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Abstract

Background: Dose constraints are of paramount importance for the outcome of any

radiotherapy treatment. In this article, we report dose-volume constraints as well as

currently used fractionation schedules for carbon ion radiotherapy as applied in

MedAustron (Wiener Neustadt, Austria).

Materials and Methods: For fractionation schedules, both German and Japanese

regimes were used. From the clinical experience of National Institute of Radiological

Sciences (Chiba, Japan) and Heidelberg Ion Therapy (Heidelberg, Germany; formerly

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany) and the work

by colleagues in Centro Nazionale Adroterapia Oncologica (Pavia, Italy) recalculating

the dose from the microdosimetric kinetic model to the local effect model, we have set

the dose constraints for critical organs of the head and neck area. Where no clinical data

was available, an educated guess was made, based on data available from photon and

proton series.

Results: We report the constraints for the optic nerve and chiasm, brainstem, spinal

cord, cochlea, brain parenchyma, salivary gland, eye and adnexa, and mandibular/

maxillary bone; constraints are grouped based on a fractionation scheme (German

versus Japanese) and the risk of toxicity (safe, low to middle, and middle to high).

Conclusion: We think validation of dose constraints should present a relevant part of

the activity of any carbon ion radiotherapy facility, and we anticipate future multicentric,

joint evaluations.
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Introduction
Dose constraints to the organs at risk (OARs) are of paramount importance for the

outcome of any radiotherapy (RT) treatment. Too-lax constraints can increase the risk of

unwanted side effects and ultimately compromise the patient’s quality of life; on the other

hand, too-strict constraints will result in suboptimal target coverage and, therefore, in a

reduced probability of local control. Dose constraints are as important as dose

prescription in the attempt to achieve the uncomplicated cure of cancer.

Dose constraints in radiation oncology have been mostly determined by empirical

clinical practice of radiotherapy centers. A historical milestone was the publication of the

article on tolerance doses of OARs by Emami et al. [1] in 1991. Since then, it has become
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apparent that constraints have to be validated by long-term clinical-toxicity data. This led, in 2010, to a large, cooperative effort:

the Quantitative Analysis of Normal Tissue Effect in the Clinics (QUANTEC) [2]. In the past 10 years, knowledge about dose

constraints has constantly progressed. With highly conformal RT techniques becoming widely available, the concept of

tolerance dose has evolved from simple numeric values (typically the mean or maximum dose) to more-complex volumetric or

dose-volume histogram constraints. For selected endpoints, long-term clinical validation is so reliable that it is possible to

predict the risk of toxicity (normal tissue complication probability [NTCP]) of any given radiotherapy plan with an accuracy that

is sufficient for clinical decision-making. The best known example is the NTCP model for dysphagia after radiotherapy for head

and neck squamous cell carcinoma [3].

Proton therapy is biologically and qualitatively different from photon-based RT. The order of magnitude of that difference is,

however, quite small. Both the International Commission on Radiation Units and Measurements (ICRU) recommendations and

widespread clinical practice agree on describing proton’s radiobiological properties with a constant scaling factor of 1.1

(relative radiobiological effectiveness [RBE]) [4].

As a first approximation, the same constraints are used in proton therapy and photon-based intensity-modulated RT (IMRT).

As an example, a more-detailed recommendation on dose constraints for proton therapy in neuro-oncology from the European

Particle Therapy Network confirmed the applicability of photon dose constraints [5].

The major difference (ie, a more-permissive dose constraint for brainstem and optic pathways) is related to spatial-dose

distribution and clinical experience of proton centers treating skull-base tumors, rather than to radiobiologic issues. The

possibility of extrapolating photon experience to protons is so widely accepted that colleagues from the Netherlands are using

NTCP modeling to select patients for IMRT or proton therapy with the so called model-based approach [6].

A more challenging task is adapting dose constraints derived from the mainstream 3-dimensional (3D) conformal RT/IMRT

experience with normofractionation to stereotactic hypofractionated treatment. It is generally agreed that relying on a

radiobiologic model to convert normofractionated constraints to a stereotactic body RT (SBRT) schedule is suboptimal and

that specific SBRT constraints should be derived from clinical practice [7].

Carbon ion RT (CIRT) has been used in clinical practice for more than 20 years but is still available in only a few select

centers. Similar to SBRT, CIRT is delivered with hypofractionated schedules. According to clinical practice and to ICRU

recommendation, an RBE-weighted dose is used for prescribing and reporting the dose [8].

The RBE models used in CIRT are more complex than the simple scaling factor used in proton therapy. The CIRT RBE

varies voxel by voxel and can be as high as 4 to 5. According to ICRU recommendations, any validated RBE model can be

used, as long as it is clearly specified which one has been selected.

A combination of complex RBE models, hypofractionation, and the comparatively few patients treated makes determining

dose constraints in CIRT a complex issue.

In this article, we will review dose constraints used at MedAustron Ion Therapy Center (Wiener Neustadt, Austria) for CIRT

in the treatment of head and neck tumors, and we will discuss the underlying approach.

CIRT RBE Models
When CIRT is used in clinical practice, the patient is exposed to a mixed field of particles consisting of carbon ion and

secondary fragments of different energies. Part of the dose is deposited by densely ionizing particles (mainly primary carbon

ions slowing down near the end of their path) and part is from sparsely ionizing particles. The densely ionizing component (also

described as high linear energy transfer or the high LET component) has greater efficacy in cell killing. To mitigate the

inhomogeneity in biological effect, the RBE is introduced. The RBE refers to a well-defined, measurable endpoint (typically cell

survival of cell lines in vitro) compared with the effect of a reference radiation (typical photons). The RBE is computed voxel by

voxel. Planning is performed to achieve the homogeneity of absorbed dose-X RBE over the target volumes.

In the Japanese experience, the Kanai semiempirical model was initially used for passive-scattered CIRT [9]. Subsequently,

the modified microdosimetric kinetic model (MKM) was introduced for both passive scattering and active scanning, and

consistency with the old model was kept [10]. In this article, we will refer to the Japanese RBE model simply as MKM.

In the European and Chinese experience, the RBE model used was the local effect model (LEM) [11].

Several versions of LEM are available (from I to IV), but only version I has been used in the clinics. In the rest of this article,

we will describe the European RBE model as LEM.

The LEM and MKM models are different in their physical and mathematical assumptions and rely on different reference

endpoints (human salivary gland cell lines survival for MKM, and idealized chordoma cell lines survival for LEM). For a given
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plan, the nominal values of RBE-weighted dose differ systematically between the 2 models. This difference depends on

several parameters, such as dose per fraction, size shape and position of the target volumes, and the number and direction of

beams. Comparing results obtained with the 2 models is not straightforward; however, a methodology has been established for

that comparison and has allowed the use of Japanese protocols (validated by clinical data) in the European setting and with

LEM model [12–14].

In the rest of the article, to avoid any possible confusion, we will always specify which RBE model we are referring to,

explicitly stating it either as Gy RBE (LEM) or as Gy RBE (MKM).

CIRT Protocols for Head and Neck in MedAustron
The CIRT has been used to treat several tumors of the head and neck area. It has not been employed for squamocellular

carcinoma—the most common entity—but rather, for other, radioresistant histologies, such as salivary gland tumors [15–22],

paranasal sinuses tumors (including sinonasal undifferentiated carcinoma, sinonasal adenocarcinoma, intestinal-type

adenocarcinoma, and esthesioneuroblastoma, among others) [15, 23], mucosal melanoma [24–28], lacrimal gland tumors

[29–31], and bone and soft tissue sarcoma (including tumors of the skull base and cervical spine [32–38]

At MedAustron, CIRT was begun in July 2019. Until September 2020, 91 patients have been treated and 42 of them had

tumors in the head and neck.

The RBE model employed is that of the LEM version I with standard free parameters: ac, 0.1 Gy�1; bc, 0.05 Gy�2; Dt, 30 Gy;

and nuclear radius, 5 lm.

Dose and fractionation follow either the established experience of Japanese centers (with the conversion from MKM to LEM

RBE [12–14] or the established German experience. The published results, number of treated patients, and length of follow up

have been considered for this strategic decision. For mucosal melanoma and sarcomas (except skull base chordomas), we

follow the Japanese fractionation schedule. For skull base chordoma, we follow the German approach. For salivary gland and

paranasal sinus tumors, we follow the Japanese or German approach based on the need for elective nodal irradiation (ENI).

Although ENI is not routinely performed with CIRT, when ENI is indicated it is performed with photons in a regional

radiotherapy department, and CIRT is employed as a boost. Table 1 summarizes the dose and fractionation employed in

MedAustron.

OAR Constraints at MedAustron
Historically, head and neck tumors have been treated with CIRT, if they had intracranial extension and/or involved the skull

base macroscopically. Rarely have tumors of larynx or oro-hypopharynx undergone CIRT. This explains the paucity of data for

those anatomic sites and explains why CIRT dose constraints for some organs (such as larynx and swallowing structures have

Table 1. Summary of the dose and fractionation employed in MedAustron Ion Therapy Center (Wiener Neustadt, Austria).

Disease

Total dose,

Gy RBE (LEM)

Dose/fraction,

Gy RBE (LEM)

Total No.

of fractions Fractions/wk

Comment,

schedule

Mucosal melanoma 65.6–68.8 4.1–4.3 16 4 Japanese

Salivary glands (no ENI) 65.6–68.8 4.1–4.3 16 4 Japanese

Paranasal sinuses (no ENI) 65.6–68.8 4.1–4.3 16 4 Japanese

Sarcoma, except skull base chordoma 76.8 4.8 16 4 Japanese

Skull base chordoma 66 3 22 5 German

Salivary gland with ENI (low-LET

photon RT up to 50 Gy, then CIRT

boost)

24 3 8 5 German

Paranasal sinuses with ENI (low-LET

photon RT up to 50 Gy, then CIRT

boost)

24 3 8 5 German

Abbreviations: Gy RBE, Gy relative biological effectiveness; LEM, local effect model; ENI, elective nodal irradiation; RT, radiotherapy; CIRT, carbon ion radiotherapy; LET, linear

energy transfer.
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not been investigated extensively. In this article, we will, therefore, focus on those OARs that are most relevant to CIRT in

clinical practice and for which clinical data are available.

Optic Nerve and Optic Chiasm

In the Japanese experience from the National Institute of Radiological Sciences (NIRS; Chiba, Japan), many patients were

treated with a plan that exceeded the constraints for 1 optic nerve. That approach resulted in a significant number of clinical

adverse events and made it possible to derive a dose-effect curve for optic neuropathy [39]. In 54 evaluable patients, no optic

neuropathy was observed with a maximum dose (Dmax) , 57 Gy RBE (MKM). The logistic regression model identified a

D20% , 28 Gy RBE (MKM) and a D1% , 40 Gy RBE (MKM) as totally safe dose constraints. In the initial experience at Centro

Nazionale Adroterapia Oncologica (CNAO; Pavia, Italy), the Italian CIRT facility, these constraints were applied without

attempting to convert them from MKM to LEM (which was a conservative approach because conversion to LEM would have

made the constraints more permissive). Recently, the low incidence of optic neuropathy in the CNAO series and the

recalculation of the LEM plan with MKM model has allowed those constraints to be relaxed to D20% , 40 Gy RBE (LEM) and a

D1% , 50 Gy RBE (LEM) [40].

There is no published analysis of optic pathway toxicity from the German group. The reported constraint for optic pathways

used at the former GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany, and subsequently at the

Heidelberg Ion Therapy (HIT; Heidelberg, Germany) is D1% , 54 Gy RBE (LEM) [38].

Currently, at MedAustron sparing vision on both sides is a high priority. However, in certain clinical situations, we are forced

to accept a clinically significant risk of unilateral vision loss. In those cases, we have selected a constraint for low-to-middle risk

and a constraint for middle-to-high risk of optic neuropathy. When none of these constraints can be respected unilaterally, we

consider the treatment as nonvision preserving for the affected side. A significant risk of bilateral vision loss is not acceptable.

These constrains are derived from the Japanese and German experience (with the conversion from MKM to LEM performed

by the Italian group); see Table 2.

Brainstem

Brainstem toxicity is a much feared and potentially life-threatening toxicity. Understandably, every effort is made in clinical

practice to prevent it and, as a result, few data points are available to analyze the dose-response curve.

The Japanese group from Gunma University specifically analyzed brainstem toxicity after CIRT [41].

The authors described asymptomatic contrast enhancement in the brainstem as grade 1 necrosis and reported a 3-year

incidence of 6.5% for that endpoint. No grade 2 or greater toxicity was observed.

The constraints suggested by the Gunma group were V30 Gy RBE (MKM) of , 0.7 cm3 and a V40 Gy RBE (MKM) of , 0.1

cm3. These values are consistent with those used in other Japanese facilities. Those same values were initially used at CNAO

with the LEM model, and no brainstem event was observed. A recalculation of LEM plans with the MKM model has been

performed by CNAO colleagues [42] and has permitted a translation of the MKM values of 40 Gy RBE (MKM) and 30 Gy RBE

(MKM) in the LEM values of 46 Gy RBE (LEM) and 38 Gy RBE (LEM), respectively.

There is no published analysis of observed brainstem toxicity from the German group. In clinical practice, the volume of

brainstem receiving 50 Gy RBE (LEM) ‘‘has to be minimized,’’ and a maximum dose shall not exceed 54 Gy RBE (LEM) [8,

43].

Currently, at MedAustron, we use the constraints derived from the Japanese experience (with Italian conversion) and from

the German experience (Table 3).

Table 2. Dose constraints for optic pathways at MedAustron Ion Therapy Center (Wiener Neustadt, Austria).

Fractionation Safe constraint, Gy RBE (LEM) Low-to-medium risk,a Gy RBE (LEM) Medium-to-high risk,a Gy RBE (LEM)

Japanese D1% , 50 D1% , 54 D1% , 57

D20% , 40 D20% , 40 D20% , 40

German D1% , 54 D1% , 57 D1% , 60

Abbreviations: Gy RBE, Gy relative biological effectiveness; LEM, local effect model, D, dose.
aUsed for only one optic nerve, sparing chiasm and contralateral nerve.
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Spinal Cord

Because of the lack of any specific analysis of spinal-cord toxicity after CIRT and following the clinical practice of proton

facilities, such as Massachusetts General Hospital (Boston) and the Paul Scherrer Institut (Villigen, Switzerland), we apply the

same constraints that we use for the brainstem to the cervical spine (Table 4).

Cochlea

To our knowledge, there are no available published data specifically on the subject of cochlea constraints and hearing loss

after CIRT. Because of the physical properties of carbon ions (especially the small spot size and the sharp penumbra), it is

relatively easy to spare a cochlea that is not included in the target volume.

At MedAustron, we use dose constraints that are derived from clinical practice and extrapolation from low-LET data (Table

5).

Those constraints are more conservative than the constraints reported by colleagues from HIT in the ICRU report [9], but in

our experience, they are relatively easy to fulfill, at least on one side, without compromising target coverage.

Brain Parenchyma

Brain necrosis is a serious toxicity that can potentially jeopardize quality of life and may lead to a patient’s death. In several

cases, after CIRT or proton therapy, patients develop radiological findings consistent with brain necrosis but do not report any

symptoms. Most of those cases (designated as grade I according to Common Terminology Criteria for Adverse Events,

version 5.0; US National Cancer Center, Bethesda, MD), resolve spontaneously. Analyzing brain necrosis focusing only on

asymptomatic radiologic changes may lead to excessively conservative constraints; however, to estimate a dose-response

relationship, imaging is mandatory, and the censoring of radiologically apparent, but clinically asymptomatic, case is a complex

and potentially confounding issue but provides important data points.

The group from GSI/HIT in Germany has reported on 59 patients treated for skull base chordoma and chondrosarcoma with

CIRT with a dose per fraction between 3 and 3.5 Gy RBE (LEM) [44]

A relatively high percentage of those patient (28% at 2 years) developed radiographic changes in the temporal lobe, but

only one fifth of them reported any symptoms. The strongest dosimetric predictor of radiologic changes was the maximum

dose to 1 cm3 after excluding the cubic centimeter receiving the highest dose (Dmax,V1 cm3). Doses were converted to the

normalized total dose (NTD)a/b¼2Gy, and the total dose resulting in 5% risk of toxicity (TD5) was 68.3 Gy RBE (LEM). In the

Table 3. Dose constraints for the brainstem at MedAustron Ion

Therapy Center (Wiener Neustadt, Austria).

Fractionation Safe constraint, Gy RBE (LEM)

Japanese D0:1cm3 , 46

D0:7cm3 , 38

German D2% , 50

Dmax , 54

Abbreviations: Gy RBE, Gy relative biological effectiveness; LEM, local effect

model, D, dose.

Table 4. Dose constraints for spinal cord at MedAustron Ion

Therapy Center (Wiener Neustadt, Austria).

Fractionation OAR constraint, Gy RBE (LEM)

Japanese D0:1cm3 , 46

D0:7cm3 , 38

German D2% , 50

Dmax , 54

Abbreviations: Gy RBE, Gy relative biological effectiveness; LEM, local effect

model, D, dose.
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Japanese experience, patients receiving high-dose CIRT for head and neck cancer had a high risk of developing radiologic

findings consistent with necrosis. As reported by the NIRS group, those findings were self-limiting and did not require any

treatment in . 40% of the cases [45]. The analysis performed at NIRS was, therefore, focused on symptomatic brain necrosis

in patients treated with 16 fractions CIRT and a dose per fraction between 3 and 3.8 Gy RBE (MKM). The most significant

parameter was the volume receiving . 50 Gy RBE (MKM), with 4.6 cm3 selected as optimal threshold [46].

A formal conversion of MKM to LEM constraints has not, to our knowledge, been performed; however, extrapolating from

the prescription-dose conversion and from the brainstem cases, we estimated that 54 Gy RBE (LEM) could be considered a

safe LEM equivalent of 50 Gy RBE (MKM). Thus, we think we have created a safe constraint as well as a low-to-medium risk

constraint (Table 6) that can still reduce the risk of symptomatic necrosis but also acknowledge that, in many clinical

conditions, even significant risk of localized brain necrosis is unavoidable).

Salivary Glands

Parotid glands are a relevant OAR for many classic CIRT indications, despite formal analysis of CIRT-induced xerostomia not

yet being performed.

An article from NIRS [47] has analyzed the correlation between dosimetric parameters and parotid gland atrophy, as

measured by comparing volumes before and after RT on imaging scans. According to this analysis the volume receiving . 5

Gy RBE (MKM) is the stronger predictor of atrophy. It is, however, clear that volume reduction is a suboptimal surrogate for

parotid function and does not correlate perfectly with xerostomia.

At present, in MedAustron, we are simply applying photon-RT–derived dose constraints for this important organ (Table 7).

Eye and Adnexa

Eye and adnexa are other important organs that can be considered ‘‘orphans,’’ because, until now, no specific CIRT toxicity

analysis has been performed and no CIRT constraints have been set, to our knowledge. The only existing formal analysis

focused on lacrimal duct dose constraints [48]; however, the lacrimal duct is rarely a clinical issue because it is typically either

far away from, or well into, the target volume and would never be prioritized over target coverage.

At MedAustron, we have set constraints for lens, cornea, lacrimal gland, macula, and retina based on clinical judgments and

extrapolation from photon experience. For each organ, 2 values are determined: a safe one and a more-permissive one

corresponding to a low-to-medium risk of toxicity. Lens constraint can, if necessary, be exceeded because there is an excellent

surgical salvage option for cataracts. Similarly, lacrimal gland constraints can be exceeded because even surgical resection of

the gland does not necessarily results in severe xerophthalmia. If the constraint on the retina cannot be respected, we try to at

least respect the constraint on the macula. These constraints, as shown in Table 8 are applied both for the German and for the

Japanese fractionation.

Table 6. Dose constraints for brain parenchyma at MedAustron Ion Therapy Center (Wiener Neustadt,

Austria).

Fractionation Safe constraint, Gy RBE (LEM) Low-to-medium risk, Gy RBE (LEM)

Japanese D1cm3 , 54 D1cm3 , 64

D5cm3 , 50 D5cm3 , 60

German D1cm3 , 56.7 equivalent to NTDa/b¼2Gy ¼ 65 D1cm3 , 59 equivalent to NTDa/b¼2Gy ¼ 69

Abbreviations: Gy RBE, Gy relative biological effectiveness; LEM, local effect model, D, dose; NTD, normalized total dose.

Table 5. Dose constraints for cochlea at MedAustron Ion Therapy Center (Wiener Neustadt, Austria).

Fractionation Safe constraint, Gy RBE (LEM) Acceptable constraint, Gy RBE (LEM)

Japanese and German Dmean , 30 Dmean , 43

Abbreviations: Gy RBE, Gy relative biological effectiveness; LEM, local effect model, D, dose.
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Maxilla/Mandible

Osteoradionecrosis is a well-known, severe adverse side effect of high-dose RT. In the Japanese experience, maxillary

osteonecrosis was reported in patients without direct tumor infiltration in the maxilla [49]. The presence of teeth and the dose

were clear risk factors with a volume received of . 50 Gy RBE (MKM), being the most significant dosimetric parameter. The

presence of teeth appeared to be of great relevance (hazard ratios, 11.3 versus 1.15 for V50). It is difficult to evaluate whether

the presence of teeth is, by itself, a risk factor despite optimal oral hygiene or whether poor oral hygiene is a necessary

cofactor. A formal analysis of mandible toxicity with CIRT has not, to our knowledge, been published.

In summary, the risk of inducing osteoradionecrosis is multifactorial and multiple previous surgeries; infiltration by the tumor

and poor dental status all add to increase the risks.

At MedAustron, we decided to apply bone constraints only for the more-aggressive Japanese fractionation and to use the

same constraints for mandible and maxillary bone. We extrapolated the MKM/LEM conversion from analogous cases and

used more-conservative values for the teeth-bearing portion of the bone (Table 9).

Discussion
The specificity of CIRT demands a separate ad hoc investigation of dose constraints. This process is still ongoing. Because all

CIRT facility have a research-oriented character, follow-up data of treated patients is readily available at each institution

(including, in most cases, follow-up imaging). Conversion between the 2 clinically used RBE models is becoming available in

commercial treatment planning systems, thus, significantly simplifying the joint analysis of Japanese and European results.

Future developments should depend on 3 main activities: (1) extending and validating institutional dose constraints by formally

analyzing observed clinical toxicity, (2) pooling multi-institutional data to increase statistical power (especially relevant for

rarely observed toxicities) and further validating the RBE conversion method, and (3) interacting with the QUANTEC

community to discuss the possibility of a carbon-ion subsection in the planned next QUANTEC revision.

To our knowledge, this article is the first attempt to formally report dose constraints used in a CIRT facility. We encourage

similar publications by other institutions and to expand this process to include additional anatomic sites and organs.

Pooled data analysis is burdened with well-known technical, organizational, and legal issues. The research project

HITRIplus (project number 101008548) [50] has been recently funded by the European commission within the framework of

Horizon 2020. In this project, among many other activities, we foresee the setup of an infrastructure for pooled patient analysis

among European CIRT centers, specifically focusing on OARs dose constraints.

Publication of institutional dose constraints for CIRT will be beneficial for upcoming facilities and will facilitate cooperation

among existing centers. Pooled data analysis and review of routinely used constraints may significantly increase both the

safety and the efficacy of CIRT.

Table 7. Dose constraints for parotid glands at MedAustron Ion Therapy Center (Wiener Neustadt, Austria).

Fractionation Normal constraint, Gy RBE (LEM) Constraint,a Gy RBE (LEM)

Japanese and German Dmean , 26 Dmean , 20

Abbreviations: Gy RBE, Gy relative biological effectiveness; LEM, local effect model, D, dose.
aWhen the contra-lateral gland has to be sacrificed.

Table 8. Dose constraints for eye and adnexa at MedAustron Ion Therapy Center (Wiener Neustadt,

Austria).

Organ Safe constraint, Gy RBE (LEM) Low-to-medium risk, Gy RBE (LEM)

Cornea D2% , 30 D2% , 40 and D10% , 30

Lens D2% , 8 NA

Lacrimal gland Dmean , 30 Dmean , 40

Retina D2% , 40 D2% , 45

Macula D2% , 40 D2% , 45

Abbreviations: Gy RBE, Gy relative biological effectiveness; LEM, local effect model, D, dose; NA, not available.
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Conclusion
In this work, we describe CIRT dose constraints used in MedAustron in the head and neck area. Validation of dose constraints

should present a relevant part of the activity of any CIRT facility, and we anticipate future multicentric joint evaluations.
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