
ATRA and ATO at 50% doses. Whilst the benefit of prophy-

lactic corticosteroids in prevention of DS is uncertain and

mainly reserved for patients presenting with a white cell count

>5 9 109/l, we used prophylactic low dose dexamethasone.9

Although haemorrhagic complications of APML predomi-

nate and are reduced by ATRA, thrombosis is not uncom-

mon; however, this risk is not reduced by ATRA.1,2 The

acute inflammatory state in COVID-19, in addition to the

known thrombotic risk of hospitalisation, results in a highly

pro-thrombotic state. This, when combined with APML

thrombotic complications were felt to warrant intermediate

dose enoxaparin prophylaxis in our case.

This case presented challenges due to atypical coagula-

tion studies in the context of COVID-19. Laboratory find-

ings of APML can be disguised in the context of COVID-

19, thus stressing the need to suspect a potential acute

leukaemia in COVID-19 presenting with neutropenia. The

complexities of balancing risk of DS on the background of

already severely inflamed lungs and the risk/benefit of pro-

phylaxis with steroids made it necessary to consider treat-

ment alterations.
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Rapid diagnosis of hereditary haemolytic anaemias using auto-
mated rheoscopy and supervised machine learning

Haemolytic anaemias arise when red blood cell (RBC) integrity

is compromised, eventually resulting in premature clearance or

lysis and leading to anaemia when these effects cannot be suffi-

ciently compensated by the capacity of the bone marrow to

produce new cells.1 Hereditary anaemia occurs as a conse-

quence of genetic mutation2 (e.g. affecting membrane complex

or cytoskeletal proteins, haemoglobin or metabolic enzymes),

and diagnosing affected patients is a complex process since,

given the wide variety of possible genetic causes, multiple

examinations must be performed and an unambiguous result

is usually reached only after DNA sequencing.3 Furthermore,

phenotypic severity can vary widely not just among individuals

with different mutations but also among individuals suffering

from the same mutation, thereby complicating diagnosis.4

While molecular diagnoses have become increasingly

easier, cheaper and faster to perform in recent years, con-

straints on their use still exist,5 and phenotype-based diag-

nostic methods still constitute an important proposition.
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Ektacytometry is a standard diagnostic platform for RBC dis-

orders6,7 but only provides cell population-based data and

requires a trained expert for data interpretation. Single-cell

rheoscopy can provide additional information, with higher

complexity as a drawback; however, analysis of such data

could potentially be facilitated by the use of machine learn-

ing (ML, automated, algorithm-based systems that generate

data-driven predictions8).

We present here a preliminary framework for automated

rheoscopy-based diagnosis of several types of hereditary hae-

molytic anaemia samples Fig 1A that requires low sample

volumes and is efficient, rapid and expandable.

Materials and methods

Peripheral blood donor and patient samples

Healthy control donor and diagnosed patient samples were

collected according to procedures approved by the research

ethics committee and in accordance with the Declaration of

Helsinki. In all, 47 blood samples were analysed at the

University of Bristol (United Kingdom) following shipment

from clinics in Milan (Italy) or Utrecht (the Netherlands) [6

controls, 13 hereditary spherocytosis (HS) patients, 9 con-

genital dyserythropoietic anaemia type II (CDAII) patients, 6

Fig 1. Different hereditary rare anaemias display distinct area and deformability profiles. (A) Design of the method for automatic sample classifi-

cation. Whole blood is collected by the clinician, and a sample is obtained and processed using an Automated Rheoscope and Cell Analyzer

(ARCA). Images acquired are subjected to computational analysis to determine cross-sectional area and deformability of at least 1000 individual

cells, and the resulting datasets are then classified through trained computational models, achieving a diagnosis in less than 30 min. (B) Contour

plots of cross-sectional area plotted against the deformability index (as measured by dividing cell length by cell width), visualizing the probability

distribution of erythrocytes (RBCs), cultured reticulocytes (reticulocytes) and erythrocytes treated with an anti-Glycophorin A antibody (BRIC256,

International Blood Group Reference Laboratory) before analysis to induce membrane stiffening (BRIC256 RBCs). The control erythrocyte and

cultured reticulocyte data shown in this panel were previously reported in Moura et al.9 A minimum of 1000 cells were analysed per sample. All

samples were analysed using the ARCA. (C) Contour plots of cross-sectional area plotted against the deformability index (as measured by divid-

ing cell length by cell width), visualizing the probability distribution of patient samples overlaid to allow for comparison with healthy controls. A

minimum of 1000 cells were analysed per blood sample. All samples were analysed using the ARCA. The samples are listed from left to right:

Top row: healthy controls (n = 6), hereditary spherocytosis patients (n = 13), congenital dyserythropoietic anaemia II patients (n = 9). Bottom

row: pyruvate kinase deficiency patients (n = 6), dehydrated stomatocytosis type 1 or hereditary xerocytosis patients (n = 10), dehydrated stoma-

tocytosis type 2 or Gardos xerocytosis patients (n = 3).
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pyruvate kinase deficiency (PKD) patients, 10 hereditary

xerocytosis/ dehydrated hereditary stomatocytosis (DHS) 1

(HX) patients and 3 Gardos xerocytosis/ DHS2 (GX)

patients]. A further 26 samples (11 controls, 7 HS patients

and 8 hereditary elliptocytosis [HE] patients) were analysed

at Sanquin (Amsterdam, the Netherlands).

Automated Rheoscope and Cell Analyser

An amount of 1 µl of whole blood was diluted in 200 µl of a
polyvinylpyrrolidone solution (viscosity 28�1 mPa�s). Samples

were assessed in an Automated Rheoscope and Cell Analyser

(ARCA) according to published protocols.9 At least 1000 cells

per sample were analysed, providing the deformability index

(DI) and cross-sectional area (area) quantification.

Computational analysis

A Python script was developed for statistical analysis, data

visualisation and automatic dataset classification (Data

availability). The full datasets used for training purposes

were sampled and randomised into testing (500 cells) and

training datasets (remainder). Deformability Index (DI) and

area were normalised by the maximum measurable values

(3.3/5.0 DI from Bristol and Sanquin, respectively, and

140 lm2 area) and the training datasets were repeatedly

subjected to random sampling to generate 10,000 subsets of

500 cells each, followed by calculation of the average and

standard deviation of the DI and area. Each sample cate-

gory was then attributed unique identifiers. Classifiers were

generated with the scikit-learn package,10 trained with the

generated subsets and tested with the initial testing subsets.

Classification of unseen datasets was performed by selecting

the mode of the machine-selected identifiers after 10,000

classifications.

Results and discussion

We have demonstrated in previous work that automated

rheoscopy-based analyses can elucidate differences arising

from reticulocyte maturation9 as well as loss of cellular sta-

bility.11 A particularly interesting observation from the same

work was the fact that combining the single-cell deformabil-

ity index (DI) and cross-sectional area measurements pro-

vides a novel metric (Fig 1B) which to date has not been

examined in the context of disease diagnosis.

Therefore, we evaluated whole blood samples from diag-

nosed anaemic patients of varied aetiologies (HS, CDAII,

PKD, HX and GX) against healthy donors using the pro-

posed methodology (Fig 1C). Crucially, despite these diseases

being frequently misdiagnosed due to overlapping clinical or

morphological phenotypes,12,13 we observed them to display

unique rheoscopy “fingerprints” upon visualisation.

Machine-learning algorithms were next explored to auto-

mate the classification of ARCA data and thus facilitate the

processing of larger numbers of samples, A flow chart listing

the procedure used for these attempts is displayed in Fig 2A.

To provide sufficient information for training a ML classi-

fier, the data were augmented through random sampling,

vastly extending the number of new datasets with similar

characteristics. We then tested the trained classifiers on a

combination of fully unseen data and the testing sets gener-

ated before augmentation. A full summary of the prediction

accuracies achieved (and listing the best performing classi-

fiers) is provided in Fig 2B with the best performing algo-

rithm correctly identifying sample datasets with 92%

accuracy (Fig 2C). We note that the GX samples were

excluded due to the sample number being too low for classi-

fier training.

For further verification, the classifiers were retrained on

additional samples (11 controls, 7 HS patients and 8 HE

patients) obtained on a second ARCA device in an indepen-

dent laboratory and using different acquisition settings.

Again, we observed increasing classification accuracy up to

the use of six training datasets (at which point the classifier

likely overfits these data), as per Fig 2D, achieving a final

prediction accuracy for multiclass classification that is com-

parable to that offered by osmotic gradient ektacytometry

when classifying HS samples alone.14 Importantly, the best

performing algorithms utilized here achieve complete differ-

entiation between controls and diseased patients and accu-

rately identify a variety of disorders potentially allowing for

the rapid preliminary identification or discrimination of

more elusive diseases15 (such as CDAII and PKD) without

time-consuming laboratory assays or molecular testing meth-

ods. Furthermore, the possibility to continuously incorporate

data from new samples or the expansion with haematological

conditions beyond those characterised in this study may ulti-

mately allow for diagnosing a large number of samples in a

relatively short period using minimal sample volumes. In

conclusion, the method described in this work represents an

exciting step forward towards facilitating the improved diag-

nosis of haemolytic anaemias.
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Fig 2. Machine-learning-based classification of automated rheoscopy datasets provides accurate diagnoses for unseen samples. (A) Flow diagram

outlining the procedure for ARCA-based data visualisation and automated sample classification. The sample is first analysed to produce a raw

data table. These data are then reorganised into a Python pandas (“panel data”) data frame for ease of processing. If visualisation is required,

samples from a given sample type are stochastically equalised in cell number, joined and subjected to kernel density estimation to estimate the

probability density functions of analysed features (e.g. cross-sectional area, deformability index, cell angle) and then visualized through contour

plots or scatter plots. Data to be used for machine learning undergo feature extraction (removal of all non-essential information) and a subsec-

tion is sampled randomly (without reposition) for creation of a testing set. The remaining data then undergo augmentation by generation of a

series of randomly sampled datasets (with reposition, 10,0009) which will be used for training a supervised machine-learning algorithm. After

training, a predictive model (i.e. classifier) is generated which first is tested with the previously generated testing set. Upon satisfactory results

with the testing set, the classifier can then generate predictions for new unseen data. The final results consist of a sample label (or classification)

and the certainty of that classification (B) Comparison of the overall prediction accuracy of multiple supervised machine-learning algorithms in

ARCA-based automated sample diagnosis as a function of the number of datasets per condition used for classifier training (from no datasets

used, which should result in a random diagnosis, to a maximum of six datasets), comparing the samples analysed at the University of Bristol (ex-

cept Gardos xerocytosis samples, which were too few to analyse). Prediction accuracy is coloured on a percentage scale from red (0%) to blue

(100%). The best-performing algorithm per no. of datasets is bolded in the accuracy matrix. The graph displays the average prediction accuracy

of all algorithms (blue). Error bars = � standard deviation (SD). The prediction accuracies of the best-performing algorithms are plotted in

green, while the prediction accuracies of the worst-performing algorithms are plotted in red. (C) Prediction accuracy of the best performing algo-

rithm in (B). The samples used consist of healthy controls, congenital dyserythropoietic anaemia II patients (CDAII), hereditary spherocytosis

patients (HS), hereditary xerocytosis patients (HX) and pyruvate kinase deficiency patients (PKD). Rows identify real samples provided, whilst

columns identify the algorithm’s prediction of the provided samples’ identity. The blue diagonal indicates samples that were correctly diagnosed

(true positives). Red cells in the surrounding matrix indicate incorrect diagnoses (i.e. two HS samples were misdiagnosed as CDAII and one HX

sample was misdiagnosed as HS). Accuracy is provided as a percentage of the true positives within the total number of samples and is coloured

on a percentage scale from red (0%) to blue (100%). Average accuracy is provided as an average of the accuracies for all sample types. Data for

all other algorithms and sample numbers tested are provided in Figs S1–S7. (D) Comparison of the overall prediction accuracy of multiple super-

vised machine-learning algorithms in ARCA-based automated sample diagnosis as a function of the number of datasets used for training, com-

paring samples from healthy controls, hereditary spherocytosis patients and hereditary elliptocytosis patients analysed at Sanquin. The graph

displays the average prediction accuracy of all algorithms (blue). Error bars = �SD. The prediction accuracies of the best-performing algorithms

are plotted in green, while the prediction accuracies of the worst-performing algorithms are plotted in red.
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Holding on to the Matutes score while dropping FMC7: new
opportunity from standardised approaches in multiparameter
flow cytometry

Despite significant progress in cytogenetics and molecular

biology, morphology and immunophenotype remain the

’gold standard’ for the diagnosis of mature B-cell lympho-

proliferative disorders (B-LPD).1 Chronic lymphocytic leuke-

mia (CLL) represents the most frequent form of B-LPD and

considering its specific phenotype, the British group from the

Royal Marsden Hospital proposed in 1994 a scoring system

based on the expression of five membrane markers, including

FMC7, the Matutes score.2,3 Other markers have been shown

to contribute to the differential diagnosis between CLL and

other CD5+ B-LPD: CD43, CD200 and more recently ROR-

1.4,5 With the development of multiparameter flow cytometry

(MFC), new and wider panels for accurate diagnosis of B-

LPD have been suggested. Cooperative groups like the Euro-

Flow consortium5 or the ERIC & ESCCA harmonization

cooperative project4 did not select FMC7 as a required mar-

ker for CLL differential diagnosis in order to avoid redun-

dancy and reduce the number of analyzed tubes. As FMC7

has been shown to be an epitope of CD20, both antibodies

show mutual inhibition and should not be mixed in the

same tube, requiring a specific tube to analyze FMC7 expres-

sion.6

According to sales figures from the public reagents market

(personal and confidential data), one volume of the FMC7

antibody is sold for 1�38 volume of CD23, confirming that

despite the addition of new markers in B-LPD panels, FMC7

was not suppressed and that Matutes score is still strongly

implemented in practice. At a time when our cytometers are

rising from eight to 10 to 12–13 colours, allowing combina-

tion of more informative antigens and limitation of redun-

dancy between tubes, we have wondered if we could keep

using the Matutes score replacing the FMC7 percentage

(FMC7%) by the expression of CD20. This question has

already been raised by others, with conflicting results,7,8 but

that was before the implementation of standardised operating

procedures (SOP) in flow laboratories.9 In the present work,

we investigated the value of using CD20 expression instead

of FMC7% in the Matutes score for CLL diagnosis in a con-

text of SOP for multiparameter flow cytometry.

A cohort of 508 patients with B-LPD issued from two cen-

tres (Ambroise Par�e and Saint Louis, Paris, France) was

included in this multicentre retrospective study. All blood

samples were immunophenotyped according to EuroFlow

SOP within the FranceFlow Quality Assessment Programme

for the Lymphoid Screening Tube (LST) tube10 and to local

procedures for the tube including FMC7, using eight-colour

immunophenotyping panels on Canto II (BD Biosciences,

San Jose, CA, USA; n = 458) and Lyric (BD Biosciences;

n = 50) flow cytometers. Morphological, immunophenotypic,

cytogenetic and molecular analyses, as well as clinical data,

were collected to establish consensual integrated diagnoses

according to the criteria of the World Health Organization

(WHO) classification.1 Matutes score was calculated as previ-

ously published.3 All analyses were performed using Stata

Statistical Software: release 14 (Stata Corp., LLC, College Sta-

tion, TX, USA). Correlation matrix was performed using the

R Corrplot package (R Foundation for Statistical Computing,

Vienna, Austria). The clinical and biological characteristics of

the study population are reported in Tables SI and SII, and

Fig S1.

We first analysed the correlation between CD20 expres-

sion, CD20 mean fluorescence intensity (MFI), FMC7%,

FMC7 MFI and FMC7 ratio, i.e. the MFI of B cells nor-

malised to the MFI of non-B lymphocytes, as cytometers

were not harmonised for this parameter contrary to CD20.

Overall, the best correlation was found between CD20 MFI

and FMC7% (q = 0�620, P < 10�4), FMC7 MFI and FMC7

ratio showed lower correlations with CD20 MFI (q = 0�462
and q = 0�472, P < 10�4, respectively) Fig 1A. Using receiver

operating characteristic (ROC) curves we compared the

diagnostic performance of CD20 MFI, FMC7%, FMC7 MFI

and FMC7 ratio. Surprisingly, CD20 MFI showed the highest

diagnostic performance. Using the Youden index, the dis-

criminating CD20 MFI threshold was defined as 6000. With

this cut-off, the sensitivity for the diagnosis of CLL was

84�7% and specificity 94�9% (Fig 1B), the positive predictive

value (PPV) and negative predictive value (NPV) were

95�1% and 84�1%, respectively. Using the classical FMC7
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