image acquisition 
took 2 min per patient. Ground truth for each image of the dataset was determined by 2 masked retina specialists, and disagreements 
were resolved by a 3rd retina specialist. The specific pathologies considered for evaluation were “diabetic retinopathy” (DR), “Age-
related macular degeneration” (AMD), “glaucomatous optic neuropathy” (GON), and “Nevus.” Images with maculopathy signs 
that did not match the described taxonomy were classified as “Other.”
Results The combination of algorithms to detect any abnormalities had an area under the curve (AUC) of 0.963 with a sensitivity 
of 92.9% and a specificity of 86.8%. The algorithms individually obtained are as follows: AMD AUC 0.980 (sensitivity 93.8%; 
specificity 95.7%), DR AUC 0.950 (sensitivity 81.1%; specificity 94.8%), GON AUC 0.889 (sensitivity 53.6% specificity 95.7%), 
Nevus AUC 0.931 (sensitivity 86.7%; specificity 90.7%).
Conclusion Our holistic AI approach reaches high diagnostic accuracy at simultaneous detection of DR, AMD, and Nevus. 
The integration of pathology-specific algorithms permits higher sensitivities with minimal impact on its specificity. It also 
reduces the risk of missing incidental findings. Deep learning may facilitate wider screenings of eye diseases.
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Introduction

In 2010, 65% of those afflicted by blindness worldwide 
(32.4 million total) and 76% of those with moderate or 
severe vision impairment (191 million) had a preventable 
or treatable cause [1]. The causes vary among regions, but 
the trend since 1990 shows a decreased incidence due to 
cataract or refractive errors while age macular degenera-
tion (AMD), glaucoma, and diabetic retinopathy (DR) are 
on the rise [1]. In developed countries, this trend is even 
more pronounced: AMD is the leading cause of blindness in 
people aged 75 years and older [2], whereas DR is the most 
frequent cause of preventable blindness in the working-age 
population (adults between 20 and 74 years old) [3]. Future 
projections do not show any sign of these diseases slowing 
down either. AMD will affect 288 million people in 2040 
[4], glaucoma will impact 111.8 million in 2040 [5], and 191 
million people will suffer DR by 2030 [6]. These diseases 
are treatable with good outcomes if detected early in the 
course of the disease [7–10], but they often are not sympto-
matic until late stages of their development. Thus, it is essen-
tial to have good screening systems for a timely diagnosis.

Running screening programs at large scale is costly, being 
the relatively high fixed costs per equipment the main driver 
of the charge [11]. This is even more noticeable in low-
density areas, which are underserved by traditional screen-
ing approaches performed in primary-care settings [12]. 
Additional issues of such programs stem from their limited 
scope. Primary care physicians, with limited ophthalmologi-
cal expertise, might often miss abnormalities outside the 
original screening program or have lower sensitivity than 
retinal experts [13, 14]. Ophthalmology is also a leading 
specialty in alternative forms of healthcare delivery. For 
instance, mobile digital non-mydriatic cameras are getting 
more affordable and have good specificity and sensitivity 
for DR [15, 16], which has enabled many screening plans in 
underserved areas [17–20]. There are also many examples of 
successful telemedicine screening plans in countries such as 
Australia, USA, India, Singapore, and Spain [21–24].

In parallel to the improvements in imaging and digitali-
zation of healthcare, artificial intelligence (AI) based on 

Key messages

High diagnostic accuracy in artificial intelligence (AI) system for one pathology in ophthalmology has been 

achieved but still to be acquired for screening purposes.

A combination algorithm made of several specific-pathology ones reached high sensitivity and specificity for diabetic

retinopathy, age macular degeneration, glaucomatous optic neuropathy and nevus.

This holistic system could successfully be used in large-population screening programs at working-age.

deep learning (DL) [25] represents a breakthrough that has 
dramatically improved the state-of-the-art in many tasks 
such as speech recognition, image processing, and text 
generation, among others [26]. In the field of medicine, 
DL has been most successful in medical imaging analysis, 
by enabling the creation of computer-aided diagnosis sys-
tems (CADx) with expert-level accuracies. There are many 
examples in dermatology [27], radiology [28], gastroenter-
ology [29], and ophthalmology [30, 31]. In fact, the first 
ever US Food and Drug Administration (FDA)-approved 
autonomous AI is a screening tool for DR [32].

While the results of the AI performance presented in many 
publications are encouraging, there are still questions to be 
answered regarding their real-world application. The vast 
majority of publications are limited to retrospective studies 
taken on datasets captured in populations with prior condi-
tions in a hospital setting [33–35]. Also, most publications 
limit the scope of their algorithm to just one pathology which, 
while interesting, is not ideal for screening purposes [36].

This work aims to overcome both limitations, by pre-
senting a retrospective study performed on 2839 patients 
evaluated by digital fundus images taken with handheld 
non-mydriatic cameras, on a routine checkup performed 
onsite at work centers. The algorithm evaluated in this 
study has previously been successful in detecting signs 
of DR, AMD, glaucoma, and nevus, the most common 
eye pathologies [24]. The novelty of our proposal is the 
combination of multiple pathology-specific algorithms to 
achieve holistic maculopathy detection. Each algorithm is 
trained to identify individual diseases, and, in conjunction, 
the final output increases the diagnostic accuracy of the AI 
system for ocular pathology detection.

Materials and methods

Study population

We present a retrospective diagnostic test evaluation. 
The dataset consists of 5918 images from a population 
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of 2839 individuals, taken between the 9th of January 
and the 13th of March of 2020. The median age was 
43 years old with a standard deviation of 11.52. From 
the study population, 1786 (63%) were male and 1053 
female (37%) (see Table 1 for a detailed breakdown). 
Participants of this study were enrolled in a consecu-
tive series during routine occupational health checkups 
offered by their employer as medical benefits [37]. All 
ophthalmologic check-ups were performed by a single 
provider (Optretina, Sant Cugat, Spain). The images 
were obtained by a trained technician using handheld 
non-mydriatic cameras on the participating center office 
premises, in a room which had been setup with adequate 
lighting conditions. The camera models employed were 
Optomed Aurora (field of view — FOV 50º, 88% of the 
dataset), ZEISS VISUSCOUT 100 (FOV 40º, 9% of the 
dataset), and Optomed SmartScope M5 (FOV 40º, 3% 
of the dataset). Image acquisition took around 2 min per 
patient. The raw image dataset was included in the study, 
and no images were discarded due to low resolution or 
were modified prior to the analysis.

Digital Fundus Image evaluation

The ground truth of the data was evaluated per eye. For 
patients with multiple captures, an automated quality filter-
ing was employed to select the highest-quality image. After-
ward, each image was graded by 2 specialists (intragrader 
variability kappa of 0.86 and 0.79 respectively) in a 2-tiered 
approach (Fig. 1). In case of discrepancies, a 3rd retinal spe-
cialist reviewed the image (intragrader variability kappa of 
0.83). The first step of the labeling process was to classify 
the image as “normal” or “abnormal,” considering the lat-
ter as any digital fundus image showing pathological signs. 
Abnormal images were further subclassified per pathology. 
The specific pathologies considered for evaluation were DR 
(defined as more than mild DR, as per the 2019 revision 
of the American Academy of Ophthalmology’s Preferred 
Practice Pattern) [38, 39], AMD (defined as mild or worse), 
GON (suspicious glaucomatous optic neuropathy was 
defined by a cup-to-disc ratio of 0.7 or more in the vertical 
axis and/or other typical changes caused by glaucoma, such 
as localized notches or retinal nerve fiber layer defects or 

Fig. 1  Labeling flowchart. The 
flowchart depicts the 2-tiered 
approach followed by all spe-
cialists to label the dataset. The 
ground truth was agreed by at 
least 2 graders
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peripapilar hemorrhages), and Nevus (defined with clinical 
parameters as an hyperpigmented lesion beneath the retina). 
Images classified as abnormal (with possible signs of macu-
lopathy) not matching the described taxonomy were classi-
fied as other in tier 2.

Dataset enrichment

We aim to assess the effectiveness of our automated screening 
algorithm on a wide-range general population. Because of the 
sampling bias of the initial population (working age partici-
pants, mostly without known prior pathologies), the prevalence 
for AMD and DR was far below that reported in the literature 
for the general population [4, 40]. To balance the data, we 
enriched the dataset with 384 AMD and 150 DR pathological 
images to match the prevalence in the general population of 
our environment [18, 41]. AMD images were obtained from 
Optretina’s image bank (the sample was randomly selected 
from a cohort of 2212 AMD cases screened from January 
2013 to May 2020) [24]. DR images were randomly selected 
from a series of positive cases detected in the Institut Català 
de la Salut (ICS) screening program for diabetics (Barcelona, 
Spain). In both cases, the enriched images were labeled by two 
expert retinal specialists, following the procedure detailed in 
Fig. 1. The dataset details are shown in Table 1.

Statistical analysis

The primary outcome of the analysis is the diagnostic 
accuracy of the AI system, defined by its sensitivity 
and specificity, versus the ground truth. Since the AI 
system performs a holistic screening, as well as pathol-
ogy-specific diagnostic, we calculated the sensitivity 
and specificity for both. The operating threshold was 
fixed before the analysis and was not adjusted during the 
tests. The secondary outcomes are the receiver operating 
characteristic (ROC) curve and the area under the curve 
(AUC) index. All reported 95% CIs were obtained by 
performing a non-parametric bootstrap (1000 samples, 
with replacement). Study success was defined as reach-
ing a predefined threshold of sensitivity and specificity 
on our holistic general screening algorithm. The hypoth-
eses of interest were

where p is the sensitivity or specificity of the AI system. 
The predefined sensitivity and specificity thresholds were 
p0 = 0.75 and p0 = 0.775, respectively, benchmark defined 
by the FDA in their first-approved AI diagnostic system [32]. 
A one-sided 2.5% type I error binomial test was performed 
for both null hypotheses.

H0 ∶ p < p0vsHA ∶ p ≥ p0

For the sample size calculation, we estimated a prevalence 
of retinal abnormalities in an occupational health checkup 
context of 7.8% with a 95% confidence interval, as per our 
previous study [42]. With these figures, the total number 
of participants needed was 2784. Additionally, we also 
confirmed that the sample size of our enriched dataset was 
large enough to ensure 80% statistical power (β = 0.2) on our 
sensitivity and specificity metrics, given the reported null 
hypothesis and the levels of pathological prevalence [43].

Training dataset

For algorithm development, macula-centered digital fun-
dus images were retrospectively obtained from Optreti-
na’s own image bank (AMD, GON, Nevus, Abnormal-
ity) and Institut Català de la Salut and EyePacs (Kaggle). 
For AMD, Glaucoma, and DR, images were taken from a 
clinical setting, while Nevus and abnormality images were 
sourced from screenings, mostly performed with portable 
cameras. All images were evaluated by at least 1 expert 
retinologist, following the previously described criteria. 
The exact breakdown of the training dataset can be found 
in Table 1.

Individual algorithms

For each dataset, we trained binary classificators (disease/
no disease) using convolutional neural networks (CNNs). 
This process, with the right training data, allows the CNN 
to automatically learn features from the images that can be 
extrapolated successfully outside of the training data. The 
“AMD” algorithm uses a custom neural network architec-
ture [42] using RGB images of 512 × 512 pixels [36]. The 
“DR” algorithm uses an InceptionV3 architecture [44] with 
inputs of 512 × 512.44, “Glaucoma” uses a ResNet50 [45] 
with inputs of 224 × 224.45, “Nevus” detection employs an 
InceptionV3 at 299 × 299, and the abnormal images detector 
another InceptionV3 at 299 × 299. The optimization algo-
rithm to train the network was ADAM. We also used batch 
normalization, as well as using the weights of pretrained 
ImageNet networks where possible (InceptionV3, ResNet50) 
to speed up the training.

The performance of the algorithm was measured by 
the area under the receiver operating curve (AUC). The 
reported sensitivity and specificity points have been taken 
without adjusting the decision threshold (threshold = 0.5). 
The development datasets were split in an 80/10/10 fash-
ion, where 80% of the data was used for training, 10% for 
validation (adjusting hyperparameters), and 10% to test 
the results. This data was split by patient (not image) and 
is completely independent from the dataset presented for 
the study validation.

3259Graefe's Archive for Clinical and Experimental Ophthalmology (2022) 260:3255–3265
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Fig. 2  Algorithm execution flowchart. The predictions are performed at the image level. 5 neural networks process independently each image 
and in case any algorithm is positive, the screened image is classified as “abnormal”

3260 Graefe's Archive for Clinical and Experimental Ophthalmology (2022) 260:3255–3265
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Screening algorithm

The screening algorithm is a combination of five indepen-
dently trained neural networks. Four of these neural net-
works target specific pathologies (AMD, DR, GON, and 
Nevus), while the fifth one has been trained as an outlier 
detector, with a training dataset containing images from the 
aforementioned pathologies as well as other undetermined 
maculopathies (Fig. 2). Each image evaluated by the sys-
tem is processed independently by each of the five neural 
networks and, at a second step, their response is combined 
in a single output. If an algorithm detects signs of any of the 
individual pathologies, the screened image is classified as 
Abnormal. A complete diagram of the AI system architec-
ture is presented in Fig. 2

Results

The combined abnormality algorithm correctly identi-
fied 92% of the analyzable images annotated as Abnormal 
(776/843). The performance of individual disease algorithms 
is herein described: 99% of AMD images were correctly 
identified (394/398), 100% of DR images were correctly 
classified (150/150), 71% of GON images were correctly 
identified (71%, 75/107), 90% of Nevus images were cor-
rectly identified (99/110), and 73% of undetermined mac-
ulopathies were correctly classified (65/90). Insufficient 
quality of the images was observed in 0.23% of the cases 
(15/6452), which could not be graded. Of these, 80% were 
labeled as abnormal by our graders (12/15).

The single NN (neural network) abnormality algorithm 
correctly detected 82% (691/843) of the analyzable images. 
The percentage of images correctly classified disclosed by 
pathologies was 98.8% of AMD images (393/398), 94.6% of 
DR images (142/150), 45.6% of GON images (48/107), 49% 

of Nevus images (54/110), and 49% of other maculopathies 
images (44/90).

The AMD algorithm correctly detected 90% of AMD 
images (358/398). False positive rates were 62.6% of DR 
images (94/150), 6.7% of GON images (7/107), 0% of Nevus 
images (0/110), and 22.5% of other maculopathies images 
(20/90).

The DR algorithm correctly detected 68.6% DR images 
(103/150). False positive rates were 4.1% of AMD images 
(16/398), 0% of GON images (0/107), 0.9% of Nevus images 
(1/110), and 11.7% of other maculopathies images (10/90).

The GON algorithm correctly detected 58.2% of GON 
images (62/107). False positive rates were 10.6% of AMD 
images (42/398), 12.6% of DR images (19/150), 2.9% of 
102 Nevus images (3/110), and 8.8% of other maculopathies 
images (7/90).

The Nevus algorithm correctly detected 88.2% of the 
Nevus-specific images (90/110). False positive rates were 
88% of AMD images (350/398), 100% of DR images 
(150/150), 2.9% of GON images (3/107), and 63.7% of other 
maculopathies images (57/90).

Sensitivity and specificity obtained from all algorithms 
are summarized in Table 2. The threshold for each individual 
CNN was not adjusted to boost the sensitivity or specificity to 
a certain operating point. Sensitivity and specificity were cal-
culated per eye, using the best quality image if multiple were 
available. Discarding eye duplicates had little effect in the 
metrics in our study cohort (sensitivity: 92.1% duplicates vs 
92.8% non-duplicates; specificity: 87.6% duplicates vs 86.8% 
no duplicates). Enforcing high-quality standards in the pre-
processing pipeline, the effect is more noticeable (sensitivity: 
92.8% any quality vs 92.6% high quality; specificity: 86.8% 
any quality vs 89.1% high quality). The dataset, as classi-
fied by the automatic quality algorithm, consisted of 53.4% 
high-quality images (n = 3444), 43.6% of acceptable-quality 
images (n = 2809), and 3.0% of low-quality images (n = 196).

Table 2  Summary of sensitivity, 
specificity, and AUC aggregated 
and per individual algorithm

a p-value for sensitivity on the combined abnormality algorithm was computed using a one-sided tailed 
binomial test using a sensitivity of p = 0.75 as the null hypothesis
b p-value for specificity on the combined abnormality algorithm was computed using a one-sided tailed 
binomial test using a sensitivity of p = 0.775 as the null hypothesis

Algorithm Sensitivity (95% CI) [p-value] Specificity (95% CI) [p-value]

Combined algorithm:
  Abnormality 92.9% (91.0, 94.6) [< 0.001]a 86.8% (85.8, 87.7) [< 0.001]b

Single NN algorithms:
  Abnormality 83.4% (80.6, 85.9) 93.4% (92.7, 94.0)
  AMD 93.8% (91.6, 96.3) 95.7% (95.2, 96.2)
  DR 81.1% (75.3, 88.1) 94.8% (94.1, 95.4)
  Glaucoma 53.6% (43.1, 63.1) 95.7% (95.2, 96.2)
  Nevus 86.7% (80.7, 94.0) 90.7% (90.1, 91.5)

3261Graefe's Archive for Clinical and Experimental Ophthalmology (2022) 260:3255–3265
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To represent the best operation points, we plotted the 
ROC curve for the combined algorithm and the individual 
models in Fig. 3. Additionally, we also computed the AUC 
of the combined algorithm (0.963) and the single NN ver-
sion (0.948).

Discussion

The proposed study has exceeded the expectations of the 
holistic solution proposed for screening the central retina’s 
diseases. The reported diagnostic accuracy levels are simi-
lar to other algorithms already available on the market and 
higher than those required by the FDA for approval [32]. 
However, the proposed system presents the additional ben-
efit that several pathologies are simultaneously screened 
together with those that cause greater visual loss among 
industrialized countries. These are also the main causes of 
preventable, non-reversible blindness, which are experienc-
ing more growth in the world [46].

It is widely demonstrated that early detection of these 
diseases (mainly AMD, DR, and GON) and their early 

treatment, if necessary, can prevent visual loss in a very 
high percentage of patients [47–49]. Simultaneous screening 
for multiple pathologies of the retina has previously been 
contemplated in some publications, both associated with 
human reading and artificial intelligence, mainly combining 
the detection of AMD and DR [14, 50], and also glaucoma 
[51]. To date, all artificial intelligence studies using fundus 
images for other diseases than diabetes have been carried out 
only in existing databases, with no clinical validation studies 
performed prospectively.

Currently, screening programs in most countries focus 
on DR, probably for cost-effectiveness reasons. Our study 
population is relatively young, and a priori, healthy, despite 
previous studies that report alterations in fundus images in 
almost 8% of cases in this type of population [37]. Although 
these alterations do not usually represent serious or urgent 
cases, any pathology in this population, young and work-
ing, can have significant socio-economic repercussions. The 
incorporation of artificial intelligence and the simultaneous 
screening of several diseases can make these early detection 
systems more cost-effective. Despite the fact that the objec-
tive of this study is not an economic evaluation, the use of 

Fig. 3  Receiver operating curve 
for the combined and individual 
algorithms
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automatic detection software can reduce previously reported 
costs, lower than 10 euros per patient [37].

One of the most important causes of loss of effective-
ness of AI is related to the quality of the images [52]. In our 
series, we have had 3% of fundus photographs of low qual-
ity, a figure significantly lower than other published series 
such as Abramoff et al. (above 8%) [32] or Liu et al. (16%) 
[53]. We would like to note that our numbers are obtained on 
real conditions, with portable cameras and, generally, under 
certainly strict timeframes. This difference can be due to dif-
ferent reasons. While portable cameras traditionally tended 
to be of lower quality than desktop cameras, the technical 
advances in recent years have improved the quality of the 
images, and current cameras like Aurora are of equivalent 
quality. Moreover, screening has been carried out in rela-
tively young people, in which ocular media opacities are 
much less common and tend to have more dilated pupils in 
scotopic conditions. One of the most interesting points is the 
study of comorbidities; to date, it is also one of the limits set 
by AI. With this type of approach, lesions can be detected by 
independent algorithms that combine together in a holistic 
diagnosis. This results in a more robust system, less likely 
to miss incidental findings, with higher overall sensitivity, 
while only penalizing slightly on specificity. The use of AI 
for DR screening is already being implemented success-
fully in some countries. However, this pathology-specific 
approach carries the risk of ignoring other possible findings, 
since the neural networks employed are not designed for it. 
We do believe that it would be beneficial if those IA systems 
are combined and set up with a more holistic approach, to 
minimize the risk of ignoring these incidental findings. The 
combination of multiple algorithms also makes it easier to 
deploy improvements on the system. We can tackle algo-
rithms per pathology, and any improvements in the individ-
ual models will benefit in the final output. We have already 
achieved gains in multiple retrainings of the DR algorithm, 
and we believe that the rest of algorithms could be similarly 
improved in the near future. GON algorithm alone shows 
weaker performance than the rest of single algorithms, 
making the single and combined algorithms not reliable for 
screening of this pathology.

This study’s limits are those determined by carrying out 
a retrospective study, those related to the population studied 
(in this case, younger and with a lower rate of pathology 
than the general population), and the limits derived from 
the pathology studied. To compensate for possible biases, 
the database has been enriched with a presence similar to 
the population of AMD and DR. It would be convenient, 
in the future, to introduce other highly prevalent patholo-
gies in the population, such as the presence of epiretinal 
membranes or macular signs associated with high myopia. 
Another area that we want to study further is in the image 
capture workflow, to offer not only an automated way of 

screening, but a better screening workflow with hybrid sys-
tems. We believe that by integrating the image acquisition 
process with an online platform for automated data collec-
tion, it is possible to instrument the whole process and guide 
the technician through, with the additional benefit that the 
images are automatically assigned to the right patient and 
checked for adequate quality prior to running any subsequent 
diagnostic analysis.

In conclusion, the use of an autonomous AI-based diag-
nostic system based on fundus images for holistic macu-
lopathy screening in a routine occupational health checkup 
context seems effective, with high levels of sensitivity and 
specificity that improves further those achieved by specific 
algorithms. The application of these systems could allow 
more extensive screening programs with greater detection 
of pathology in working-age patients.
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