
EDITORIAL
A Low FUT(2) Diet For a High-Fat World: Connecting Intestinal
Fucosylation With Western Diet–Driven Liver Disease
ith the rise of the high-fat and sugar “Western
Wdiet,” many countries face a growing epidemic of
obesity and its related comorbidities. Outside of extreme
dietary changes in society, identifying and targeting genetic
pathways that can improve metabolic function in the
context of Western diet could help to reduce comorbidities.
Metabolic disease is complex, involving the interaction of
multiple organ systems and the gut microbiome.1 As a
result, it is often difficult to determine the mechanism by
which genetic modulators of metabolic disease function,
making treatments difficult to establish.

In this issue of Cellular and Molecular Gastroenterology
and Hepatology, Zhou et al2 describe the effects of a specific
form of glycosylation, a1-2-fucosylation, on obesity and
steatohepatitis in the context of Western diet. a1-2-
fucosylation occurs at high levels in the intestinal epithe-
lium and requires a functional copy of Galactoside 2-alpha-
L-fucosyltransferase 2 (Fut2). The authors found that wild-
type mice exposed to Western diet exhibited decreased
a1-2-fucosylation of proteins and other substrates in the
intestinal epithelium. In contrast, Fut2 mutants on a West-
ern diet gained less weight and had elevated energy
expenditure, along with improved triglyceride and choles-
terol levels, insulin sensitivity, and hepatic steatosis. These
findings suggest that downregulation of a1-2-fucosylation,
in the context of Western diet, could be a protective
mechanism against metabolic dysregulation.

Strikingly, the protective effect of Fut2 loss is trans-
missible to cohoused wild-type mice, implicating the
microbiome as a major driver of the observed metabolic
effects. This finding is consistent with a known role of a1-2-
fucosylation in regulating the microbiome.3 Analysis of
circulating metabolites and the microbiome uncovered
altered bile acid metabolism as a potential protective
mechanism. Prolonged exposure to Western diet increased
the synthesis of primary bile acids from cholesterol in the
liver, which is mediated by Cholesterol 7 alpha-hydroxylase
(CYP7A1). Increased bile acids are postulated to contribute
to diet-induced liver damage.4 In Fut2 mutants, the size of
the bile acid pool was significantly reduced, likely caused by
a combination of reduced production and increased excre-
tion. Compared with wild-type mice, Western-diet-fed Fut2
mutants displayed reduced expression of Cyp7a1 in the liver
and decreased primary bile acid levels in plasma. Addi-
tionally, the microbiome of Fut2 mutants contained higher
levels of the gene encoding hsdh, which converts primary
bile acids to secondary bile acids. The authors speculate that
the induction of hsdh accounts for increased bile acid levels
in the feces of Fut2 mutants. Importantly, the protective
effect in Fut2 mutants was reversed with either antibiotic
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treatment or supplementation with 2’-Fucosyllactose, a
product of FUT2, providing further evidence for the
contribution of the gut microbiota.

Overall, this study provides an intriguing link between
FUT2-driven a1-2-fucosylation and metabolic and liver
disease in the context of Western diet. Although Fut2 mu-
tation in this context leads to physiological improvement, in
other contexts, loss of a1-2-fucosylation is deleterious. For
example, in mice fed a normal chow diet, Fut2 mutation
leads to liver disease in a subset of mice,5 and altered a1-2-
fucosylation status affects the microbiome makeup in a diet-
dependent manner.3 Moreover, although this study focused
on the effects of intestinal a1-2-fucosylation, the lack of
tissue-specific Fut2 mutant models in the literature com-
plicates the interpretation of this and other studies. Further
mechanistic understanding of the role of FUT2 in response
to Western diet would be strengthened by future use of
conditional alleles to drive intestinal epithelium-specific
Fut2 loss.

In terms of translational relevance, several FUT2 alleles
in humans have been well-characterized. As a result, a
global FUT2 null mutation, as the one described, may be
more representative of patients. Altered FUT2 function in
humans is common, with nearly 20% of Whites lacking full
FUT2 function. These patients, termed nonsecretors, display
alterations in the gut microbiome and increased risk of
several intestinal diseases including Crohn’s disease, ulcer-
ative colitis, and inflammatory bowel disease.6,7 FUT2
polymorphisms in nursing mothers can also lead to
disruption of the developing microbiome in infants, because
20-fucosyllactose is a major oligosaccharide found in
breastmilk.8 In adults, 20-fucosyllactose supplementation is
showing promise in alleviating symptoms of several Fut2-
linked disorders. This study is unique in suggesting that
Fut2 loss could also confer protective effects under certain
conditions. Moreover, a previous study by this group found
that Fut2 mutant mice showed increased sensitivity to
ethanol-induced liver disease.9 Clearly, more research is
required before inhibitors of fucosylation can be evaluated
as therapeutics on fatty liver disease.
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