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Abstract

Radiofrequency ablation (RFA) of intrahepatic tumors induces distant tumor growth through

activation of interleukin 6/signal transducer and activator of transcription 3 (STAT3)/hepato-

cyte growth factor (HGF)/tyrosine-protein kinase Met (c-MET) pathway. Yet, the predomi-

nant cellular source still needs to be identified as specific roles of the many types of

periablational infiltrating immune cells requires further clarification. Here we report the key

role of activated myofibroblasts in RFA-induced tumorigenesis and successful pharmaco-

logic blockade. Murine models simulating RF tumorigenic effects on a macrometastatic

tumor and intrahepatic micrometastatic deposits after liver ablation and a macrometastatic

tumor after kidney ablation were used. Immune assays of ablated normal parenchyma dem-

onstrated significantly increased numbers of activated myofibroblasts in the periablational

rim, as well as increased HGF levels, recruitment other cellular infiltrates; macrophages,

dendritic cells and natural killer cells, HGF dependent growth factors; fibroblast growth fac-

tor-19 (FGF-19) and receptor of Vascular Endothelial Growth Factor-1 (VEGFR-1), and pro-

liferative indices; Ki-67 and CD34 for microvascular density. Furthermore, macrometastatic

models demonstrated accelerated distant tumor growth at 7d post-RFA while micrometa-

static models demonstrated increased intrahepatic deposit size and number at 14 and 21

days post-RFA. Multi-day atorvastatin, a selective fibroblast inhibitor, inhibited RFA-induced

HGF and downstream growth factors, cellular markers and proliferative indices. Specifically,

atorvastatin treatment reduced cellular and proliferative indices to baseline levels in the

micrometastatic models, however only partially in macrometastatic models. Furthermore,

adjuvant atorvastatin completely inhibited accelerated growth of macrometastasis and

negated increased micrometastatic intrahepatic burden. Thus, activated myofibroblasts

drive RF-induced tumorigenesis at a cellular level via induction of the HGF/c-MET/STAT3

axis, and can be successfully pharmacologically suppressed.
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Introduction

Image-guided thermal ablation is an established clinical treatment that can achieve outcomes

equivalent to surgical resection in well-selected patients [1–5], particularly for tumors less than

3 cm [6, 7]. Thermal ablation is now being used widely given it’s applicability to a growing

cohort of non-surgical patients and a relatively lower economic cost [8–12]. While local treat-

ment efficacy has continued to improve due to growing expertise and technological improve-

ments, there is increasing evidence that effects from local ablation may result in unintentional

downstream systemic side effects. Specifically, increased growth of distant untreated tumor

following local ablation has been observed in both animal models [13–17] and with variable

frequency in some clinical scenarios as unintended phenomena to both ablation [18, 19] and

other interventional oncologic procedures [20–25].

Prior studies have linked post-ablation tumorigenesis to cytokinetic processes and

accompanying inflammatory cellular infiltration that occur in the red peripheral zone sur-

rounding an ablation. For liver ablation, Interlukin-6 (IL-6), hepatocyte growth factor and

its high affinity receptor mesenchymal epithelial transition factor receptor (HGF/c-MET)

axis [26–29] have been identified as major drivers of these effects. In HCC, IL-6 and the

HGF/c-MET axis have been linked to increased angiogenesis through VEGF-1/A pathway,

and proliferation through fibroblast growth factor-19 (FGF-19) [30–33]. Ablation-induced

increase in IL-6 has been previously reported in clinical studies and in preclinical models,

and successful blockade of this cytokine has curbed ablation induced distant tumor growth

[14, 15, 17, 32, 34].

While specific cytokines have been identified as key promoters of post-ablation distant

tumor growth and have been successfully blocked with pharmacologic therapy, the precise

cellular sources of these cytokines have yet to be elucidated and potentially targeted.

Accordingly, here we attempt to identify key cell populations driving post-ablation tumori-

genesis. A growing body of literature implicates cancer-associated fibroblasts (CAFs) as a

key cell population in promotion of tumorigenesis and proliferation pathways [31]. Given

the prominence of fibroblasts in the periablational rim and their known potential to pro-

duce a host of growth factors including those found elevated post-RF ablation, we hypothe-

sized that activated fibroblasts may play a key role in regulating unintentional distant tumor

growth post-ablation. Moreover, we hypothesized that anti-fibroblast drugs such as atorva-

statin may successfully attenuate tumorigenesis of distant metastasis. Accordingly, the pur-

pose of this study was to characterize the role of myofibroblasts within the ablation zone on

ablation-induced stimulation of distant tumors and micrometastatic disease in preclinical

models, and to further study the use of an adjuvant anti-fibroblast agent, atorvastatin, on

suppressing myofibroblast-driven ablation-induced distant tumor growth and metastatic

implantation.

Material and methods

Overview

Animal studies were performed in accordance with protocols approved by the Institutional

Animal Care Committees of Beth Israel Deaconess Medical Center, and Hadassah Hebrew

University Medical Center, respectively. A total of 124 rats were implanted with a subcutane-

ous rat breast cancer cell line to characterize the role of myofibroblasts on both RFA-induced

distant macrometastatic tumor growth and 64 mice were subject to intrahepatic implantation

with two different murine colorectal cancer cell lines to characterize the role of micrometa-

static tumor implantation and growth. The study was conducted over four phases.
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Phase I

Determination of the role of myofibroblasts in hepatic RFA-induced HGF upregulation, peria-

blational cell trafficking and downstream growth pathways modulation. First, 48 non-tumor

bearing Fischer rats were randomized into the following treatment groups: 1) sham treatment,

2) sham with multiple doses of atorvastatin, 3) RFA of the liver, and 4) RFA of the liver with

multiple doses of atorvastatin. Animals were sacrificed at 3 and 7 days post-treatment. Ablated

and non-ablated liver tissues were collected to measure HGF. Liver tissue was also collected and

analyzed for periablational infiltrating cell populations, tumor proliferation indices, and growth

factors and growth factor receptors linked to RFA-induced tumorigenesis [R]. Analyzed infil-

trating cell populations included alpha-smooth muscle actin positive activated myofibroblast

(α-SMA), macrophages (CD68), natural killer cells (KIR3DL1), and mature dendritic cells

(CD80). Tumorigenesis markers included Ki-67 (cell proliferation) and CD34 (microvascular

density). Growth factors included the receptor for vascular endothelium growth factor-1

(VEGF-R1), a key marker for HCC angiogenesis pathways, and fibroblast growth factor-19

(FGF-19), an HGF/c-MET/STAT3 dependent tumorigenic promoter of HCC.

Next, 8 BALB/c and 8 C57BL/6 non-tumor bearing mice were randomized into two

treatment groups: 1) hepatic RFA alone, and 2) hepatic RFA with a single dose of atorva-

statin. Animals were sacrificed at 7d post-ablation. Liver tissues were harvested and ana-

lyzed for myofibroblast infiltration (α-SMA), cell proliferation (Ki-67), and microvascular

density (CD34).

Phase II

Determination of the role of myofibroblasts in hepatic RFA tumorigenesis of macrometastasis.

Here, 48 rats with established subcutaneous R3230 adenocarcinoma breast tumors were ran-

domized into 4 treatment groups: 1) sham treatment, 2) sham with multiple doses of atorva-

statin at 0, 24, and 48h, 3) hepatic RFA alone, and 4) hepatic RFA with multiple doses of

atorvastatin. Animals were sacrificed at day7 post-treatment. Tumor growth curves were plot-

ted and analyzed.

Phase III

Role of myofibroblasts in implantation and tumorigenesis of micrometastases following

hepatic RFA. Two murine models of diffuse intrahepatic colorectal cancer micrometastases

were used to study the role of myofibroblasts in RFA induced micrometastatic tumor cell

implantation and growth. C-MET–positive murine colorectal cancer cell lines, CT26 and

MC38, in syngeneic mouse strains, BALB/c and C57BL/6 mice, respectively, were used [17].

Animals (n = 24 per strain) were randomly assigned to 4 treatment groups: 1) sham procedure

followed by intrasplenic tumor cell injection 1d later, 2) sham followed by intrasplenic tumor

cell injection and daily atorvastatin for 3d; 1d prior to implantation, day of implantation and

1d after to implantation, 3) hepatic RFA followed by intrasplenic tumor cell injection, and 4)

hepatic RFA followed by intrasplenic tumor cell injection and daily atorvastatin. Animals were

sacrificed at 14d post-RFA for the CT26/BALB/c model and 21d post-RFA for the MC38/

C57BL/6 model. Whole livers were harvested to assess for tumor load, myofibroblast infiltra-

tion (α-SMA), cell proliferation (Ki-67), and microvascular density (CD34).

Phase IV

Role of myofibroblasts in renal RFA-induced tumorigenesis of distant macrometastasis. To

determine whether renal RFA-induced tumor growth is influenced by infiltrating
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myofibroblasts, RFA of the kidney was performed on 32 Fischer rats implanted with subcuta-

neous R3230 breast adenocarcinoma were randomized into 4 treatment groups: 1) sham, 2)

sham combined with multiple doses of atorvastatin, 3) renal RFA alone, and 4) renal RFA

combined with multiple doses of atorvastatin. Animals were sacrificed at 3d and 7d after sham

or RFA procedures. As described in phase I, animals were analyzed utilizing similar end

points, including tumor growth curves, ELISA to measure HGF in the ablated kidney, IHC of

α-SMA and CD68 in periablational tissue, and Ki67, CD34, and VEGF-R1 in periablational

kidney and breast adenocarcinoma tumor tissues.

Further detailed descriptions of animal models used, animal surgery, RFA, anesthesia and

pain alleviation, sacrifice, sample collection, proteomic analysis and statistical analysis can be

found in the supplemental section, and have been previously described in detail [17, 34–37].

Ethics statement. All of the methods and studies reported were approved by our Institu-

tional Animal Care and Use Committee. Specifically, rat studies were performed at Beth Israel

Deaconess Medical Center, while mouse experiments were performed at Hadassah Hebrew

University Medical Center in accordance with protocols approved by the respective Institu-

tional Animal Care Committees. For rat studies, the maximum permissible diameters for

R3230 breast adenocarcninomas, as per approved IACUC protocol, was a mean diameter of 2

cm. Tumor sizes were assessed using manual caliper measurements of two largest perpendicu-

lar dimensions and calculating mean diameters. After surgical procedures, the animals were

monitored on a daily basis to determine any specific clinical signs of postoperative pain and

distress. Specific signs of weakening or distress included, but were not limited to: total com-

bined tumor burden greater than 2 cm or 10% of body weight, decreased appetite, reduced

ambulation (interfering with or hampering with the animal’s ability to obtain food and water,

bear its own weight, or regain normal posture if placed on the back), weight loss (20% loss of

body weight within 7 days, measured every 2-3d), tumor ulceration or necrosis for subcutane-

ous tumors. Post-surgically, if signs of distress were detected, a single dose of buprenorphine

SR (72 hour duration of action) was administered at the site of surgery. In cases of tumor bur-

den exceeding approved limits, animal were euthanized. For mouse experiments, general con-

dition and animal well-being were used as metrics of tumor burden in lieu of a maximum

permissible size due to microscopic nature of CRC liver deposits. Similar to rat experiments,

post-operatively, animals were monitored on a daily basis to determine any specific clinical

signs of postoperative pain and distress. For post-operative pain and distress, a single dose of

buprenorphine SR was administered at the site of surgery. If signs of tumor burden over-

growth were detected, such as decreased appetite, reduced ambulation and or weight loss ani-

mals were euthanized.

Results

1. Atorvastatin reduces RFA-induced myofibroblast periablational

infiltration

Immunofluorescence assays of activated myofibroblasts in rat liver demonstrated significantly

higher intensity of infiltrating α-SMA positive cells in the RFA treatment group as compared

to sham or sham with atorvastatin. Specifically, activated myofibroblasts accumulated in the

periablational rim, increasing significantly from 3 to 7 days (p-value <0.001, RFA and RFA

plus atorvastatin). Atorvastatin following RFA reduced myofibroblasts by 50% at 3d and 7d

versus RFA treatment alone. (8,437,720.1± 694416.5 vs. 821117.8 ± 338805.1 vs.

1039511.7 ± 247990.3 vs. 4193656.4 ± 260689.6 Pixel Intensity (PI) at 3d, p-value < 0.001 for

all comparisons with RFA and p-value <0.001 comparing control groups to RFA and atorva-

statin and 12324537.7 ± 1478667.1 vs. 827895.6 ± 495894.0 vs. 1483688.6 ± 886000.3 vs.
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5967565.4 ± 878778.3 PI at 7d, p-value < 0.001 for all comparisons with RFA and p-value

<0.001 comparing control groups to RFA and atorvastatin). (Fig 1A).

In BALB/c and C57BL/6 mouse models, similar findings were noted. Specifically, a signifi-

cant reduction of periablational rim thickness of α-SMA positive cells was demonstrated when

comparing hepatic RFA alone to RFA with atorvastatin (78.98 μm ± 30.1 vs 38.61 μm ± 21.2,

for BALB/c mice (p<0.001) and 74.13 μm ± 28.07 vs 43.11 μm ± 19.80, for C57BL/6 mice)

(Fig 1B).

2. Myofibroblast inhibition suppresses RFA-induced upregulation of

tumor promoting cytokines

Samples of both periablational and non-ablated liver 3d and 7d after RFA treatment demon-

strated elevated levels of HGF when compared to control groups and RFA plus atorvastatin (p-

value < 0.05, all comparisons; Table 1). There was no statistically significant difference

between RFA and atorvastatin compared to control groups (p-value > 0.05 for all compari-

sons) (Fig 2A). Additionally, periablational rat liver at 7d post-treatment demonstrated ele-

vated FGF19 and VEGRFR-1 levels in the RFA arm compared to sham or sham plus

atorvastatin (p-value <0.001, for all comparisons), which were reduced by 50% in RFA plus

atorvastatin (p-value <0.001, vs. RFA and p-value <0.001 vs control groups).

3. Myofibroblast blockade eliminates hepatic RFA-induced tumorigenesis

and proliferation of distant established tumors

RFA alone demonstrated significantly increased distant mean tumor diameter from 2d post-

ablation to 7d post-ablation, when compared to sham, sham plus atorvastatin, or RFA plus

atorvastatin (p-value <0.05, all comparisons). Additionally, RFA plus atorvastatin treatment

did not show statistically significant different tumor growth when compared to sham or sham

Fig 1. Atorvastatin reduces RFA-induced myofibroblast periablational infiltration in treated liver in three rodent

models. Animal livers were evaluated using immunofluorescent staining. Statistically significant increased

immunofluorescent intensity of infiltrating α-SMA positive cells was detected in the RFA treatment group as compared to

sham or sham plus atorvastatin. Atorvastatin treatment significantly reduced α-SMA cell positivity at 3 and 7 days post-

treatment (p-value<0.001, both comparisons), while remaining elevated to control groups at both time points (p-value

<0.001) (A). Immunohistochemical analysis of BALB/c and C57B/6 mice (B) livers 7 days after RF ablation with and without

atorvastatin treatment likewise demonstrated significant reduction of α-SMA periablational rim thickness in the combined

RFA and atorvastatin group in both models (p-value<0.001 and p-value<0.05, respectively).

https://doi.org/10.1371/journal.pone.0266522.g001
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plus atorvastatin (p-value >0.05, both comparisons) (Fig 3A). At 7d post-ablation, hepatic

RFA alone demonstrated significantly increased macrophages (CD68), mature dendritic cells

(CD80), and natural killer cells (KIR3DL1) in the periablational rim when compared to sham,

RFA plus atorvastatin, or sham plus atorvastatin (p-value<0.001, for all comparisons)

(Table 2). Similarly, increased cellular proliferation (Ki-67) and microvascular density (CD34)

were observed in the periablational rim at 3d and 7d following hepatic RFA alone, which were

successfully reduced to 50% for Ki67 (p-value <0.001, vs RFA plus atorvastatin and p-value

<0.001 vs control groups) and to baseline levels for CD34 in RFA plus atorvastatin (p-value

<0.001, all comparisons between RFA vs RF plus atorvastatin or control groups; p-value

>0.05 comparing RF plus atorvastatin and control groups). (Fig 3B and 3C and Table 2).

4. Myofibroblast blockade eliminates hepatic RFA-induced tumorigenesis

of micrometastatic implants

In MC38 and CT26 colorectal metastatic models, hepatic RFA alone increased the total num-

ber of tumor nodules, tumor area ratio, and nodule size compared to sham, sham plus

Table 1. Effect of myofibroblast blockade on Hepatocyte growth factor upregulation in the periablational rim and distant liver post-RFA.

Sham Sham + Ator RFA RFA + Ator

Periablational rim (OD ± SD) 3D 20 ± 3.2 15.5 ± 4.2 39.1 ± 6.7 19.7 ± 2

7D 11.2 ± 3 7.2 ± 2 22.5 ± 2.8 7.3 ± 3.5

Distant liver (OD ± SD) 3D 15.8 ± 3.5 20.7 ± 2.7 22.6 ± 3.9 9.4 ± 3.3

7D 11.0 ± 2.4 10.6 ± 1.4 15.8 ± 3.0 9.7 ±1.2

https://doi.org/10.1371/journal.pone.0266522.t001

Fig 2. Myofibroblast blockade inhibits RFA-induced upregulation of tumor promoting cytokines. Ablated (and

un-ablated, HGF only) livers were analyzed for known RF induced tumorigenic growth factors (HGF and VEGFR-1)

as well as myofibroblast dependent growth tumorigenic growth factors (FGF-19). (A) Enzyme-Linked immunosorbent

assays (ELISA) demonstrated statistically significant elevated levels of HGF in the RFA group when compared to

control groups and RFA plus atorvastatin (p-value< 0.05 for all comparisons) in treated rat liver. No statistically

significant difference was detected between RFA plus atorvastatin and control groups at 3 and 7 days (p-value> 0.1, all

comparisons). ELISA also demonstrated statistically significantly elevated HGF levels in non-ablated rat liver with RFA

treatment in comparison to control groups and combined atorvastatin with RFA at 3 and 7 days post-ablation (p-

value< 0.05, all comparisons), with, no statistically significant difference detected between RFA plus atorvastatin

treatment and control groups (p-value> 0.1, all comparisons). Significantly increased FGF-19 (B) and VEGRFR-1 (C)

levels were demonstrated in RFA compared to sham or sham plus atorvastatin 7 day post-treatment (p-value<0.001,

all comparisons) and were successfully reduced to half in RFA plus atorvastatin (p-value<0.001, all comparisons with

RFA and p-value<0.001, for all comparisons to control groups).

https://doi.org/10.1371/journal.pone.0266522.g002
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atorvastatin treatment and combined RFA with atorvastatin (p-value<0.05, all comparisons

for MC38 and p-value<0.001, all comparisons for CT26). Combination RFA plus atorvastatin

reduced tumor burden compared to RFA alone to baseline levels observed with sham or sham

plus atorvastatin treatment (p-value>0.1 for all comparisons, both models) (Fig 4).

In the hepatic RFA arm, increased activated myofibroblasts were observed in distant intra-

hepatic metastases at the time of sacrifice (MC38 and CT26 at 21 and 14 d) when compared to

sham, sham plus atorvastatin, or RFA plus atorvastatin (p-value <0.001 for all comparisons).

When combining RFA with atorvastatin, myofibroblast infiltration levels were reduced to

baseline control groups’ levels (p-value >0.05 for all comparisons).

Similarly, in animals treated with hepatic RFA alone, metastatic tumors demonstrated

increased cellular proliferation (Ki-67) and microvascular density (CD34) compared to sham,

sham plus atorvastatin, and RFA plus atorvastatin (p-value<0.001, all comparisons). However,

Fig 3. Myofibroblast blockade eliminates hepatic RF driven tumorigenesis and of proliferation distant established

tumors. (A)Tumor growth mean diameter measurements demonstrate RFA treatment significantly increased the

distant tumor diameter when compared to sham, sham plus atorvastatin and RFA plus atorvastatin starting 3 days after

ablation (p-value<0.05, all comparisons). Furthermore, no statistically significant different tumor growth was

demonstrated in RFA plus atorvastatin when compared to sham or sham plus atorvastatin (p-value>0.05, both

comparisons). Immunohistochemical analysis (B&C) and comparison of cellular proliferative (Ki-67) and

microvascular density (CD34) indices was performed. Significantly elevated Ki-67 (B) and CD34 (C) levels were

detected in RFA as compared to sham and sham plus atorvastatin groups at 7 days, which were successfully reduced to

the baseline in RFA plus atorvastatin for CD34 (p-value<0.001, all comparisons between RFA alone vs. RFA plus

atorvastatin or control groups; p-value>0.05 comparing RFA plus atorvastatin and control groups) and to half for Ki-

67 (p-value<0.001, all comparisons with RFA and p-value<0.001, all comparisons to control groups).

https://doi.org/10.1371/journal.pone.0266522.g003

Table 2. Effect of myofibroblast blockade on cellular trafficking, downstream tumorigenic growth factors and proliferation in rat livers’ periablational rim collected

7 days post hepatic ablation.

Sham Sham + Ator RFA RFA + Ator

Cellular infiltrates (PI/mm2±SD) CD68 179.2 ± 40.5 136.2 ± 38.1 3521.2 ± 297.3 2266.1 ± 123.4

CD80 11 ± 2 12 ± 6 325.2 ± 55.5 53 ± 18.2

KIR3DL3 1049.1 ± 111.2 937.0 ± 92.2 27955.9 ± 2572.7 13822.5 ± 1447.7

Tumorigenic Growth Factors (PI/mm2±SD) FGF-19 81.2 ± 8.6 85.7 ± 7.0 795.7 ± 56.9 251.8 ± 48.0

VEGFR-1 94.4 ± 13.3 98.7 ± 10.9 2216 ± 158.7 918.7 ± 81.5

Prolif. indices (PI/mm2±SD) Ki-67 76.5 ± 26.0 90.1 ± 27.4 1299.4± 140.5 571.9 ± 74.7

CD34 77.2 ±11.8 69 ± 10.3 125.7 ± 8.7 85.8 ± 33.4

https://doi.org/10.1371/journal.pone.0266522.t002

PLOS ONE Myofibroblasts: Promoters of tumorigenesis post radiofrequency ablation

PLOS ONE | https://doi.org/10.1371/journal.pone.0266522 July 20, 2022 7 / 14

https://doi.org/10.1371/journal.pone.0266522.g003
https://doi.org/10.1371/journal.pone.0266522.t002
https://doi.org/10.1371/journal.pone.0266522


there was no difference in the assayed markers when comparing sham, sham plus atorvastatin

and RFA plus atorvastatin indicating successful reduction of cellular markers to baseline levels

with atorvastatin treatment (p-value >0.05 all comparisons). (Fig 5 and Table 3).

Fig 4. Myofibroblast blockade eliminates hepatic RF driven tumorigenesis of micrometastatic implants. RFA

statistically significantly increased total number of tumor nodules, nodule size and tumor area ratio when compared to

sham and sham plus multi-atorvastatin treatment and combination of RFA with atorvastatin in murine MC38 and

CT26 colorectal metastatic models (p-value<0.05, all comparisons). Additionally, RFA plus atorvastatin treatment

demonstrated statistically significant lower tumor burden compared to RFA, with no statistically significant increase in

tumor burden noted when compared to sham or sham plus atorvastatin treatment (p-value>0.1 for all comparisons,

both models).

https://doi.org/10.1371/journal.pone.0266522.g004

Fig 5. Myofibroblast blockade suppresses RF induced tumor proliferation of micrometastatic implants in murine

colorectal cancer models. Immunohistochemical analysis of MC38 and CT26 demonstrated increased infiltration of

activated myofibroblasts, increased cell proliferative indices and microvascular density in RFA groups when compared

to sham, sham plus atorvastatin and RFA plus atorvastatin (p-value<0.001 for all comparisons, for both models).

Myofibroblast infiltration levels were reduced to baseline control groups’ levels in RFA with atorvastatin (p-value

>0.05 for all comparisons, for both models). Likewise, RFA also demonstrated increased Ki-67 and CD34 signals in

metastatic nodules compared to sham, sham plus atorvastatin and RFA with atorvastatin (p-value<0.001, all

comparisons, both models), which were reduced to baseline levels in RFA plus atorvastatin treatment (p-value>0.05

all comparisons).

https://doi.org/10.1371/journal.pone.0266522.g005
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6. Atorvastatin partially suppresses RFA-induced periablational

myofibroblast infiltration in ablated kidney

Following renal RFA alone, increased periablational infiltration of activated myofibroblasts

(α-SMA) (S1 Fig in S1 File) and macrophages (CD68) were observed compared to control

groups and RFA with atorvastatin (p<0.05, all comparisons). However, adjuvant atorvastatin

following renal RFA did not reduce infiltrating cells to baseline levels (p<0.05, all compari-

sons to control groups). (S1 Table in S1 File).

7. Myofibroblast blockade reduces renal RFA-induced tumor promoting

cytokines, tumorigenesis of distant established tumors, and periablational

and distant tumor proliferation

Renal RFA alone upregulated HGF at 3d and 7d compared to sham and sham plus atorvastatin

(p<0.05 for all comparisons). Adjuvant atorvastatin reduced post-RFA HGF in periablational

kidney compared to RFA alone (p<0.05, all comparisons). Compared to hepatic RFA, combi-

nation atorvastatin following renal RFA did not return completely to baseline, with HGF levels

still elevated compared to sham treatment (p<0.05 for all comparisons) (S2A Fig and S1

Table in S1 File). VEGFR-1 level was also increased in both the renal periablational rim and

distant tumor at 3d and 7d compared to sham, sham plus atorvastatin, or RFA plus atorva-

statin (p<0.05, all comparisons). RFA plus atorvastatin demonstrating higher VEGFR-1 levels

than control groups ((p <0.05, all comparisons) (S2B and S2C Fig and S1 Table in S1 File).

Renal RFA alone increased mean tumor diameter of the distant subcutaneous breast tumor

from 3d to 7d post-ablation compared to sham, sham plus atorvastatin, or RFA plus atorva-

statin (p<0.05, all comparisons). RFA plus atorvastatin treatment did not increase of mean

tumor diameter when compared to control groups (p-value >0.05, all comparisons) (S3 Fig in

S1 File).

Similarly, renal RFA alone increased periablational and distant tumor cellular proliferation

and microvascular density compared to control groups. Atorvastatin partially attenuated

increases in proliferation and microvascular density when combined with RFA (p<0.05, all

comparisons). (S4 Fig and S1 Table in S1 File).

Discussion

There is a growing body of clinical reports of accelerated tumor growth after hepatic and renal

RFA [18, 19, 34, 38] of primary and metastatic tumors [38, 39]. Studies investigating this phe-

nomenon have revealed temporally-associated cytokine surges following liver RFA, specifi-

cally, interleukin-6 [28], a key pro-inflammatory marker associated with HGF/c-MET/STAT3

Table 3. Effect of atorvastatin on myofibroblast infiltration and proliferation in CRC metastasis after hepatic RF.

Sham Sham + Ator RFA RFA + Ator

Cellular infiltrates

α-SMA

(%±SD)

MC38 7.1 ± 1.7 6.1 ± 1.8 19.6 ± 6.5 7.6 ± 1.6

CT26 5.3 ± 1.6 7.9 ± 2.4 15.7 ± 5.1 6.6 ± 2.2

Proliferative indices

Ki-67

(%±SD)

MC38 48.4 ± 10 43.2 ± 7.6 63.2 ± 11.7 40.7 ± 7.9

CT26 30.9 ± 5.6 34.4 ± 7.3 51.5 ± 9.9 27.4 ± 4

CD34

(%±SD)

MC38 17.9 ± 3.4 18.5 ± 5.6 28.5 ± 4.1 15.4 ± 2.2

CT26 13.6 ± 4 14.6 ± 2.9 23.7 ± 5.6 14.5 ± 3

https://doi.org/10.1371/journal.pone.0266522.t003
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pathway upregulation, which is a known key pathway in tumorigenesis. Preclinical models

have also correlated RFA-induced increases of inflammatory cytokines IL-6 [27], HGF [17],

and VGEF [15], to upregulation of downstream key proliferative pathways [14], and resultant

accelerated distant tumor growth peaking 6h to 3d following ablation [16]. At the same time,

animal studies have demonstrated increased infiltrating immune cells in the periablational

rim, namely polymorphic neutrophils, macrophages, and activated myofibroblasts [27]. Fibro-

blasts, specifically activated α-SMA–positive myofibroblasts, have been implicated as a crucial

subset of the tumor microenvironment promoting gastrointestinal carcinomas [40, 41] pro-

moting tumor growth [31], an immunosuppressive immunity [42], and are associated with

chemo-resistance [43]. Myofibroblasts are also known as major producers of HGF [43] and

interleukin-6 [44], key cytokines implicated in post-ablation tumorigenesis. Accordingly, in

the current study we attempt to elucidate the role of myofibroblasts in the upregulation of the

HGF/c-MET/STAT3 pathway and overall tumorigenesis following radiofrequency ablation.

Prior studies have shown that undesirable pro-tumorigenic effects can be successfully sup-

pressed by selective inhibition of interleukin-6 [34], and c-MET, or STAT3 [15–17] in animal

models. We postulated and demonstrate here that a similar approach can potentially be sought

to modulate cell populations that orchestrate tumor growth and progression, such as myofi-

broblasts. Accordingly we tested the use of atorvastatin, an established lipid lowering medica-

tion, which has known inhibitory effects on myofibroblasts [45], in the post ablation setting.

Through inhibition of small GTPases (RhoA and Ras) atorvastatin has demonstrated portal

pressure lowering effects and attenuated fibrosis in preclinical models [46]. Additionally, ator-

vastatin has been shown in large retrospective studies to be associated with improved survival

in non-small lung cancer [47] and prostate cancer [48], albeit the exact mechanism remains to

be determined.

In the first phase of this study, increased myofibroblast infiltration in the periablational rim

post-RFA was again demonstrated, but also now successfully attenuated by atorvastatin treat-

ment in two different animal models. Furthermore, we demonstrate that atorvastatin markedly

attenuates a host of post-RFA tumorigenesis-inducing phenomenon including release of HGF

and key dependent growth factors such as FGF-19 and VEGFR-1, as well as tumor markers

such as Ki-67 and CD34 implicating fibroblast proliferation in a cascade that leads to prolifera-

tion and angiogenesis. Interestingly, this is also associated with a decrease in other infiltrating

cell populations observed which can be attributed to myofibroblast blockade, a known key reg-

ulator of the inflammatory cellular infiltrate [49]. Specifically, we report significant modulation

of macrophages, mature dendritic cells, and natural killer cells. This underscores the complex

interactions between infiltrating cells that ultimately govern tumorigenesis. We therefore

hypothesize that despite selective myofibroblast inhibition a much broader cohort of cells are

impacted due to the complex interdependence and regulatory roles between infiltrating peria-

blational cells. Alternatively or simultaneously, atorvastatin may have a broad inhibitory effect

on multiple inflammatory cells. Furthermore, this observation makes a strong case for cell spe-

cific targeting strategies, especially, of other abundant cell populations with known tumor pro-

moting properties within the tumor microenvironment such as M2 macrophages.

Our subsequent tumor growth studies were in concert with immunohistochemical and

proteomic findings. In a rat model, liver RF induced accelerated distant tumor growth which

was successfully returned to baseline growth rates by a multi-day course of atorvastatin treat-

ment. Similar effects were reproduced and confirmed in a second mouse colorectal model that

simulates intrahepatic micrometastatic implantation from portal shower. Here too, atorva-

statin treatment demonstrated successful attenuation of RF driven increased number of micro-

metastatic implants, nodule size, and overall hepatic tumor burden.
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Finally, we confirmed similar findings for a second site in which RFA is commonly prac-

ticed. Specifically, we not only confirmed that renal ablation accelerates distant subcutaneous

tumor growth [34], but also that this phenomenon can be suppressed, albeit only partially, by

atorvastatin treatment. This suggests that RF induced distant tumorigenesis is not an isolated

hepatic phenomenon and can most likely be observed with the ablation of any organ. It also

reaffirms that organ specific interactions are at play after inflecting thermal injury upon it. For

instance, atorvastatin treatment in liver RF models successfully attenuated any RF-driven HGF

upregulation. While in kidney RF models, myofibroblast blockade significantly reduced HGF

levels below RF groups but not to control groups. This highlights the potential role of organ

specific cells and growth pathways in post ablation tumorigenesis.

Potential limitations of our study include those based upon experimental design. For exam-

ple, we acknowledge that the subcutaneous implantation models used to ablate primary organs

(liver or kidney) and study effects on a distant tumor of a separate origin (breast) represent an

uncommon clinical scenario. Nevertheless, such a model can strengthen the argument that the

observed phenomena transcend tumor origin and cellular homogeneity of the primary tumor

and affected satellites. Likewise, our complementary intrasplenic injection model of tumor

implantation via trans-splenic injection may create an artificial potentially greater portal cellu-

lar load than in a typical clinical scenario. Additionally, the timing of RF in relation to the por-

tal tumor cell delivery does not necessarily reflect a longer tumor dwelling time in most

clinical scenarios. Thus, although the tumor models used are well-characterized allowing com-

parison with other preclinical studies of RF ablation, careful interpretation and application of

the results is warranted. Indeed, atorvastatin specific effects described in these models may

vary in other models based on tissue susceptibility.

In conclusion, while radiofrequency ablation has demonstrated robust clinical efficacy in

treatment of intrahepatic and renal tumors, the inadvertent ablation of normal parenchyma of

the primary organ can stimulate distant tumor growth and proliferation. Our study offers

three clinically pertinent insights. Activated myofibroblasts are a key orchestrating cell popula-

tion in post RF ablation distant tumor growth, primarily through induction of the HGF/c-

MET/STAT3 axis. Post RFA distant tumor growth is a phenomenon that transcends pheno-

type of ablated primary organ ablated (including liver or kidney) and phenotype of tumor

(colorectal cancer or breast cancer) or size (micro or macrometastatic tumors). Finally, selec-

tive inhibition of RF induced distant tumor growth can be achieved with by targeted cellular

inhibition of activated myofibroblasts. Mouse colorectal models demonstrated reduction of

cellular, growth signal and tumor burden markers to baseline levels when combining atorva-

statin with RF. However, in rat models, although tumor growth studies demonstrated com-

plete negation of RF induced distant tumor growth with atorvastatin, cellular and growth

signals were only partially curbed. Thus, further evaluation, especially, including long-term

survival studies and combined targeted inhibition of key cellular and cytokine agents of estab-

lished tumorigenesis pathways.
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