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Introduction and Objectives.MicroRNA (miRNA) expression is altered in urologic malignancies, including urothelial carcinoma of
the bladder (UCB). Individual miRNAs have been shown to modulate multiple signaling pathways that contribute to BC. To
identify a panel of miRNA signature that can predict aggressive phenotype from normal nonaggressive counterpart using
miRNA expression levels and to assess the prognostic value of this specific miRNA markers in patients with UCB. Methods. To
determine candidate miRNAs as prognostic biomarkers for dividing aggressive type of UCB, miRNA expression was profiled in
patients’ samples with an aggressive phenotype or nonaggressive phenotype using 3D-Gene miRNA labeling kit (Toray, Japan).
To create a prognostic index model, we used the panel of 9-miRNA signature based on Cancer Genome Atlas (TCGA) data
portal (TCGA Data Portal (https://tcgadata.nci.nih.gov/tcga/tcgaHome2.jsp)). miRNA expression data and corresponding
clinical data, including outcome and staging information of 84 UCB patients, were obtained. The Kaplan-Meier and log-rank
test were performed to quantify the survival functions in two groups. Results. Deregulation of nine miRNAs (hsa-miR-99a-5p,
hsa-miR-100-5p, hsa-miR-125b-5p, hsa-miR-145-5p, hsa-miR-4324, hsa-miR-34b-5p, hsa-miR-29c-3p, hsa-miR-135a-3p, and
hsa-miR-33b-3p) was determined in UCB patients with aggressive phenotype compared with nonaggressive subject. To validate
the prognostic power of the nine-signature miRNAs using the TCGA dataset of bladder cancer, the survival status and tumor
miRNA expression of all 84 TCGA UCB patients were ranked according to the prognostic score values. Of nine miRNAs, six
were associated with high risk (hsa-miR-99a-5p, hsa-miR-100-5p, hsa-miR-125b-5p, hsa-miR-4324, hsa-miR-34b-5p, and hsa-
miR-135a-3p) and three were shown to be protective (hsa-miR-145-5p, hsa-miR-29c-3p, and hsa-miR-33b-3p). Patients with
the high-risk miRNA signature exhibited poorer OS than patients expressing the low-risk miRNA profile (HR= 7.05, p < 0 001).
Conclusions. The miRNA array identified nine dysregulated miRNAs from clinical samples. This panel of nine-miRNA
signature provides predictive and prognostic value of patients with UCB.

1. Introduction

Progress has been made in the last two decades in under-
standing the complex genetic dysregulation in UCB, yet the
attempt to pursue an effective treatment of metastatic or
advanced UCB seems to be futile. The treatment of patients
with locally advanced UCB is challenging because of high
recurrence rate after radical cystectomy (RC). Standard of

cure for muscle invasive bladder cancer (MIBC) is RC with
lymphadenectomy [1]. However, the durable cure rate after
RC is actually smaller than the cure rate of other solid genito-
urinary malignancies leading urologists to attempt to
improve long-term outcomes [1]. The current therapeutic
options for metastatic UCB are particularly limited except
for the latest immunological checkpoint inhibitors because
of significant number of resistance rate to chemotherapy;
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there is a need to analyze the genetic mechanisms in order to
determine specific targets for precision therapy. With the
development of computer-based assessment tools for
miRNA detection and biochemical prediction to combine
varying miRNAs in vitro and in vivo model, novel tools of
the miRNA field are growing. miRNA is a small noncoding
RNAs that regulate a wide range of functional properties
through changing the translation accompanied with expres-
sion of their target mRNAs. Accumulating facts have demon-
strated that altered expression of miRNAs in human
malignancies results in the deregulation of the levels of onco-
genes and antioncogenes, which promotes the proliferation
of cancers. Therefore, miRNA-based detection tools for the
purpose of precision medicine emerged as an effective option
and may offer a curative potential in UCB therapy, either
alone or in combination with other therapies. Due to their
well-established selectivity and specificity, miRNAs can rep-
resent a useful tool, both in diagnosis and therapy, in forging
the path towards the achievement of precision medicine [2].
The aim of the present study was to focus on the possible role
of miRNA dysregulation in UCB and discuss the potential of
miRNAs as prognostic biomarkers.

2. Methods

2.1. Validation of the Expression Profiles of miRs in Quantitative
Real-Time Polymerase Chain Reaction (qRT-PCR). Three
Japanese patients with advanced MIBC were enrolled in
the present study. Patient 1 was a 73-year-old male patient with
the tumor being diagnosed as T2 stage (control); patient 2 was
an 85-year-old male patient—the tumor was T3 stage (nonag-
gressive phenotype); patient 3 was a 67-years-old male
patient—the tumor was T2 stage as well (aggressive phenotype).
The histopathology of the specimens was determined by trans-
urethral resection of the tumor. The tumor histologic grade and
type of these three patients were high grade urothelial carci-
noma. On the basis of the American Joint Committee on
Cancer (AJCC) TNM staging system, the tumor stages of
patients 1–3 were stage II (cT2N0M0), stage III (cT3N0M0),
and stage III (cT2N0M0). The tumor morphology of all three
patients was sessile andmultiple. Before the samples were taken,
none of these three patients underwent chemotherapy and
radiotherapy. Although sex and chronological age differed
among patients included in the first analysis, we included
patients who were treated with the same treatment protocols,
so that we could minimize the effect of heterogeneity of treat-
ments. All three patients underwent curative treatment. Patient
1 and patient 2 were cured with no evidence of disease. Three
months after the therapy, patient 3 developed multiple bone
metastases, massive edema of the lower limbs, and peritoneal
ascites with progressive worsening of the blood sampling. The
patient died seven months after the treatment.

The informed consents of all the participants were
obtained. Bladder specimens were immediately stored in
the tissue in the nitrogen after the resection. Whole RNA
was extracted from the tissue by the 3D-Gene® RNA extrac-
tion reagent (Toray, Tokyo, Japan). Upon extraction from
the tissue sample, the tissue was sliced into small pieces
smaller than 5mm. RNA was labeled and hybridised on the

chip with 3D-Gene miRNA labeling kit to detect >2500 types
of miRNAs [3–6]. Normalized data processing was con-
ducted thereafter. The microarray was scanned, and the
images were obtained. To generate raw data, 3D-GeneH
scanner 3000 (Toray, Tokyo, Japan) was used to extract the
fluorescent signals from images. The expression status of
miRNAs was normalized by the removal of mean back-
ground signal intensity from the entire set of miRNAs in each
microarray, which is generally called as globally normaliza-
tion method, with threshold for detected signal> the mean
+ 2x SD of the blank spot signals.

Previous studies have suggested that the altered expres-
sion of miRs was associated with poor prognosis of UCB.
To synthesize multiple microarray-based human UCB
miRNA expression profiling, we employed a vote-counting
strategy to identify several consistent differentially expressed
miRNAs, of which rank potential molecular markers widely
adopted in the meta-analysis [7, 8]. We ranked miRs accord-
ing to the importance of each miR. We considered the num-
ber of consistent comparisons reported previously, total
number of samples in agreement, and average fold changes
reported for comparisons in agreement. For three of these,
total sample size was deemed as the most important factor
than the average fold change.

2.2. Validation of the Expression Profiles of miRs in The Cancer
Genome Atlas (TCGA) Database. To assess multivariable
prognostic miRNA expression profile as biomarkers and to
evaluate in several cohorts, curated and updated tools of
miRNA expression levels associated with outcome evaluation
that provides survival analysis established by Aguirre-Gamboa
and Trevino were utilized [9]. The percentages of tumor stage
of 84 UCB patients were stage I (1.0%), stage II (22.0%), stage
III (39.0%), and stage IV (38.0%). As depicted by Aguirre-
Gamboa and Trevino, patient data were searched for keywords
related to malignancies, survival information, and miRNA sig-
natures [9]. Cohort searches are based on four large databases
which are GEO (http://www.ncbi.nlm.nih.gov/geo), GEOme-
tadb [10], ArrayExpress (https://www.ebi.ac.uk/arrayexpress/),
and level 3 TCGA (https://tcga-data.nci.nih.gov/tcga) [9]. In
this platform, RNAseq generates TCGA read counts and trans-
formed in to log2 [9].

3. Results

As suggested by Dr. Taft and Dr. Mattick from Australia, the
ratio of noncoding to total genomic DNA for numbers of
sequenced species correlates with increasing biological com-
plexity [11, 12]. They suggest that the observed noncoding
DNA increases and compositional patterns are primarily a
function of increased information content [11, 12]. It is con-
ceivable that introns and genomic DNA previously regarded
as genetically unnecessary may bemore meaningful. Approx-
imately 2% of the mammalian genome encodes miRs in
exons or introns of protein-coding genes or intergenic
regions, and miRs may be clustered or found in isolation
[13]. Perhaps, miRs coming mostly from noncoding region
that defines complexity of creature are important (Figure 1).
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To find a panel of miRNAs as biomarker for UCB, the
present study initiated with the selection of specific miRNA
candidates based on the comparison of expression levels in
cancerous tissue between UCB patients with aggressive phe-
notype and nonaggressive phenotype adjusted by representa-
tive UCB by means of the Toray 3D-Gene miRNA array.
During the selection of candidate UCB miRNA for miRNA
panel from the comprehensive miRNA array-based
approach, we selected candidate miRNAs for aggressive phe-
notype detection based on comparison of the expression
levels of each miRNA between UCB patients with aggressive
phenotype and nonaggressive counterpart (Figure 2). To
implement a clustering algorithm, Pearson correlation was
used to measure similarity (Figure 2). Correlation coefficient
was calculated between the intensities measured for each miR
and the values of the independent variable. Fold change was
used in analysis of expression data in microarray and was cal-
culated as the ratio of the difference. Value was the log 2
transformation of the normalized ratio of the average red sig-
nal and the average green signal, and 602 genes that have 2
times larger log 2 of red/green normalized ratio were used.
In order to find more sensitive biomarkers, we focused on
10 miRs with the highest alteration levels in the tissue of
UCB patients (Figure 3). Of these 10 miRNAs, we chose 9
miRNAs, hsa-miR-99a-5p, hsa-miR-100-5p, hsa-miR-125b-
5p, hsa-miR-145-5p, hsa-miR-4324, hsa-miR-34b-5p, hsa-
miR-29c-3p, hsa-miR-135a-3p, and hsa-miR-33b-3p which
were previously reported to have an oncogenic or antionco-
genic roles [5, 14–21], (Figure 4). Our previous studies found
that the expression levels of antitumorigenic miR-145 were
significantly lower in surgically resected BC samples and
BC cell lines compared to those in normal bladder tissues,
thereby miR-145 decreases the Warburg effect by silencing
KLF4 [22, 23]. Concerning the combination of oncogenic
and/or antioncogenic miRNAs, the prognostic role of the
specific expression profile of miRNAs is currently uncertain
in BC, because most of the previous studies focused on onco-
genic miRNAs or vice versa [24–27]. In this study, therefore,
we conducted combined profiles of 9 miRNAs for further
analyses, because these miRNAs need considerable specific
investigation at the present. To determine if the 9 most
deregulated miRNAs from the analysis predict CSS in UCB,
we performed the analysis of metasignature of miRNAs as

predictive biomarkers for UCB. Our result showed that
upregulated miR-99a and miR-125b levels and downregu-
lated miR-29c levels were associated with high risk feature
(8.89× 10–6, 7.20× 10−7, and 2.06× 10−5; Figure 4). There is
no significant association between other dysregulated miR-
NAs (miR-100, miR-145, miR-4324, miR-34b, miR-135a,
and miR-33b) (Figure 4; all p > 0 05). In the cohort, we con-
ducted univariate analysis, age ranged from 43 through 86. In
total, 60 events occurred during the follow-up. Patient sur-
vival curves were created based on poor outcome risk from
TCGA data using the SurvMicro database. CI of the com-
bined signature was 0.74 (Figure 5).

4. Discussion

The present study shows that the specific signature of miRs is
associated with a higher rate of cancer-related deaths in
patients with UCB. For locally advanced UCB, RC with or
without platinum-based chemotherapy is still the only defin-
itive treatment, but after the curative treatment, significant
portion of patients experienced recurrence. Despite the like-
lihood for successful surgical excision of the tumor-
invading bladder and the potential of curative treatment,
the long-term outcome and mortality of MIBC are not easy
to accurately predict. The 10 y overall survival, cancer-
specific survival, and recurrence-free survival rates of MIBC
managed by surgery are reported to 44%, 67%, and 66%,
respectively [28]. Searching for survival biomarkers that
enable the precise outcome for patients with MIBC has
emerging as combining basic and clinical cancer research.
MicroRNAs are currently discovered as a class of short non-
coding RNA, which is known to regulate posttranscriptional
gene expression level, by binding to homologically identical
sequences, to the 3′-UTR of target miRNAs, thereby result-
ing in translational inhibition accompanied with miRNA
degradation [29]. The expressions for miR-99a or miR-
125b were downregulated in aggressive tumor (Figure 3)
but altered when combined with other miRs (Figure 4). To
maximize the concordance index, we have used algorithm
to find the specific sets of microRNA expression signature
that belong to different roles. In combination with other
miRs, it is conceivable that miR-99a or miR-125b dynami-
cally showed altered expression status relatively affected by
expression status by other miRs. We have used miR-99a,
miR-100, miR-125b, miR-145, miR-4324, miR-34b, miR-
29c, miR-135a, and miR-33b for stratifying patients with
aggressive and nonaggressive type of UCB. Guancial et al.
reviewed the literature on the role of miRs in UCB and sum-
marized that NMIBC demonstrates downregulation of miR-
99a, miR-100, miR-101, and miR-145 compared with MIBC
[30]. MiR-99a targets fibroblast growth factor receptor
(FGFR), of which mutations and/or overexpressions are val-
idated to be common in UCB [31]. miR-29 is known to play a
role in invasive ability in UCB [32]. The ataxia-telangiectasia
group D complementing (ATDC) gene, an oncogene, was
found to suppress miR-29, leading to DNA methylation
and silencing of the tumor suppressor PTEN [32]. The diag-
nostic values of these miRNAs in varying tumors are
reported [5, 14–21]. Among all, miR-125b especially in
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Figure 1: Putative concept showing that higher orgasms contains
more noncoding region.
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biofluids appears to be so far more investigated than other
miRNAs evaluated in the present study. According to the sys-
tematic review by Regazzo et al., miR-125 in gliomas plays a
role as an oncogene and also is downregulated in cancer stem
cells to have an antiangiogenic role, concluding that deregu-
lation is different in varying types of tumor, due to the dual
role of this miRNA as oncogenic miRNAs or tumor suppres-
sor depending on tissue type or context [33]. This is valid also
in the case of UBC where the direction of miRNAs varies
from other malignancy, underlining the importance of profil-
ing miRNAs specific on UCB.

5. Conclusions

Although survival biomarkers for UCB are leveraged in
the clinical settings to classify specific cancer types, no
such standard biomarkers have been identified in patients
with UCB. The results of the present study highlight the
aggressive type of UCB by means of array of miRNA
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profile. The present panel of miRNA profile will aid to the
individual management of UCB.
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