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Abstract

We sought to craft a drug safety signalling pipeline associating latent informa-

tion in clinical free text with exposures to single drugs and drug pairs. Data

arose from 12 secondary and tertiary public hospitals in two Danish regions,

comprising approximately half the Danish population. Notes were operationa-

lised with a fastText embedding, based on which we trained 10 270 neural-net-

work models (one for each distinct single-drug/drug-pair exposure) predicting

the risk of exposure given an embedding vector. We included 2 905 251 admis-

sions between May 2008 and June 2016, with 13 740 564 distinct drug prescrip-

tions; the median number of prescriptions was 5 (IQR: 3–9) and in 1 184 340

(41%) admissions patients used ≥5 drugs concomitantly. A total of 10 788 259

clinical notes were included, with 179 441 739 tokens retained after pruning.

Of 345 single-drug signals reviewed, 28 (8.1%) represented possibly unde-

scribed relationships; 186 (54%) signals were clinically meaningful. Sixteen

(14%) of the 115 drug-pair signals were possible interactions, and two (1.7%)

were known. In conclusion, we built a language-agnostic pipeline for mining

associations between free-text information and medication exposure without

manual curation, predicting not the likely outcome of a range of exposures but

also the likely exposures for outcomes of interest. Our approach may help

overcome limitations of text mining methods relying on curated data in

English and can help leverage non-English free text for pharmacovigilance.
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1 | INTRODUCTION

Pharmacovigilance usually operates with two qualifica-
tions of the common term side effect: adverse drug
events (ADEs) and adverse drug reactions (ADRs).
ADEs are (noxious) medical events occurring while
using medicines without assuming causal relationships.1

ADRs are subsumed by ADEs and constitute outcomes
believed or known to be caused by exposure to a given
medicinal product.2,3 ADRs are usually classified in six
groups, including dose-related and not dose-related.4

The latter are more unpredictable than the former and
tend to be unrelated to the pharmacological effect,
making them interesting from a safety signal detection
perspective.

ADR signal detection usually revolves around sponta-
neous case reports, collated nationally (e.g., Danish Medi-
cines Agency) and internationally (e.g., EudraVigilance
of the European Medicines Agency and VigiBase of the
Uppsala Monitoring Centre5). This system suffers from
several shortcomings, including the inherit filtering of
reports making it into central databases, causing
i.a. under-reporting6–9 that may even be biassed or other-
wise influenced by, for example, media hype or legisla-
tion.10 These weaknesses, and the ever-expanding
digitisation of patient data, have sparked much interest
in leveraging complementary data sources and technolo-
gies for pharmacovigilance, including longitudinal
clinical data and natural language processing (NLP), the
branch of machine learning for making textual data
compatible statistical modelling.11,12

Text mining uses NLP methodologies to extract struc-
tured information from inherently unstructured textual
data. Its applications in pharmacovigilance often hinge
on hand-curated reference sets for named-entity recogni-
tion or entity extraction13–16; for example, previous work
brought about a Danish dictionary of side effects.17 These
tasks focus on assigning labels to free-text terms so they
can be codified and used as structured data akin to diag-
nostic codes recorded in national registers18 or adverse-
event databases.

Creation and maintenance of such gold standards are
costly and tedious, which likely explains the limited
availability of tools and resources (including corpora) for
non-English textual data. For example, the official ADR
vocabulary of the Danish Medicines Agency is MedDRA
(Medial Dictionary for Regulatory Activities, in English),
and submitters of case reports are encouraged to pick
from English terms when submitting case reports. When
non-standard side effects are entered, these are manually
mapped to the English MedDRA afterwards. Thus, it is
near-impossible to extract information across languages
which would be useful for pharmacovigilant purposes.

We posit that, to leverage clinical free text, complement-
ing existing vocabulary-based approaches to pharmacov-
igilant NLP with (semi-)automatic information extraction
from clinical free text deserves exploration and could
facilitate vast screening of clinical free text.

To this end, we report on the creation of one such
complementary system: an end-to-end machine learning
pipeline associating latent information in clinical free
text with medication profiles to highlight potential
adverse drug reactions to single drugs and drug pairs. We
envision a system that accepts one of several free-text
side-effect terms from the user and returns likely promi-
nent exposures to undergo assessments akin to the evalu-
ation of signals in spontaneous case reports.

2 | METHODS AND MATERIALS

Data were obtained from electronic patient record (EPR)
systems of 12 secondary and tertiary public hospitals in
two Danish regions (Capital Region and Region Zealand),
comprising approximately 2.6 million persons (about half
the Danish population). We used data from a random
sample of 500 000 adult (age ≥18 years) patients admitted
between 1 January 2006 and 30 June 2016.

The full analytic workflow is depicted schematically
in Figure 1 and has five main components (detailed
below): deriving doorstep medication profiles (red), train-
ing the embedding model (brown), operationalisation of
clinical notes (blue), training the signal detection compo-
nent (green) and evaluating the safety signals (purple).

2.1 | Doorstep medication profiles

We considered only pre-existing medication at start of
admission and created one medication vector with one
element per distinct single drug and drug pair in the full
data set, using their respective anatomical therapeutic
chemical (ATC) codes.19 Medication data were extracted
from the electronic patient files and, so, reflect what was
registered by a physician at time of admission. Elements
corresponding to single drugs and drug pairs used by a
given patient at doorstep were set to 1, the rest to 0. We
only considered single drugs and drug pairs used in at
least 1000 admissions.

2.2 | Embedding model

An embedding packs high-dimensional data into much
fewer dimensions. Imagine, for example, one-hot-
encoding words12,20 in a corpus of clinical notes that
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collectively contain 345 671 unique words: The presence
of a word in a given note could be represented by a (very
sparse) vector with 345 670 zeros and a single 1. Learning
a 100-dimensional embedding of the words, in contrast,
enables us to represent each word by a 100-element vec-
tor that also captures latent information in unstructured
text.12,20 This vector will not be sparse (computationally
convenient) and vectors of words with similar meanings
will be similar even when lexicographically different
(e.g., headache, sore head and neuralgia). Our embedding
used tokens (one or several words together that collec-
tively make up a term such as the three terms in italic in
the previous sentence) and not only single words. See the
supporting information for more detailed explanations.

We used fastText21 to train the embedding model on
the full corpus after slight pruning: Characters other than
letters and numbers were removed, as were multiple
white spaces. This yielded one white-space separated
string of words from each note. Hyperparameters were
arbitrary but appropriate for the task at hand; for exam-
ple, we used a 256-dimensional embedding, sub-word
components were allowed to be between three and six

characters long (minn and maxn fastText settings; ‘dys’
and ‘tonia’ are two sub-word component examples of
‘dystonia’) and tokens were allowed to span up to three
words to capture multi-word signals (such as chest pain
or sore head; wordNgrams fastText setting; N-grams are
tokens that consist of N words, where N is usually one,
two and/or three: ‘tremor’ is a unigram, ‘idiopathic
tremor’ a digram, and ‘intermittent dystonic tremor’ a
trigram). All settings can be found in the analytic code;
see below.

2.3 | Operationalisation of clinical notes

The corpus comprised notes recorded within the first
48 h of admission; each note underwent five processing
steps. First, the note was split into sentences. Second,
within each sentence, we identified negations and for
each of these excluded the subsequent five words or until
end-of-sentence (heuristic based on Thomas et al.22).
Third, we removed special characters from these non-
negated words. Fourth, we retained the pruned words

F I GURE 1 Schematic illustration of the end-of-end pipeline; see sections with corresponding headings in main text for details: The

blue areas correspond to operationalisation of clinical notes, the green to training the signal detection component and the purple to evaluating

the safety signals. The red and blue areas illustrate data capture from a single patient.
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that were neither Danish stop words (using nltk.corpus23)
nor present in an in-house list of almost 430 000 names
used in Denmark. We forewent stemming and lemmati-
sation12 to let the model learn from natural words, to
facilitate its downstream use (stemming and lemmatisa-
tion harmonise the corpus by transforming the words
therein to [usually] shorter versions, i.e., their stems and
lemmas). Finally, these retained tokens were
concatenated by admission, essentially considering each
admission one document (an oft-used term in text-
mining and information retrieval literature).

We computed the term-frequency/inverse-document-
frequency (TF-IDF) as tf � log(N/[1 + df]) for retained
tokens with 10 ≤ df ≤ 50 000 to omit tokens so common
or rare that they unlikely contained information of inter-
est.24 The final TF-IDF values were not used to discard
tokens at this step; that happened during training; see
below.

The final step of this component was converting
tokens to their corresponding embedding vectors using
the fastText model. This happened during training to not
unnecessarily store vectors for tokens many of which
were never used due to under-sampling, see below.

2.4 | Training the signal detection
component

We constructed one multilayer perceptron (MLP, also
called feed-forward neural network) model with two hid-
den layers of 256 nodes for each of the 12 270 unique
drugs and drug pairs in the medication profiles, setting
the binary outcome to 1 if that drug (pair) was in the
doorstep medication profile and 0 otherwise. Because of
the imbalanced nature of the prediction task (Figure S1)
and to obtain tolerable runtime, we used random 1:2
under-sampling of the majority class to help the model
focus on pertinent signals. We used all tokens for cases
and the top 50 tokens based on TF-IDF for controls. Then,
the embedding vector for each token and its outcome
became one observation for training the MLP model.

We used sigmoid activation functions, the Adam opti-
miser and regularisation only in the form of early stop-
ping based on area under the receiver operating
characteristic curve (AUROC) in the internal validation
set. The validation set came about by 80/20 random split-
sampling, deemed appropriate as this served solely for
regularisation and not validation per se.25

Pertinence was operationalised as signals from well-
performing models with respect to discrimination and
calibration-in-the-small using the internal validation set.
Discrimination was gauged by AUROCs, calibration-in
the-small by the intercepts and slopes of linear

regressions to the calibration curves of decile-binned pre-
dicted probabilities and corresponding bin-wise observed
outcome proportions.26 Only models with intercepts in
[�0.05, 0.05], slopes in [0.95, 1.05] and AUROCs ≥ 0.7 in
the validation sets were considered to yield pertinent
signals.

2.5 | Evaluating safety signals

2.5.1 | Congruence

To quantify the relevance of the signals, we compared
the predicted odds with the odds in the background pop-
ulation and used these odds ratios as the signal scores.

The congruence analysis served to qualitatively assess
whether tokens with near-identical or very similar clinical
meanings (‘clinical cousins’) were assigned the same med-
ication profiles regardless of lexicographical (dis)similar-
ity. To this end, we used the terms in Figure 4 (their
origin is explained below) and a list of clinical cousins for
a total 116 terms. Congruence was, then, assessed visually
by plotting pairwise adjusted cosine distances24,27 between
the signal profiles of all 116 terms, constructed as the
union of all exposures in the top 50 of any of the terms.

2.5.2 | Relevance

We used a reference set to gauge the signals’ relevance,
that is, to what extent signals are meaningful from a clin-
ical and pharmacovigilance point of view. From the sev-
eral potential reference sets that exist,28 we chose the
items in the UKU (Udvalg for Kliniske Undersøgelser,
English: Committee for Clinical Investigations) side effect
rating scale.29

We manually reviewed the top 5 single-drug and top
5 drug-pair signals for each reference-set term consulting
three standard sources in clinical pharmacology, in
Denmark: www.pro.medicin.dk (side effects; identical
side-effect information as the official Danish summaries
of product characteristics [SPCs, available at www.
produktresume.dk] with few exceptions), DrugBank
(drug-drug interactions; publicly available information;
www.drugbank.ca30) and the Danish Interaction Data-
base31 (drug-drug interactions). We crafted a helper R
package (promedreadr, doi: 10.5281/zenodo.5529817) to
do the heavy lifting when collecting side-effect informa-
tion from www.pro.medicin.dk. DrugBank kindly made
their data (v5.1.8) available to the first author for the pur-
pose of this study.

Each single-drug signal was labelled, in this order, as
(a) example of protopathic bias or bias-by-indication,32
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(b) known side effect if reported for at least one
product with that ATC code, (c) possible side effect
(i.e., biologically plausible) or (d) spurious signal. For
drug-pair signals, we labelled each drug according to the
single-drug classification and further evaluated the signal
from a drug-drug interaction point of view on two axes:
whether the two drugs are known to interact (is any inter-
action described in the Danish Interaction Database
and/or DrugBank?) and relevance of signal (three options:
known result of interaction, possible result of interaction
or not caused by interaction). BSKH, GJ and SEA under-
took signal assessment: Each signal was evaluated inde-
pendently by two assessors, and disagreement (quantified
by Cohen’s kappa33) was resolved by consensus.

2.6 | Ethics

This study is part of the BigTempHealth research pro-
gramme for which approval was granted by the Danish
Patient Safety Authority (3-3013-1723, then competent
authority for ethical approval), the Danish Data Protection
Agency (DT SUND 2016-48, 2016-50, 2017-57) and the Dan-
ish Health Data Authority (FSEID 00003724). This report
honours relevant items of the RECORD statement.34

3 | RESULTS

The final data set covered the period from 18 May 2008
through 30 June 2016 and comprised 2 905 251 inpatient
visits (admissions) of which 1559 685 (54%) were of
women. The median age was 58 years (inter-quartile
range, IQR: 33–73) and stable throughout the study
period. These admissions comprised 10 788 259 clinical
notes (18% of these patients’ 60 960 247 notes) recorded
within 48 h of admission and 13 740 564 doorstep drug
prescriptions; the median number of doorstep-profile pre-
scriptions was 5 (IQR: 3–9) and in 1 184 340 (41%) admis-
sions patients used ≥5 drugs concomitantly, a common
polypharmacy threshold.35 Pruning and filtering left
179 441 739 tokens (per-admission median: 51 [IQR: 29–
80]) for training the 10 270 neural-network models of
which 3945 (38%) yielded pertinent signals (see Figure S2).

Figure S1 shows the relative frequency of all 571 sin-
gle-drug exposures and (correspondingly) the top
571 drug-pair exposures. The dominant drug classes were
those affecting the nervous system (N, including psychi-
atric drugs), the alimentary tract and metabolism (A) and
the cardiovascular system (C). The same picture emerged
from the drug-pair exposures: The most prevalent drug
pairs involved these same three drug classes (e.g., AA,
AC and AN).

We devised so-called fingerprints for each main UKU
term visualising single-drug exposures (Figure 2). These
fingerprint plots illustrate that general or vague terms
(e.g., depression, nausea and weight gain) are relatively
strongly associated with many drug exposures (many
wedges in the inner circle are dark) and that fewer drugs,
of appropriate drug classes, light up for more specific
terms (e.g., amenorrhoea/galactorrhoea and tremor/dys-
tonia/parkinsonism). Also, fingerprints of clinically
related terms (e.g., tremor, parkinsonism and dystonia)
are similar but clearly distinct from those of other terms.

3.1 | Congruence

We hypothesised that signal profiles of clinical cousins
would be similar regardless of lexicographical (dis)simi-
larity. Indeed, as Figure 3 illustrates, signal profiles
agreed within UKU terms, within UKU domains and
within the mental-neurological spectrum. As expected,
the terms in the Other domain did not agree well, likely
because this domain comprises very different side effects
not fitting in elsewhere. Agreement was imperfect, which
can be seen from, e.g., the light stripes representing terms
with signal profiles distinct from all other terms. Several
UKU terms have synonyms identical to those of other
UKU terms so these will of course show perfect congru-
ence, even if across UKU domains.

3.2 | Relevance

Agreement between the three assessors (BSKH, GJ and
SEA) was moderate, with four values of Cohen’s kappa
(κ): relevance of drug 1 (κ = 0.49), relevance of drug
2 (κ = 0.72), whether the two drugs were known to inter-
act in any way (κ = 1.0) and relevance of interaction
(κ = 0.73); see pairwise κ values in Figure S3.

The consensus assessments in Figure 4 show that the
method picked up pertinent information. There were
345 single-drug/potential-reaction pairs (Figure 4, cap-
tion). Of these, 28 (8.1%) represented possible relation-
ships between drug exposure and the reaction in
question (Figure 4B, light green). For 186 (54%) signals,
the reactions were either possible, known or due to proto-
pathic or indication bias, all clinically meaningful rela-
tionships (Figure 4B, green and dark grey). Sixteen (14%)
of the 115 drug-pair signals were possible interactions;
two (1.7%) were known and the rest not attributable to
the drugs interacting (Figure 4C). Table S1 contains a
selection of clinically interesting signals of possibly
undocumented relationships between exposures and
reactions.
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4 | DISCUSSION

With a novel, language-agnostic approach using word
embeddings, we successfully built an end-to-end machine
learning pipeline to elicit potential side effects of out-of-
hospital drug exposure; the method may well comple-
ment existing safety signal detection and refinement.
Using side effects from the psychiatric domain with
(somewhat) well-defined pharmacological properties, we
illustrated that this method may offer genuine utility:
manual review of signals for clinically relevant side
effects illustrated the ability of the pipeline to highlight
pertinent signals, with the ‘hit rate’ in the same order of
magnitude as that of signal detection in spontaneous case
reports.36

The novelty of our approach hinders direct compari-
sons with the published literature. Indeed, we try to fill a
gap in the three-axis categorisation of pharmacovigilance
NLP: using non-English text, overcoming the reliance on

annotated data and leveraging EHR data. The number of
published NLP applications in pharmacovigilance is
growing: a review from 2012 included but seven studies,
most of which used either simplistic keyword searches or
more elaborate NLP methodologies (MediClass and
MedLEE), predominantly in discharge summaries with
relatively old data (1995 through 2008).37 More recently,
a review from 2017 included 48 studies and emphasised
the need for side-effect detection methods to handle also
polypharmacy-related side-effects,38 an issue intimately
related to drug-drug interactions.

Side-effect signal detection generally occurs in three
types of data (spontaneous case reports, online forums
including social media and longitudinal patient data)
with the analytical approaches somewhere along two
axes (modelling complexity and structuredness of the
data). The long-standing signal detection in spontaneous
case reports rests on several large database (e.g., FAERS,
EudraVigilance and VigiBase) collecting reports from

F I GURE 2 Fingerprint plots of the 23 main UKU terms and their 571 single-drug signals. Inner circles: Each wedge represents one

drug and transparency the signal score. Outer circles: Colours represent anatomical drug classes (ATC level 1); see legend. A, alimentary

tract and metabolism; B, blood and blood forming organs; C, cardiovascular system; D, dermatologicals; G, genito-urinary system and sex

hormones; H, systemic hormonal preparations, excluding sex hormones and insulins; J, antiinfectives for systemic use; L, antineoplastic and

immunomodulating agents; M, musculo-skeletal system; N, nervous system; P, antiparasitic produts, insecticides and repellents; R, respiratory

system; S, sensory organs; V, various [Correction added on 8 August 2022, after first online publication: Figure 2 has been corrected.]
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healthcare staff, patients and pharmaceutical companies
across the globe. The mainstay of this system has been
disproportionality analytic39 with attempts at assessing
DDIs,40 although NLP applications exist.41–44 Several

attempts at leveraging online content for pharmacovigi-
lance have come about,45–49 especially using Twitter
posts50–59 with examples of trying to disentangle tempo-
rality of exposure-event pairs.60

F I GURE 3 Mean-adjusted cosine

similarities between signal pairs. Rows and

columns show pairwise similarities between

signal profiles for specific terms. Dark blue

squares signify agreement between blocks of

terms (red represent disagreement). Black and

white margin bars represent UKU side-effect

terms, and columns/rows within the span of one

bar are synonyms. The cosine similarity of two

identical signals equals 1 (e.g., the diagonal). See

the supporting information for more detailed

explanation.

F I GURE 4 Main UKU terms by domain. (A) The number of terms used in congruence analysis (total = 116). (B) All 345 single-drug

assessments (23 terms � 5 single-drug signals = 115; 23 terms � 5 drug-pair signals � 2 drugs per pair = 230). Light green: undocumented

reaction possibly caused by single-drug (B) or drug-pair (D) exposure. Dark green: known reaction (B + D) or interaction (C). Dark grey:

protopathic or indication bias. Light grey: spurious signal. Horizontal scales in panels B–D are counts.
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Although pharmacovigilant text mining in non-
English corpora is not the norm, examples do exist. A
Danish dictionary of side effects was created and used for
mining psychiatric patient files, relying on ontologies
against which terms found in the clinical text were com-
pared17,61,62 and, thus, different in scope than ours. Oro-
noz et al.63 sought to create a gold standard from EMR
notes in Spanish that had been annotated by pharmacolo-
gists and pharmacists, with particular focus on medicines
and diagnoses, while Segura-Bedmar and Martinez64

sought to extract drug effects, both beneficial and nox-
ious, from a Spanish online health forum. Another study
used Japanese online platforms to evaluate basic charac-
teristics of medicine users,65 and Ujiie et al.66 used medi-
cal articles, manually annotated by a medical engineer,
in Japanese articles published for post-marketing surveil-
lance. Usui et al.67 devised a system to automatically
assign ICD-10 codes to Japanese free-text patient com-
plaints recorded by pharmacists when dispensing pre-
scription medicines.

These examples all share the foundational
characteristic that they rely on curated ontologies for
annotating their corpora. This eases evaluation as the
curation process establishes a ground truth against which
to compare the algorithm’s output. Nevertheless, real-life
clinical corpora are moving targets, and the constant
expansion and morphing of ontologies require continual
and costly updating of annotation rules. Our approach
stands in contrast to this: It is an end-to-end pipeline that
requires no annotation of specific documents but acts a
simple signal detection engine whose signals should then
undergo expert review and can underpin evaluation of
signals from other systems. With text embeddings at its
core, the method allows for data augmentation without
hand-tuning68; we did not, however, venture down
this path.

Data mining models generally carry no causal mean-
ing, and an oft-raised issue of NLP is the need for (often
large) annotated corpora which requires much work and
continuous updating to remain relevant, the very thing
we attempted to circumvent by reversing the prediction
direction. Others have used word embeddings to opera-
tionalise free text in a non-annotated manner. For exam-
ple, Workman et al.69 showed that word embeddings can
help overcome the problems of misspelling in a pharma-
covigilance application; the RedMed model was trained
on Reddit posts to extract health entities therein and per-
formed reasonably well in such consumer-generated
content70; and combining pre-trained word embeddings
and conditional random fields could have flagged poten-
tial cutaneous adverse reactions to two chemotherapy
classes in internet content before they were reported in
the scientific literature.48

We trained one model per drug exposure for a total of
10 270 individual models. Although multi-label architec-
tures sometimes aid learning,71 we found this to drown
pertinent signals in models with thousands of outputs
nodes in a single network. This probably happens
because the model can only optimise a single loss value,
and we found no good way to automatically up- or down-
weigh contributions from different outputs. Further, in a
multi-label feed-forward architecture, all weights are
shared except those between the last hidden layer and
the outputs, and there seems to be no good reason that
predicting the risk of, say, exposure to metformin should
be so intimately linked to that of olanzapine. One poten-
tially viable alternative might have been a factorial-like
design in which each model had four mutually exclusive
outcome nodes: exposure to none of the drugs, drug
1 only, drug 2 only and both drugs.

As mentioned, several options exist for the reference
sets in the relevance evaluation. Among these, we chose
UKU side effect rating scale for three principal reasons.
First, the UKU items were originally developed in a Nor-
dic setting, so English-Danish translations are readily
available. Second, the UKU items were developed to
gauge the side-effect load of psychotropics, and so their
(somewhat) well-defined pharmacological mechanisms
aid the assessment of biological plausibility of signals.
Third, our results are readily put in a scientific context
because the UKU scale has been used for several years
and in different contexts,72–74 ensuring transparency with
respect to and confidence in the translations for readers
unfamiliar with the Danish language.

When designing our approach, we had institutional/
regulatory pharmacovigilance in mind, but alternative use
cases exist, such as patient-level decision-making support
and drug repurposing research. Including patient charac-
teristics (e.g., age, sex and comorbidities) would enable
clinical staff to query the method for single drugs or drug
combinations potentially explaining the symptoms of
their patients. Instead of looking at drugs given dispropor-
tionately often for a given term, we could focus on those
given more rarely (so with the odds ratio of <1) poten-
tially eliciting interesting novel target conditions for exist-
ing treatments similar in spirit to, e.g., Kessing et al.75

Combinatorial explosion is a well-known challenge
for the study of DDIs: A person using seven different
medicines is exposed to 21 two-way drug combinations.
This challenge is only exacerbated if higher order combi-
nations are considered. So, instead of modelling this
explicitly, one could consider higher order interactions
(e.g., three- or four-way) by piecing together two-way
combinations that yield predicted probabilities above a
certain threshold when multiplied, i.e., using a simplistic
approximation to the predicted joint probability.
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An alternative approach, and indeed research ques-
tion, would have been to compare new in-hospital expo-
sures with terms in subsequent days for immediate side
effects. To be feasible, this would likely require a much
larger data set to have sufficient exposure-outcome pairs.
It might, however, be less unwieldy as such an approach
could focus on new(er) drugs drastically reducing the
number of labels (and, thus, models to be trained).

4.1 | Strengths and limitations

Our approach has six principal strengths. First, its unsu-
pervised nature drastically reduces the need for manual
work. This sets it apart from most other published studies
using NLP in pharmacovigilance that tend to hinge on
manual curation. Second, the method is language-
agnostic owing to its unsupervised nature, so that it does
not rely on a vocabulary for looking up words. This ren-
ders the approach potentially useful for pharmacovigi-
lance in also smaller languages. Third, our corpus is quite
large, a natural consequence of its non-reliance on
curated data. Fourth, skipgrams (i.e., using sub-word
information) enable embedding of also i.a. word bigrams,
misspellings and out-of-vocabulary words. Fifth, the
crude and almost reductionist nature of our approach cir-
cumvents many difficulties posed by NLP because we
break documents down to basic components and use
them without modelling semantics and syntax. Finally,
using the UKU side effect rating scale (i.e., a Nordic,
translated, pharmacology-based and widely used tool in
Denmark) aids in contextualising the results. Even
though the UKU side effect rating scale target psychotro-
pics, interesting signals emerged also for somatic drugs
(Table S1).

This study, however, is subject to several limitations.
First, the apparently well-defined temporality obtained
using doorstep medication profiles does not necessarily
guarantee that what is reported in the text occurred after
start of exposure. This potential problem, and source of
protopathic bias,32 is not unique to our approach but
rather necessitates cautious interpretation of any signal
detection method, in longitudinal and case-report set-
tings alike. Second, we do not actually have data on pre-
scriptions from the primary sector but rely on the
doorstep registration of pre-existing medication. Physi-
cians are obliged to record these doorstep medication
profiles, and we expect they generally be accurate despite
occasional exceptions. Third, we considered exposure a
binary notion and, due to the nature of the data, do not
have well-defined start-of-exposure. Doses could be con-
sidered, perhaps on an ordinal scale, if the interest
revolves around dose-related ADRs; the lack of well-

defined exposure time could be mitigated if doorstep
medication profiles were based on data from the Danish
Drug Statistics Register76 (unavailable to us when con-
ducting this study). Fourth, word embeddings are power-
ful but not magical: The method clearly links clinical
terms with similar meanings (even if lexicographically
very different) to similar medications profiles, but the
embedding model has difficulties with i.a. rare variations.
These yield different embedding vectors resulting in
noisy signal profiles fitting poorly with clinical expecta-
tions. However, rarity of terms also hampers other kinds
of association-mining or disproportionality-analytic tech-
niques, and our method might even be less prone because
few mentions could suffice to at least hint at relevant
clinical cousins. Fifth, even if the doorstep medication
profiles are correct, we have no records of exposure to
over-the-counter and herbal drugs, and we have to
assume patients be compliant, just as any study using sec-
ondary data. Finally, we only had data on inpatients who
were not, generally, admitted due to side effects although
this is common.77–80 Inpatients are not representative of
the general population, and so, with the data at our dis-
posal, the safety signals might be somewhat conditional
on frailty although this could be mitigated by focusing on
specific sub-populations (e.g., elderly or oncological
patients).

5 | CONCLUSION

Combining various flavours of machine learning and
data scientific tools, we have built an end-to-end pipeline
for mining associations between free-text information
and medication exposure without the need for manual
curation. We achieve this by turning things upside down,
predicting not the likely outcome of a range of exposures
but also the likely exposures for one or several outcomes
of interest.

The congruence analysis suggests that the method pick
up pertinent information, even when supplied with syno-
nyms, and with 8% of single-drug and 14% of drug-pair sig-
nals being possibly undocumented side effects, it provides a
hit rate appropriate for its purpose: shortlisting few relevant
signals from thousands of noisy ones.28 These shortlists
would then undergo review by pharmacologists, pharma-
cists or other pharmacovigilance experts5,28 to elicit truly
unknown side effects (safety signal detection) or aid sub-
stantiating/refuting suspected side effects emerging from,
e.g., spontaneous case reports (safety signal refinement).

Our approach is original in the field of side effect
detection and helps overcome many limitations of NLP
methods relying on curated data including being
language-agnostic. Crucially, this makes our method
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appealing in settings that must make sense of non-
English free text for pharmacovigilance while lending
itself well to alternative use cases, e.g., patient-level
decision-making support and drug repurposing.
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