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Within the cyto-architecture of the
brain is an often complex, but bal-

anced, neuronal circuitry, the successful
construction of which relies on the coor-
dinated generation of functionally
opposed neurons. Indeed, deregulated
production of excitatory/inhibitory inter-
neurons can greatly disrupt the integrity
of excitatory/inhibitory neuronal trans-
mission, which is a hallmark of neurode-
velopmental disorders such as autism.
Recent work has demonstrated that the
Purkinje neuron, the central integrator of
signaling within the cerebellar system,
acts during development to ensure that
neurogenesis occurring in spatially
opposed domains reaches completion by
transmitting the Sonic hedgehog ligand
bi-directionally. In addition to a classic
role in driving granule cell precursor pro-
liferation, we now know that Purkinje
neuron-derived Sonic hedgehog is simul-
taneously disseminated to the neonatal
white matter. Within this neurogenic
niche a lineage of Shh-responding stem
and progenitor cells expand pools of
GABAergic interneuron and astrocyte
precursors. These recent findings advance
our understanding of how Purkinje neu-
rons function dynamically to oversee
completion of a balanced cerebellar cir-
cuit.

Since the pioneering days of Ramon y
Cajal, the cerebellum has provided a con-
duit for fundamental advancements in
neurobiology. Many of the first morpho-
logical descriptions of neurons and glia
detailed their specific connectivity and
cortical placement within the cerebellum.
However, our understanding of the neuro-
genic zones responsible for producing
such exquisitely balanced cellular diver-
sity, particularly the key niche signals,

have only recently become somewhat
clear. The Sonic hedgehog pathway has
been implicated as a key mediator in sev-
eral phases of cerebellar ontogeny, but was
initially identified as the principal driver
of cortical growth. Cerebellar expansion is
powered by the rapid clonal divisions of
granule cell precursors (GCPs), which
Purkinje neuron (PN)-derived Shh indu-
ces (Dahmane and Ruiz i Altaba, 1999;
Lewis et al., 2004; Wallace, 1999; Wechs-
ler-Reya and Scott, 1999).

PNs are situated many cell diameters
away from recipient GCPs, and are
thought to transmit Shh ligand outwardly
along their dendritic axis to the superficial
external granule cell layer where GCPs
transiently reside (Lewis et al., 2004). In
this manner, by governing the production
of granule cells, PNs ensure that the major
excitatory component of the cerebellar sys-
tem is established (Sillitoe and Joyner,
2007). However, this outward signaling
axis only accounts for the generation of
one major element that feeds back on
PNs, which must be counterbalanced by
an appropriate opposing force. Functional
opposition is provided, in part, by
GABAergic inhibitory interneurons occu-
pying the molecular layer (ML), basket
and stellate cells, whose activity PNs also
integrate to synchronize the cerebellar
circuit.

The earliest born GABAergic cell types
emerge during embryogenesis from radial
glial stem cell-like cells residing in the ven-
tricular zone (VZ) neuroepithelium
(Altman, 1997), the establishment of
which utilizes an extracerebellar Shh signal
(Huang et al., 2010). However, the bulk
of inhibitory interneurons are generated
in a neurogenic compartment occupying
the neonatal presumptive white matter
(PWM) (Maricich et al., 1999; Weisheit
et al., 2006; Zhang and Goldman, 1996).
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The key signal(s) acting to regulate
GABAergic neurogenesis within the
PWM niche were unknown until our
laboratory identified a lineage of
Shh-responding progenitor cells within
this domain (Fleming et al., 2013).

Prior work identified a neuronal stem
cell (NSC) population occupying the neo-
natal PWM that are surface antigen
CD133 (Prominin-1)-positive, lineage
marker-negative (Lee et al., 2005). These
NSCs were capable of generating both
neurons and glia following in vitro differ-
entiation and transplantation into the
neonatal cerebellar cortex, and may be lin-
eally-related to multipotent hGFAPC pro-
genitor cells also known to reside in the
PWM (Silbereis et al., 2009). We were
able to expand upon these findings by
showing that PWM CD133C NSCs also
express low-level YFP driven by Tenascin-
C (Tnc), an extracellular matrix glycopro-
tein characteristic of embryonic radial glial
cells (Yuasa, 1996). TncYFP-low, CD133C

cells respond to Shh and generate forerun-
ners of both astrocytes (TncYFP-low,
CD15C) and of Pax2C cells (Ptf1aC). The
latter, Pax2-expressing precursors give rise
to basket and stellate interneurons and,
despite being post-mitotic, accumulate
very rapidly during the first postnatal
week. It was thought that the vast pools of
Pax2C cells generated de novo in the
PWM stem from a proliferative, Pax2¡

progenitor (Leto et al., 2009; Weisheit
et al., 2006). Our work demonstrated that
cells expressing Ptf1a, a factor known for
its role in dictating GABAergic fate choice
in the cerebellum (Hoshino et al., 2005;
Pascual et al., 2007; Yamada et al., 2014),
fulfill this function.

Uncovering that Shh signals to primary
TncYFP-low, CD133C progenitor cells
helped explain the molecular foundation
supporting PWM-localized neurogenesis.
We found following attenuation of Shh
signaling in this population during the
early neonatal period that a failure to
propagate intermediate progenitors of
both GABAergic interneurons (Ptf1aC

cells and Pax2C cells) and astrocytes
(CD15C cells) ensues. We linked this defi-
cit to reduced proliferation within the
most mitotically active population we
detected occupying the PWM, which also
respond to Shh but instead express

transcription factor Sox2, which is known
for its function in maintaining NSC status
and is itself a putative Shh target gene
(Graham et al., 2003; Takanaga et al.,
2009). Whether Ascl1-expressing cells,
also known to occupy the PWM (Sudarov
et al., 2011), fit into the progenitor line-
age we have described and similarly
respond to Shh is unclear.

A major knowledge gap that persists is
what factors influence or determine inter-
neuron subtype specification. Whether
Shh may contribute to this process, either
by dictating cell cycle dynamics in the
PWM niche, a process implicated in inter-
neuron maturation (Leto et al., 2011), or
by other means warrants consideration.
Both basket and stellate cells emerge from
a shared Pax2C precursor pool, but go on
to occupy distinct positions within the
ML where each establishes a different level
of connectivity with PNs. Birth date is
thought to be a determinant of laminar
placement in the cortex (Leto et al.,
2009), and even though basket and stellate
cells emerge during overlapping periods,
basket cells are positioned along the inner
ML, nearest to PN soma and proximal
dendrites, while stellate cells reside nearer
the pial surface and interface with distal
PN dendritic projections (Altman, 1997).

The realization that Shh signaling is
activated within the early neonatal PWM
led us to uncover that PN-derived Shh
promotes GABAergic neurogenesis there
by signaling along a novel, inward axis. It
seems this ‘anterograde’ signaling activity
may be facilitated by PN axonal projec-
tions, in a manner comparable to the fruit
fly retina, mouse hair follicle stem cell
compartment, and ventral SVZ (Brownell
et al., 2011; Huang and Kunes, 1996;
Ihrie et al., 2011). PN axons project to
targets located deep within the cerebellar
core by late embryogenesis (Eisenman
et al., 1991; Sillitoe et al., 2009), and
therefore infiltrate the PWM concomitant
with the onset of Shh expression in PNs
(Lewis et al., 2004) and prior to peak bas-
ket and stellate production (Sudarov et al.,
2011). Theoretically, the proposed infra-
structure is present at the appropriate
time, but it remains to be determined
what factors regulate the targeting of Shh
ligand to axons and its dissemination to
receiving cells.

A third, and often overlooked, direc-
tion of Shh distribution in the nascent
and adult cerebellum is laterally to juxta-
posed Bergmann glial cells. Although this
communication is well documented
(Corrales et al., 2004; Lewis et al., 2004),
very little is known regarding its signifi-
cance. Classical studies in chick and
mouse originally suggested that Shh is
required for inducing Bergmann glial dif-
ferentiation (Dahmane and Ruiz i Altaba,
1999), yet more recent genetic studies in
mice did not reach the same conclusion,
indicating instead that maturing Berg-
mann glia persist in the absence of Shh
signaling following Gli2 deletion (Cor-
rales et al., 2006). What factors facilitate
distribution of PN-derived Shh to neigh-
boring Bergmann glia, which are often in
close physical contact with PN soma and
dendrites remain unknown.

Distribution of PN-derived Shh could
be regulated at multiple levels, which may
have specificity to direction of transporta-
tion. Some candidate mechanisms include
heparan sulfate proteoglycans that bind
the ligand, promoting signal transduction
(Chan et al., 2009; Witt et al., 2013), or
packaging of Shh ligand into secreted exo-
somes (Gradilla et al., 2014; Vyas et al.,
2014). In Drosophila, as well as, in mouse
and chicken limb buds, dynamic, actin-
based cellular projections called cyto-
nemes, and filopodia, have been shown to
facilitate Hh distribution/reception
(Bischoff et al., 2013; Sanders et al.,
2013). It remains to be determined
whether such structures exist on polarized
cells like PNs. Dispatched, a 12-pass
transmembrane protein that appears to
promote secretion and distribution of Shh
ligand (Callejo et al., 2011; Ma et al.,
2002; Tukachinsky et al., 2012) could
also play a vital role in Shh delivery within
the nascent and adult cerebellum.

Altogether, our findings support a
mechanism that coordinates neurogenesis
in the cerebellum to balance the produc-
tion of excitatory/inhibitory (E/I) neu-
rons. The current understanding of PN
function in the mammalian cerebellum
has been expanded considerably by our
work, which indicates that PNs have a
remarkable capacity for regulating devel-
opmental events with distinctive temporal
and spatial parameters. How related
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events are orchestrated in lower verte-
brates, such as teleosts, in which Shh sig-
naling is not utilized in the developing
cerebellum (Hashimoto and Hibi, 2012),
remains unclear. Yet, in the mammalian
CNS, PNs, the distinctively central node
of the cerebellar system, ultimately man-
age to assemble a complex neuronal circuit
around themselves, which they fine-tune
with their own neurotransmission (White
et al., 2014). Importantly, this new
understanding of PN biology may provide
meaningful insight for understanding the
etiology of certain neurodevelopmental
disorders, such as autism.

Functionally, the cerebellum is known
for its essential role in coordinating fine
motor control, however, recent studies
have revealed a link to higher cognitive
function concomitant with the identifica-
tion of neuronal connections (cerebrocere-
bellar tracts) between the cerebellum and
pre-frontal cortex, the area of the brain
most often associated with advanced cog-
nitive function (Suzuki et al., 2012).
Interestingly, neuroanatomical findings
from postmortem studies of autistic brains
revealed loss of PNs (Bauman and
Kemper, 2005), and studies in mice have
recapitulated autism by conditional dis-
ruption of mTOR signaling in PNs,
resulting in loss of PNs and significant
structural aberrations in surviving PNs
(Tsai et al., 2012). Thus, a strong connec-
tion seems to be emerging that links PNs
with the autism spectrum disorders (AS).
Furthermore, E/I imbalance in neuro-
transmission is an attribute commonly
seen in the autistic brain, and numerous
possible underlying causes for this have
been proposed, including developmental
defects (Rubenstein and Merzenich,
2003). Ultimately, the E/I ratio is found
to increase, either due to excess excitatory
signaling and/or decreased inhibitory
signaling.

It is well established that GABAergic
signaling plays a prominent role in main-
taining inhibitory input to synchronize
and balance informational processing, and
it has been long thought that suppression
of GABAergic inhibitory signaling is a
common feature in the autistic brain
(Hussman, 2001). Therefore it is impor-
tant to consider whether underlying cere-
bellar E/I imbalance could be disruption

of PWM Shh signaling, due to axonal
defects or other PN related dysfunction
found in the autistic brain. Interestingly,
recent human genetic studies have identi-
fied deactivating mutations in Patched
domain containing-1 (PTCHD1),
highlighting it as an autism and/or intel-
lectual disability (ID) -linked gene (Filges
et al., 2011; Marshall et al., 2008; Pinto
et al., 2010). PTCHD1 encodes a factor
with repressive capabilities similar to the
Shh receptor Patched (Noor, 2010).
PTCHD1 is highly expressed in the
human and mouse cerebellum, where its
function is yet to be described. However,
it may act as an important negative regula-
tor of Shh pathway activity, and deactivat-
ing mutations could result in imbalanced
cerebellar neurogenesis and ultimately E/I
transmission.
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