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Expanding efforts to develop preventive gonorrhea vaccines is critical because of the

serious health consequences combined with the prevalence and the dire possibility

of untreatable gonorrhea. Reverse vaccinology, which includes genome and proteome

mining, has proven successful in the discovery of vaccine candidates against many

pathogenic bacteria. Here, we describe proteomic applications including comprehensive,

quantitative proteomic platforms and immunoproteomics coupled with broad-ranging

bioinformatics that have been applied for antigenmining to develop gonorrhea vaccine(s).

We further focus on outlining the vaccine candidate decision tree, describe the

structure-function of novel proteome-derived antigens as well as ways to gain insights

into their roles in the cell envelope, and underscore new lessons learned about the

fascinating biology of Neisseria gonorrhoeae.

Keywords: Neisseria gonorrhoeae, vaccine, proteomics, antigen, reverse vaccinology, bioinformatics, protein

structure-function, membrane vesicles

INTRODUCTION

Worldwide, over 78 million people are estimated to acquire the sexually transmitted infection
gonorrhea every year (1). Female reproductive health is disproportionately affected by this
disease and half of infected women show no symptoms (2–4). Serious health consequences
are associated with untreated or insufficiently treated gonorrhea, including pelvic inflammatory
disease, inflammation of the fallopian tubes, pre-term delivery, miscarriage, or ectopic pregnancy
(5–7). Additionally, infants born vaginally to infected mothers are exposed to the disease in the
birth canal and are thus at risk of developing a sight-threatening conjunctivitis (8). Although
the health consequences to men are not as severe as for women and predominantly manifest as
uncomplicated urethritis accompanied by a neutrophil-rich exudate (6, 9), gonorrhea can ascend to
the epididymis or the testes andmay require surgical removal of the infected site (10–12). Infertility
can occur in both females and males without proper treatment (9, 13).

The bacterium responsible for gonorrhea, Neisseria gonorrhoeae (Ng), is a highly adaptable
pathogen. Its natural competence and plastic genome have contributed to the extensive spread
of antibiotic resistance. Through a number of horizontally acquired genes and chromosomal
mutations, Ng has become resistant to every antibiotic used for its treatment (14–16). The Centers
for Disease Control and Prevention (CDC) in the United States currently recommend a dual
therapy of intramuscular ceftriaxone combined with oral azithromycin as a first-line treatment for
uncomplicated gonorrhea (17, 18). However, the first isolates resistant to this combination therapy
have begun to emerge (19). Three new therapeutics for gonorrhea treatment are being evaluated
in clinical trials (20), but considering the speed with which the gonococcus develops antibiotic
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resistance (15), new drugs will not provide a long-term solution.
The development and introduction of a protective vaccine against
gonorrhea should therefore be prioritized to limit its spread.

Thus far, only two gonorrhea vaccines, using either killed
whole organisms or purified pilin protein, have progressed to
clinical trials. Despite robust antibody responses in both trials,
neither vaccine provided protection against acquiring the disease
after immunization (21–24). These failures are likely due to a
number of factors. Pilin proteins undergo extensive antigenic
variation through frequent recombination with transcriptionally
silent pilS gene cassettes (25–28). Experimental infections have
demonstrated that multiple pilin variants are isolated from
a single individual, and that these variants are antigenically
distinct from the inoculating parent strain (29–31). Further,
pilin proteins are subjected to phase variation, where protein
expression transitions between “on” and “off” states through
slipped-strand repair of upstream repeat regions (32). Antigenic
and phase variation of pilin during infection likely contributed
to the failure of both vaccine trials. Another factor that may
have led to the whole cell vaccine’s inability to protect from
infection is the presence of the reduction modifiable protein
(Rmp; also known as protein III) in the vaccine. Localized to the
outermembrane, Rmp is highly conserved and immunogenic, yet
antibodies induced by this antigen actively prevent assembly of
the complement membrane attack complex in immune serum
(33, 34). These challenges illustrated the necessity for new
approaches in gonorrhea vaccine development.

In the intervening years, vaccine progress has been slow.
One of the difficulties is that Ng infection rarely, if ever, leads
to an adaptive immune response (35–38). For this reason,
mechanisms of protection against gonorrhea are unknown (24),
which makes the evaluation of the potential efficacy of vaccine
candidates prior to expensive immunization studies challenging.
The serum bactericidal activity of antibodies generated during
an immune response strongly predicts protection for vaccines
against N. meningitidis [Nm; (39, 40)], a frequent causative
agent of meningitis, so the ability of gonococcal antigens to
elicit bactericidal antibodies is currently used as a surrogate
mechanism of protection (41). Based on this criterion, 14
Ng antigens with functions in colonization and invasion,
nutrient acquisition, and immune evasion have been proposed
for inclusion in a gonorrhea vaccine [reviewed in (41)].
Immunization with each of the candidate proteins, cyclic
loop peptides, or lipooligosaccharide epitope mimics elicited
bactericidal antibodies, although studies for seven of the antigens
were performed only in Nm (41).

Despite the difficulties in developing a vaccine against
gonorrhea, several recent advances suggest that a protective
vaccine is now within reach. The first was the development of
a female mouse model of lower genital tract infection, in which
mice are treated with 17-β estradiol and a cocktail of antibiotics
to increase susceptibility to Ng and to reduce the overgrowth
of vaginal commensal bacteria, respectively (42). This model
has enabled the study of the immune response to gonococcal
infection in a whole organism for which extensive genetic and
immunological tools are available (24, 43, 44). A series of elegant
studies, combining information gathered from experimental

murine infections and tissue culture experiments, demonstrated
Ng actively suppresses the generation of a productive adaptive
immune response. Both mouse splenic mononuclear cells and
human dendritic cells infected with Ng produced elevated levels
of interleukin (IL)-6, tumor necrosis factor-α (TNF-α), IL-1β,
and IL-23, a set of cytokines that promote terminal differentiation
of T-cells toward T helper 17 (Th17) cells (45, 46). Production
of IL-17 is a characteristic marker of a Th17 response and
promotes neutrophil recruitment through the induction of
granulocyte-colony stimulating factor and chemokines (45). In
support of gonorrhea promoting Th17 differentiation during
an active infection, elevated levels of IL-17 were discovered
in female mice challenged with Ng (46). Gonococci are also
able to divert T-cell differentiation away from an adaptive
Th1/Th2 response by inducing the production of transforming
growth factor (TGF)-β and IL-10 (47–49). Furthermore, Ng
stimulates the differentiation of macrophages toward a regulatory
phenotype and prevents macrophage antigen display. Through
these immunosuppressive activities, the gonococcus is able to
further inhibit the generation of a protective T-cell response
(50, 51). The knowledge gained through these studies into the
sophisticated methods Ng uses to promote its own survival and
prevent triggering an adaptive immune response will enable a
more informed strategy for vaccine development and help avoid
the failures of the past.

In studies making use of the insights gathered from a better
knowledge of the immune evasion strategies employed by the
gonococcus, mice treated intravaginally with micro-encapsulated
IL-12 and either infected with a common laboratory strain,
FA1090, or immunized with membrane vesicles (MVs) collected
from FA1090 were protected against subsequent infections up to
6 months after the initial treatment, even when challenged with
heterologous strains (52, 53). IL-12 treatment promoted a Th1
response, as well as enhancing serum immunoglobulin A (IgA)
and vaginal IgA and IgG levels (54).

Lessons can also be learned from the successful development
of the licensed four-component Nm serogroup B vaccine,
4CMenB (BEXSERO; GlaxoSmithKline). This bacterium
presented a daunting vaccination challenge for a number of
years due to the polysaccharide capsule surrounding group B
meningococci, which is structurally identical to the polysialic
acid carbohydrate found on the surface of many human cells.
Because of this similarity, immunization with the group B
capsule is minimally immunogenic and/or may result in the
generation of autoantibodies (55). To circumvent this problem,
a subunit vaccine was developed by identifying conserved
open reading frames in the whole genome sequence of Nm
serogroup B, a strategy termed reverse vaccinology (55–59).
Out of nearly 600 vaccine candidates identified with this
strategy, 350 were successfully expressed and purified from
Escherichia coli, 28 elicited bactericidal antibodies, and only
three recombinant proteins—two of which are composed of a
fusion of two proteins—were combined with MVs to formulate
4CMenB (59, 60). Finally, a retrospective study found that
immunization with another Nm serogroup B vaccine, MeNZB,
containing the same MVs as 4CMenB, was 31% effective at
preventing gonorrhea (61, 62). The MeNZB vaccine is no longer
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available, but these seminal studies provide strong evidence that
a protective gonorrhea vaccine is possible.

A comparison of the number of antigens evaluated for
the serogroup B vaccine with the number currently being
investigated for a gonorrhea vaccine illustrates how far gonorrhea
research lags behind meningitis research and emphasizes
that new strategies are necessary to increase the pool of
vaccine candidates under consideration. An innovative way to
address this gap was to perform reverse vaccinology antigen
mining using subcellular fractionation coupled with high-
throughput quantitative proteomics followed by bioinformatics
(63, 64), which identified numerous stably expressed proteins
and suggested that formulation of a subunit vaccine against
gonorrhea would be successful. Both genome- and proteome-
based reverse vaccinology approaches have become more
prevalent since the technique was introduced (56). Candidate
vaccine antigens have been identified through whole-genome
screens of a number of medically important pathogens
(65–69). As the availability of bacterial genome sequences
has increased, more detailed analyses have become possible,
including comparative genomics. One weakness of using whole
genome sequences to search for vaccine candidate antigens is that
the pathogens do not necessarily express the proteins discovered
through this approach. Transcriptome analysis provides a way
to circumvent this limitation but a low correlation between
transcriptomic and proteomic data has been well established
[reviewed in (70)]. For this reason, we have chosen to pursue
proteomic-based reverse vaccinology, as proteomic studies reveal
the biologically relevant population of proteins expressed during
exposure to the conditions under examination (63, 64, 71).
Proteomic approaches also have the potential to specifically
identify surface-exposed proteins without the need for extensive
bioinformatic predictions (72).

In this article, we provide an overview of proteomic and
bioinformatic approaches that have been utilized for gonorrhea
antigen mining. Our focus will also be on functional and
structural characterization of proteome-derived antigens to
determine their role in gonococcal pathogenesis and physiology
as well as to inform the development of next generation vaccines
based on structural vaccinology.

PROTEOMIC TECHNOLOGIES APPLIED
FOR GONORRHEA ANTIGEN MINING

Surface-localized proteins represent attractive vaccine
candidates, as they are important foci for the immune system
and play pivotal roles in bacterial physiology as well as host-
pathogen interactions. Naturally elaborated MVs (NeMVs) and
MVs extracted from cell evelopes (CE) by either lithium or
deoxycholate treatment (LeOMVs or DeOMVs, respectively)
contain surface-localized proteins, other outer membrane and
periplasm-derived proteins, and commonly cytoplasmic proteins
(73–79). In addition to proteins, MVs contain lipopolysaccharide
and DNA of chromosomal, plasmid, or phage origin, as well
as RNA (73, 75, 80). NeMVs are purified and concentrated
from culture supernatants by separating intact cells from

already-formed NeMVs (Figure 1). Le-MVS and De-MVs are
extracted from bacterial cells with detergent, reducing the
content of reactogenic LPS/LOS and also many lipoproteins
(75, 81, 82). Including different types of MVs in vaccine
formulations has led to some of the most effective vaccines
against bacterial diseases (61, 81, 83). Remarkably, following a
nationwide implementation of 4CMenB, a recent study showed
>80% vaccine-mediated protection against current Nm B strains
in the United Kingdom (84, 85).

For all these reasons, the identification of CE and MV
antigens is a key objective of proteomics-driven vaccinology.
It is however, a difficult task, because membrane proteins are
commonly low abundant, hydrophobic, have a basic charge, and
can be of high molecular weight. Therefore, comprehensive
antigen mining of bacterial CE and MVs necessitates
extensive subcellular fractionation procedures coupled with
high-throughput quantitative proteomics and extensive
bioinformatics (Figure 1). In addition, multidimensional protein
identification technology combats these challenges by using a
combination of two different kinds of liquid chromatography
(2D-LC) that separates proteins prior to their identification,
greatly diminishing the complexity of the sample at the peptide
level and resulting in the identification of a superior number of
proteins (75, 86).

Accordingly, to interrogate the Ng CE and MVs for
new antigens, three independent proteomic technologies and
experimental designs have been applied for the first time in the
gonorrhea field (52, 63, 64). In the earliest proteomic mining,
four common laboratory Ng strains (FA1090, MS11, F62, and
1291) were cultured under standard growth conditions in liquid
medium tomid-logarithmic phase and subjected to fractionation,
sodium carbonate extraction, and ultracentrifugation steps to
isolate NeMVs and CE proteins [Figure 1; (63)]. Subsequently,
these subproteomes were trypsinized and labeled with four
different isobaric tags (114, 115, 116, and 117) targeting ε-
amine group of lysine in peptides for relative and absolute
quantitation (iTRAQ). After labeling, the samples were pooled
and the peptide mixture was subjected to fractionation by 2D-
LC followed by MS/MS for protein detection and quantitation.
This multiplexed high-throughput proteomics approach enabled
identification of 533 and 168 common proteins in the CE
and MVs, respectively, in all four Ng strains in biological
replicate experiments. Strain FA1090 was arbitrarily selected as
the reference strain for calculating the protein abundance. After
applying rigorous criteria, Zielke et al. (63) eliminated up to
68% of identified proteins. Among these proteins, 305 and 46
were uniformly present in the CE and MVs, respectively, in
four strains. A total of 22 proteins were present at different
levels in both analyzed subproteomes of these strains. Overall,
these studies led to identification of a plethora of proteins
that were either novel or had not been characterized in Ng.
In this group were ubiquitous proteins localized to the CE
and MVs: LPS-transport protein LptD (OstA, Imp), BamA,
BamE, a predicted extracellular protein NGO1063 (SliC), and
outermembrane proteins NGO1205 (ZnuD), NGO1344 (AsmA),
NGO1956 (TamA), NGO1985 (BamG), NGO2111 (Slam2),
NGO2121 (MlaA), NGO2139 (MetQ), and NGO2054 (63, 64).
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FIGURE 1 | Outline of proteomics approaches used for mining of Neisseria gonorrhoeae vaccine antigens. Description is provided in the main text. SG, standard

growth conditions; –Iron, iron deprivation; +NHS, addition of normal human serum; –O2, anaerobic growth conditions; MVs, membrane vesicles; CE, CE; 2 D,

two-dimensional; 2 DE, two-dimensional electrophoresis; iTRAQ, isobaric tagging for absolute quantitation; MS/MS, mass spectrometry analysis.

We focus on these proteome-derived antigens in the later sections
of this article.

In the second proteomics-driven antigen mining approach for
gonorrhea vaccine(s), our group was interested in discovering
antigens induced in response to host-relevant environmental
stimuli as they may represent novel protective antigens in
distinct niches in the human host (64). Therefore, the model
Ng strain FA1090 was subjected to aerobic (SG) and anaerobic
(–O2) conditions, iron deprivation (–Iron), and exposure to
normal human sera (+NHS; Figure 1), followed by CE protein
extraction, trypsinization, iTRAQ labeling, and 2D-LC MS/MS
(64). Three biological experiments yielded 751 common proteins
with 17, 32, and 367 proteins with altered expression compared
to SG in the presence of NHS, upon iron deprivation, and
during anaerobic growth, respectively. In addition, 259 proteins
were ubiquitously expressed under all conditions. There were
many newly identified ubiquitous and differentially expressed
CE proteins and potential new antigens including Slam2 and
NGO1688 (both positively regulated by low iron), and ZnuD,
which was induced under oxygen limitation (64).

In addition to the aforementioned approaches, we applied
classical immunoproteomics to identify potential cross-reactive
antigens in native MVs derived from Ng FA1090 that
were intravaginally inoculated concurrently with interleukin-12

(Figure 1) and showed protection against heterologous Ng
strains in the female mouse model of lower genital tract infection
(52). Our approach relied on 2 DE SDS-PAGE separation of
Ng native MVs coupled with immunoblotting with sera from
MV-immunized mice (Figure 1). The overall MV proteome
maps were created by staining proteins in a fluorescent stain.
After the superimposition of antigenic maps (2D Immunoblot)
with proteome maps, matching spots were excised and the
proteins were subjected to trypsin digestion and MS/MS-based
identification. The blotted protein maps consistently showed two
spots of masses corresponding to 45 kDa and 43 kDa that were
identified by MS/MS as translation elongation factor-Tu (EF-Tu)
and a putative periplasmic polyamine-binding protein, PotF3,
respectively. Supporting these findings, both proteins were also
identified in our quantitative proteomic profiling of MVs derived
from four common gonococcal isolates (63).

BIOINFORMATICS FOR GONORRHEA
VACCINES

After the mining and discovery of potential new antigens,
insights can be gained into their suitability in a vaccine
formulation through bioinformatic analyses to predict their
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function, subcellular localization, and post-translational
modifications (Figure 2). In our studies, we employed PSORTb
(87, 88), SOSUI-GramN (89), and CELLO (90, 91) algorithms
to infer protein localization within the cell and to identify
proteins discovered in the CE or MVs that localized to the
outer membrane (63, 64). While each method considers the
physiochemical properties of the amino acids that make up the
protein, follow up computations differ between algorithms. To
increase the accuracy of the subcellular localization predictions
in our studies, we utilized a majority-votes strategy in which
proteins were assigned to cellular compartments based on the
results of at least two of the three methods (63, 64). To provide
additional confidence in the localization predictions, searches
for signal sequences recognized by signal peptidase (SPase) I or
SPaseII can also be performed. The SignalP 4.1 server1 can be
used as a tool to detect signal peptides (SP; Figure 3) associated
with targeting to secretory pathways and cleaved by SPaseI
(92, 93), while the LipoP 1.0 server2 detects lipoprotein signal
peptides (LSP; Figure 3) associated with cleavage by SPaseII
and further processing through the lipoprotein maturation
pathway (94). Lipoproteins are characterized by an invariant
cysteine residue that is modified with two or three acyl chains,
which allows a hydrophilic protein to remain anchored to the
membrane (95). Depending on secondary sorting signals, which
are not well understood, lipoproteins may be anchored to either
the inner or outer membrane and may face the periplasm or
the extracellular milieu. Surface-exposed lipoproteins may be
involved in nutrient acquisition, cell wall homeostasis, and
adhesion to host cells (95), properties which we will discuss
in more detail below. Finally, lipoproteins exposed to the
extracellular milieu act as ligands for Toll-like receptor (TLR)
2 and may thus contribute to activating an adaptive immune
response (95), a feature which makes them intriguing targets for
vaccine development.

An additional analysis that can be performed to complement
the prediction of subcellular localization includes functional
category predictions through searches for Clusters of
Orthologous Groups (COG). This analysis involves a
phylogenetic comparison of the proteome-derived vaccine
candidates to a database of proteins with known or predicted
functions to determine to which cellular process(es) the protein
is likely to contribute (96, 97). The results are grouped into
four broad categories—Cellular Processes and Signaling,
Information Storage and Processing, Metabolism, and Poorly
Characterized—each of which can then be broken down further.
Altogether, proteins can be clustered into one or more of 25
categories. Although the NCBI COG database3 does not contain
information for Ng, COG data is available for Nm, which allows
for functional analysis using a closely related organism. Insights
gained into the function of the proteome-derived vaccine
candidates will enable a more rational vaccine design approach,
in which candidate antigens involved in multiple functions
or in functional categories critical to bacterial fitness can be

1http://www.cbs.dtu.dk/services/SignalP/
2http://www.cbs.dtu.dk/services/LipoP/
3https://www.ncbi.nlm.nih.gov/COG/

preferentially chosen in the vaccine decision tree and evaluated
for their protective capabilities (Figure 2).

The proliferation of genomic data also benefits proteomics-
driven reverse vaccinology. Of particular utility to gonorrhea
vaccine research is the publically available Neisseria Multi Locus
Sequence Typing database4 [Neisseria PubMLST, developed by
Keith Jolley and sited at the University of Oxford; (98)],
which has collected whole or partial genome sequence data
from nearly 47,000 Neisseria isolates as of August 19, 2018.
Annotation of the Neisseria pan-genome is underway, which
would further facilitate vaccine development by identifying
antigens that are present across the known population of Ng
isolates, as well as proteins that are uniquely associated with
highly antibiotic resistant strains. The wealth of information
available from this database enables bioinformatic analyses of
antigen conservation across numerous sequenced isolates. For
example, in our characterization of a novel surface exposed
lysozyme inhibitor of C-type lysozyme encoded by the ngo1063
open reading frame, SliC, use of theNeisseria PubMLST database
revealed the existence of only 10 closely related alleles with
9 single nucleotide polymorphic sites across nearly 5,000 Ng
isolates. Further, 98% of isolates in the database possessed a single
sliC allele (99), indicating that this protein is highly conserved
and its inclusion in a vaccine could provide broad protection
without the need for multiple antigenic variants.

Another analysis made possible by the information present
in the PubMLST database is to map polymorphisms to available
structural data (Figure 2). If highly prevalent polymorphisms
are found on surface-exposed portions of the proteins, multiple
recombinant proteins that incorporate the most common
variants may need to be included in a vaccine to provide
protection against a broader range of strains. While structural
data will not necessarily be available immediately for all vaccine
candidates, another computational analysis method may still
enable prediction of surface exposed polymorphisms. Prediction
of transmembrane helices by hidden Markov modeling using the
TMHMM 2.0 server5 can reveal protein regions predicted to
be internal, transmembrane, or external (100). Combining data
from PubMLST with the results of TMHMM predictions can
suggest which polymorphisms are likely to be surface exposed.
Importantly, this analysis must be accompanied by surface-
exposure assessments, as we discuss below, and may not be
accurate for lipoproteins where the lipid anchor could be the only
portion of the protein embedded in the membrane.

Additionally relevant to vaccine research are bioinformatic
tools designed to predict the immunogenicity and protective
capability of candidate antigens. Depending on whether the
desired immune response is humoral (B-cell mediated) or
cellular (T-cell mediated), numerous tools exist to predict
whether antigen-derived peptides possess epitopes that are likely
to be recognized by either of the major histocompatibility
complex (MHC) class I or II proteins, the transporter associated
protein (TAP) responsible for translocating peptides across the
endoplasmic reticulum to MHCmolecules for surface display, or

4https://pubmlst.org/neisseria/
5http://www.cbs.dtu.dk/services/TMHMM/
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FIGURE 2 | Vaccine candidate decision tree. Description is provided in the main text.

B cell receptors. MHC I predictive tools have been estimated to be
90–95% accurate, although MHC II predictions are less reliable.
Structural information is required for accurate B cell receptor
binding predictions, as B cells and antibodies recognize the
protein’s native form. Certain tools use biochemical properties
of the protein’s constituent amino acids to predict likely B
cell receptor binding sites. More accurate techniques require
the protein’s 3D structure as input [prediction tools extensively
reviewed in (101)]. These prediction strategies may be useful
to filter out antigens that are not likely to generate an immune
response. However, follow-up immunological testing in the
mouse as described below will be required to establish whether
the response is protective or whether, as in the case of Rmp, the
immunogenic response actively blocks the action of the adaptive
immune system (33, 34).

VACCINE DECISION TREE

Subsequent to proteomic identification and bioinformatic
analysis, candidate antigens should be assessed for their

suitability for inclusion in a vaccine. Here, we suggest a
decision tree for the evaluation of vaccine candidate proteins
(Figure 2). To determine the expression characteristics of
each vaccine candidate, they should initially be expressed
and purified from a heterologous host, such as E. coli,
and used to immunize rabbits or mice to collect polyclonal
immune serum specific to the protein under investigation.
These sera can then be used for several informative studies,
such as confirmation of localization predictions by probing
subcellular fractions to determine in which compartment(s)
the protein is predominantly located. Immune sera can be
used to interrogate the abundance of proteins after proteolytic
shaving of intact cells, an experiment which will demonstrate
whether proteins are accessible to external proteases (64). Protein
accessibility to antibodies can also be directly investigated by
immunoblotting analysis of intact cells spotted onto membranes
and comparison of the signal to lysed cells using known
surface-exposed proteins as controls (64). Antisera generated
against vaccine candidates coupled with fluorescently labeled
secondary antibodies can also be used to establish antigenic
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FIGURE 3 | Proteome-derived antigen domain schematics. ORFs were examined for the presence of domains using KEGG, NCBI, UNIPROT, and literature searches.

The presence of signal peptides was determined using the SignalP 4.1 and LipoP 1.0 servers. (A) BamA with a signal peptide, five POTRA domains, and an OMP

β-barrel domain. (B) TamA protein with a signal peptide, three POTRA domains and an OMP β-barrel domain. (C) LptD with a signal peptide, N terminal β-JELLYROLL

domain, and β-barrel OstA_C domain. (D) Slam 2 with a signal peptide and C terminal β-barrel domain (a DUF560 domain). (E) ZnuD comprises a signal peptide, plug

domain, a Ton-B dependent receptor domain, and an OMP β-barrel domain. (F) MlaA with a signal peptide and predicted MlaA domain. (G) BamE containing a

lipoprotein signal peptide and SmpA_OmlA domain. (H) BamG is composed of a lipoprotein signal peptide and two BON domains. (I) NGO2054 contains a

Lambda-Bor domain that overlaps with a lipoprotein signal peptide, as well as a Fragile Site Associated protein C-terminus (FSA-C). (J) SliC containing a lipoprotein

signal peptide and MliC protein family domain. (K) MetQ comprises a lipoprotein signal peptide and a NlpA domain (L) AsmA includes an AsmA domain. Schematics

are not to scale. SP, signal peptide; LSP, lipoprotein signal peptide; BON, bacterial OsmY and nodulation; FSA-C, Fragile site-associated protein C-terminus; OMP,

outer membrane protein.

surface exposure through fluorescence-activated cell sorting
analyses (68). Furthermore, primary antisera coupled with gold
nanoparticle-labeled secondary antibodies can be employed in
electron microscopy studies of surface exposure. With this type
of study, not only can surface exposure be confirmed, but
the localization, distribution and overall abundance of surface
proteins can also be directly observed (102, 103). Serum raised
against a candidate antigen additionally enables studies to
accompany conservation predictions performed during initial
bioinformatic analyses. In our assessments of candidate antigens,
we employed a panel of at least 36 genetically, geographically,
and temporally distinct Ng isolates, including the 2016 WHO
reference strains (104), to examine whether the expression of
each antigen is consistent across heterogeneous strains, as well as
to determine whether the epitope(s) recognized by the antiserum
are conserved in diverse gonococci and meningococci (64, 79,

99). Finally, to determine the likelihood that immunization
with vaccine candidate antigens will be protective, antiserum
raised against each antigen can be used to assess the protein’s
ability to elicit bactericidal and/or opsonophagocytic antibodies
(24, 43). As mentioned previously, it is unknown whether
antibodies’ bactericidal or opsonophagocytic properties will
predict their protective capabilities (24, 41). However, one
or both characteristics is likely to contribute to a productive
adaptive immune response, so this examination is useful in the
absence of established protective mechanisms.

Studies that can be performed in tandem with antiserum-
enabled investigations involve characterizations of the antigens’
function(s) in gonococcal physiology and pathogenesis
(Figure 2). We discuss these investigations in greater detail
in a later section. In broad terms, the experiments associated
with functional characterization are designed to assess the effects
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of conditional or isogenic knockout mutations on the ability
of Ng to thrive in vitro under standard conditions as well as
during exposure to stimuli relevant to infection, its ability to
adhere to and invade epithelial cells, and its ability to colonize
female mice during experimental infection in the murine model
of lower genital tract infection or transgenic mice (41, 42).
The overarching goal of these experiments is to determine
the effects of the loss of each vaccine candidate, as antibodies
are known to block protein function. In Ng, neutralizing
antibodies against the nitrite reductase AniA inhibited its
enzymatic activity (105). Neutralizing antibodies were also
demonstrated to prevent MetQ-mediated gonococcal adhesion
to epithelial cells (106), and were able to abrogate in vitro
lysozyme inhibition by the Neisserial adhesin complex protein
(ACP), a dual-function protein involved in adhesion and defense
against lysozyme attack (99, 107–109). Additionally, Nm and
Ng IgA1 protease-mediated IgA cleavage was inhibited by sera
collected from both acute and convalescent meningitis patients
(110). More specifically, antibodies that block protein function
are elicited by immunization with each of the recombinant
protein components of the 4CMenB vaccine—factor H binding
protein (fHbp), Neisserial heparin binding antigen (NHBA), and
Neisseria adhesin A (NadA). Antibodies against fHbp abrogate
factor H binding and thus enhance meningococcal serum
sensitivity (111). Both NHBA and NadA are involved in bacterial
adherence, and neutralizing antibodies against either protein
reduce the ability of Nm to adhere to epithelial cells (112, 113).
Non-neutralizing antibodies provide protection against viruses
(114, 115); however, similar data are scarce for bacteria (114).
Targeting bacterial virulence factors or physiologically important
proteins with a vaccine could discourage mutations that would
allow the protein to evade immune detection, thereby improving
the vaccine’s success. The exclusive focus on targeting virulence
factors in a vaccine is not vital, however, as demonstrated by
immunization with the S. agalactiae surface immunogenic
protein (Sip), which induces a strong protective response (116)
but has no reported function in the pathogenesis of group B
streptococci. It is possible that the antigens eventually formulated
into a successful gonorrhea vaccine will not generate neutralizing
antibodies, but evidence suggests antibodies that block protein
function to some extent are elicited in the majority of immune
responses effective at protecting against bacterial pathogens.

An additional study that can be used to inform vaccine
design involves antigen structural elucidation, either alone or
in complex with antibodies directed against the target protein.
We discuss structural studies that have been performed on
proteome-derived vaccine candidates in a subsequent section.
Not only does the structure of a protein give insights
into its function, but it also enables allele mapping, as
discussed in the previous bioinformatics section (Figure 2).
Traditionally, structural characterization is performed through
X-ray crystallography (117), although advances in nuclear
magnetic resonance spectroscopy also allow for the structural
elucidation of small proteins (118, 119). Co-crystallization
with antibodies can reveal the mechanism(s) of action of
the antibodies against the target protein (120–122). This
strategy requires the use of antigen binding fragments of

monoclonal antibodies (mAbs), which are more technically
challenging, time-consuming, and expensive to produce than
polyclonal antibodies (123). For this reason, co-crystallization
is likely to be pursued only after further evaluation of the
antigen’s immunogenicity and protective capabilities as part of
a vaccine. A complementary technique that can be pursued
for difficult-to-crystallize antigen/antibody complexes is cryo-
electron microscopy, in which single molecules embedded in a
flash-frozen matrix are visualized with an electron microscope.
This technique was successfully employed to elucidate the
structure of an integral membrane ion channel protein (124), as
well as the interaction interface between an antibody fragment
that successfully neutralized a range of influenza virus variants
and the receptor site of the influenza virus hemagglutinin
protein (125). One limitation of cryo-electron microscopy is
that structural resolution tends to be poorer than with the
use of other techniques. However, recent technical advances
have been able to improve acquired structures to near-atomic
resolution [<4Å; (126)]. Although cryo-electron microscopy
may circumvent some limitations of X-ray crystallography or
nuclear magnetic resonance, mAbs will still be required for
evaluating antigen/antibody interactions.

Finally, if the results of the evaluation studies suggest
that a protein may be a suitable vaccine component, its
immunogenicity and ability to elicit a protective response will be
investigated through protection and clearance studies performed
in the female mouse model of gonorrhea (Figure 2). To date,
only an extremely limited number of studies have been published
examining the ability of vaccine formulations to accelerate
clearance and protect against subsequent infection in the mouse
model. These studies include intranasal immunization with
MVs, which was associated with enhanced clearance in one
study (127), but not in another (24). However, intravaginal
immunization with MVs combined with microencapsulated
IL-12 both accelerated gonococcal clearance and protected
mice from subsequent infection (52). Active intraperitoneal
immunization with a peptide mimic of a conserved LOS
epitope recognized by the 2C7 mAb or passive immunization
with the mAb itself both shortened disease duration (128).
Finally, mice immunized in the rear footpads with viral replicon
particles (VRPs; viral derivatives that deliver antigens after
a single replication cycle) loaded with the outer membrane
porin PorB, combined with a subsequent booster immunization
comprised of recombinant refolded PorB and an adjuvant,
cleared experimental infections significantly more quickly than
control mice (24). Follow up experiments suggested that this
protection was likely associated with the adjuvant effect of
the VRP itself, rather than a specific protective effect of the
PorB antigen (24). These studies, and their paucity, reveal the
need to accelerate and expand systematic immunization studies
that examine the protective effects of antigens individually and
in combination. Additionally, the effects of the presence or
absence of adjuvants with each antigen formulation should be
examined, as different adjuvants can drive specific adaptive
immune responses (Figure 2). Currently, vaccines that induce a
balanced Th1/Th2 responses are considered optimal [reviewed in
(129)] and are important in defending against gonorrhea (52, 53).
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Examples of FDA-approved adjuvants that should be evaluated
based on these considerations include alum, which drives a Th2
response; monophosphoryl lipid A, a detoxified LPS derivative
that acts as a TLR4 agonist to stimulate a Th1 response; and
oligonucleotides enriched in cytosine phosphoguanine (CpG)
islands (129, 130), which are TLR9 agonists that mediate Th1
and CD8 cellular immune responses but also increase antibody
titers (131). To optimize the chance of developing an effective
vaccine, the route of immunization, as well as different antigen
delivery systems that potentiate immune responses, should be
considered and investigated. Numerous delivery systems are in
clinical and pre-clinical stages of development, including virus-
like particles, emulsions, liposomes, polymer-based systems,
hydrogels, and implants [reviewed in (129, 130)]. Finally,
evaluation of subunit vaccines beyond their ability to accelerate
clearance and protect against subsequent infection will include
quantification of antigen-specific IgG and IgA antibody titers in
serum and vaginal mucosal secretions, evaluation of antibodies’
bactericidal and opsonophagocytic activities, and examination of
the cellular immune response.

While we recognize that the decision tree presented here may
appear daunting, it is important to remember that traditional
vaccinology has failed to deliver a successful gonorrhea vaccine.
Development of new vaccines is not trivial. The challenges
inherent in protecting against this highly adaptable pathogen
necessitate creative and flexible approaches. The decision tree
and the generation of effective gonorrhea vaccines will be shaped
by lessons learned from the Ng biology and epidemiology as
well as new delivery systems and technologies. A strength of our
proposed decision tree is that, regardless of whether an antigen
is ultimately formulated into a vaccine, more information will be
gained into Ng pathophysiology and the gonorrhea research field
will be accelerated.

ELUCIDATION OF FUNCTION OF THE
PROTEOME-DERIVED VACCINE
CANDIDATES

We propose a vaccine-induced immune response that targets
antigens important for CE homeostasis, bacterial pathogenesis,
or overall viability may not only protect against the acquisition of
subsequent gonorrhea infections but may also enhance immune
system efficacy by weakening the gonococcus, thus accelerating
the clearance of ongoing infections. A vaccine that employs this
strategy could conceivably be used for therapeutic interventions
in addition to preventative purposes. Studies evaluating the
effectiveness of a vaccine against herpes simplex virus type 2
(HSV-2) provide a precedent for a therapeutic vaccine. In both
guinea pigs (132) and humans (133, 134), vaccination against
HSV-2 tended to decrease the lesion rate and reduced viral
shedding for at least 12 months—an evaluation criterion for
efficacy of HSV-2 antiviral agents (134). A neutralizing antibody
response was key for the vaccine’s immunotherapeutic activity
(132). For this reason, determining the function of antigens
proposed for inclusion in a vaccine is useful to predict the
potential physiological effects of an immune response that blocks

protein function. The scientific literature contains a wealth of
information that can be used as a starting point to facilitate
functional characterization. Numerous gonococcal proteins have
homologs that have been investigated in E. coli or Nm. However,
these studies should be approached with a modicum of caution,
as protein function may differ between species. For example, we
determined that LptD is essential in Ng (63), similar to findings
in E. coli (135, 136). In contrast, this protein is dispensable
for Nm (137). Furthermore, fHbp, which is a surface-exposed
protein that contributes to Nm serum resistance, has no signal
peptide for outer membrane localization in gonococci, nor does
loss of Ng fHbp alter bacterial susceptibility to human serum
(138). The potential for distinct protein function, even among
closely related species, emphasizes the importance of performing
independent studies to examine the role of homologous proteins
in the organism being targeted by the vaccine.

A common tool for the study of protein function is a bacterial
strain with a knockout mutation in the protein of interest.
This can be accomplished through homologous recombination-
mediated allelic replacement of the genetic locus with an
antibiotic resistance marker, as we have performed in our studies
(63, 64, 99), or through gene inactivation by targeted transposon
insertion mutagenesis (139). Of course, attempting to knock
out an essential gene with this strategy will be unsuccessful, as
transformation efforts will not result in any colonies, or off-
target mutations may occur that lead to antibiotic resistance but
do not affect the target gene. Neither outcome is desirable. Our
strategy to circumvent this difficulty has been to place the gene of
interest at an unlinked locus under the control of an inducible
promoter, then to replace the native gene with an antibiotic
resistance cassette while inducing protein expression from the
heterologous locus (64, 140, 141). With this technique, the effects
of protein depletion, as well as protein stability, can be studied for
essential genes. Using knockout mutant strains of non-essential
genes, protein function can be assessed by exposing bacteria
to different stress conditions and monitoring for growth. We
evaluate bacterial survival under conditions relevant to human
infection, including iron starvation, exposure to human serum,
and anoxia, with the hypothesis that bacteria deficient in proteins
important to a rapid or appropriate response to any of the
conditions will be non-viable or will not grow as robustly as
wild type bacteria (79, 99, 142). CE permeability and stress can
be evaluated by exposure to different antibiotics, either with
the use of Etest antimicrobial test strips6 or serial dilutions
of bacteria inoculated onto solid medium supplemented with
antibiotics (63, 79, 99). Additionally, overproduction of MVs is
a general marker of CE stress (143–145), so a comparison of MV
production between wild type and mutant bacteria can suggest
the level of CE stress resulting from the loss of a protein (79).
Qualitative or quantitative proteomic profiling of supernatants
collected from liquid cultures can give insights into the extent of
membrane leakage or cellular lysis associated with deficiency of
each vaccine candidate (146, 147). Finally, in vitro tissue culture
experiments can inform whether the protein under investigation
is involved in, or has substrates that contribute to, the ability ofNg

6http://www.biomerieux-usa.com/clinical/etest
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to adhere to, invade, and survive within human cervical epithelial
cells (99, 106, 148, 149).

An innovative technique that we adapted for the first study
of its kind in Ng is the use of phenotype microarrays [PMs;
(147)]. Developed by Biolog7, each PM is a 96-well microtiter
plate pre-formulated with varying concentrations of numerous
diverse compounds to assess bacterial nutritional requirements
and sensitivity to chemical agents, including antibiotics and
osmolytes (150, 151). Ng nutritional requirements are well
established. Glucose, pyruvate, and lactate are the only carbon
sources the gonococcus is able to utilize (152). Therefore, we
focused solely on chemical sensitivity PMs to assess the ability
of seven vaccine candidates to defend against osmotic shock,
as well as their physiological roles during exposure to CE-
perturbing agents including metals, antimicrobial peptides, small
hydrophobic molecules, and dyes (147). In our investigation with
a comprehensive screen of over 1,000 conditions, we discovered
323 conditions that affected at least one of the mutant strains
tested. Using these data, we generated a dendrogram based on the
similarity between the effects of the loss of each protein, which
revealed that the defects associated with knockout mutations of
BamG or MlaA were the most distinct from the other five strains
tested. The results of PM screening suggested these two antigens
would be the most suitable to include in a vaccine, due to the
extensive chemical sensitivities associated with the loss of either
protein (147).

Although in vitro experiments are useful for predicting
protein function, it is impossible to simultaneously account for
all factors that will be encountered during infection of the host.
For this reason, infection studies in the female mouse model
are invaluable (Figure 2). Experimental infections with a single
strain can be used to determine whether the bacterial load or
infection duration is altered in the absence of a target protein (42,
153). Alternatively, competitive infections between the mutant
strain and wild type bacteria can be performed to minimize
mouse-to-mouse variation and to directly associate fitness
phenotypes with the loss of a protein (153). Finally, to determine
whether the protein under investigation contributes to bacterial
response to hormones, ovariectomized mice can be utilized to
decrease hormonal influence over infection characteristics (43,
153).

The studies outlined above will facilitate vaccine development
by identifying antigens with roles in maintaining gonococcal
fitness under stress conditions, including during active infections.

FUNCTION OF PROTEOMIC-DERIVED
ANTIGENS IN CE HOMEOSTASIS AND
NUTRIENT ACQUISITION

In the following sections, we discuss insights into function-
structure of 12 proteomics-derived antigens (Figure 3). We
have already verified surface-exposure for a majority of these
vaccine candidates, as well as their expression and conservation

7https://biolog.com/products-portfolio-overview/phenotype-microarrays-for-
microbial-cells/

among diverse Ng isolates. We have also established that BamA,
TamA, LptD, MetQ, and NGO2054 elicit bactericidal antibodies
that cross-react with heterologous Ng strains (64). Our initial
characterization of these vaccine candidates in Ng, in addition
to studies of the functions of homologous proteins in Nm show
that many of them play different roles in the CE homeostasis or
in nutrient acquisition. Maintaining the integrity of the OM, as
well as acquiring nutrients, are critical for bacterial survival in
hostile environments, such as those encountered during infection
of the host. As a gram-negative bacterium, Ng possesses a typical
CE, composed of a cytoplasmic or inner membrane, a cell wall
made up of peptidoglycan, and an asymmetric OM (Figure 4).
The outer membrane of Neisseria spp contains LOS, rather than
the more typical LPS, which reflects their niche as mucosal
pathogens (154). LOS acts as a buffer region for protection
against environmental insult and contributes to pathogenesis
through several mechanisms (154, 155).

Three of our antigens (BamA, BamE, and BamG) are
components of the β-barrel assembly machinery (BAM) system
(63, 79, 156), which is responsible for folding and inserting β-
barrel proteins into the bacterial outer membrane (157, 158).
Until recently this critical protein complex has been primarily
investigated in E. coli, where it consists of the central β-barrel
“Omp85” protein BamA, assisted by four lipoproteins (BamB-
E). In contrast to E. coli, gonococcal BAM lacks BamB and
contains a surface-displayed BamE [Figure 4; (79)]. Further,
Neisseria possess an additional non-essential accessory protein
RmpM (159). Similarly to other gram-negative bacteria, BamA
and BamD are essential for Ng cell viability, and depletion of
either BAM component results in OMP misfolding, as well as
defects in protein stability and assembly (64, 160–162). BamA
is responsible for folding and inserting virtually all β-barrel
OMPs in the OM (158). In contrast, BamE is not essential,
which enables study of its effects on the CE. Our comprehensive
analyses, including PMs, showed that the loss of BamE rendersNg
susceptible to a wide range of compounds including detergents,
antimicrobial peptides, other membrane-perturbing agents, and
antibiotics (79, 147). Enhanced production of MVs is a marker
of CE stress (143). Accordingly, the 1bamE mutant produced
significantly increased amounts of MVs in comparison to WT
bacteria. Additionally, the MV protein profile exhibited distinct
alterations, suggesting that certain proteins were specifically
targeted for packaging into MVs (79). Finally, removal of BamE
appeared to destabilize the BamA-D interaction, which resulted
in BamD localized on the cell surface of BamE-deprived Ng (79).
The aberrant BamD localization in the absence of BamE could
further increase membrane perturbations by interference with
proper OMP insertion by BamA.

We recently discovered that one of our proteome-derived
vaccine candidates, NGO1985, is a previously unrecognized
accessory lipoprotein within the BAM complex and therefore
renamed this protein BamG (156). Included in BamG is a
lipoprotein signal peptide, which targets the protein for surface
display (156), as well as two bacterial OsmY and nodulation
(BON) domains (Figure 3H). BON domains are proposed to
bind phospholipids based on the finding that E. coli OsmY
prevents the inner membrane from shrinking during osmotic
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FIGURE 4 | Schematic of proteomics-derived antigens MetQ, SliC, LptD, BAM, and TAM function-structure and organization in Neisseria gonorrhoeae.

shock, although this hypothesis was not experimentally verified
(163–165). In Ng, our initial probing with detergents and PM
analyses revealed an extensive sensitivity phenome associated
with lack of BamG, suggesting that BamG, through its interaction
with the BAM complex, plays a critical function in CE biogenesis
(63, 147, 156).

LptD belongs to the low abundant, large and complex class of
BAM substrates that are also heavily dependent on SurA, Skp and
FkpA chaperones (166). LptD, together with OM-localized LptE
(Figure 4), are constituents of the lipopolysaccharide transport
(LptA-F) complex, and are crucial for inserting LPS into the
outer leaflet of the E. coli outer membrane (167). The Lpt system
appears not to function in a completely conserved manner in
gram-negative bacteria, as both Ng and E. coli LptD are essential
(63), whereas Nm can survive without LOS and none of the Lpt
components are important for bacterial viability (168).

For the bacterial CE to exert its barrier function, the outer
leaflet of the outer membrane must be a homogeneous layer of
LOS. If this LOS layer is disrupted, phospholipids may diffuse
from the inner leaflet and weaken the barrier function of the
outer membrane. The Mla (maintenance of lipid asymmetry)
system, which is conserved across gram-negative bacteria and is
composed of MlaA-F, removes misplaced phospholipids from the
outer leaflet and re-integrates them into the inner membrane to
mitigate the detrimental effects of altered membrane asymmetry.
The outer membrane component of the Mla system, MlaA,
has primarily been studied in E. coli, where its deletion
enhances bacterial susceptibility to membrane perturbing agents
(169). In Ng, MlaA is encoded by the ngo2121 locus and
comprises a signal peptide and a MlaA domain (Figure 3F).
Gonococcal MlaA is annotated as a lipoprotein, although we
have previously noted that it does not contain the invariant
cysteine residue required for lipid modification (147). However,
a lipoprotein signal peptide is present in homologs from E. coli,
K. pneumoniae, and S. marcescens (169, 170). We are currently

investigating the implications of the lack of MlaA lipidation in
Ng. Combining antibiotic susceptibility testing using Etests with
PM screening, we have established that compounds targeting the
CE, including antimicrobial peptides, are more effective against
Ng lackingMlaA than wild type bacteria. Resistance to antibiotics
acting against cytoplasmic targets was unaltered (63, 147, 171),
suggesting a specific outer membrane defect (169). Additionally,
the1mlaA knockout showed increased vulnerability to oxidative
stress-inducing compounds (147) and produced more MVs
than wild type bacteria (171). Together, these findings suggest
that MlaA is required for maintenance of outer membrane
homeostasis and is involved in MV biogenesis (172).

Bacterial lipoproteins play numerous roles in cellular
physiology, adhesion to host cells, modulation of inflammatory
processes, and transport of virulence factors into host cells.
Proper lipoprotein localization is critical for protein function
(173). The proteome-derived vaccine candidates BamE, BamG,
SliC, MetQ, and NGO2054 are newly described Ng lipoproteins
(Figure 3). NGO2111 is homologous to the Nm surface
lipoprotein assembly modulator Slam2, which is involved in
translocating the hemoglobin-haptoglobin utilization protein
to the cell surface (174). Slam2 is highly conserved amongst
Neisseria isolates and is not found in E. coli (175, 176). Ng Slam2
contains a signal peptide and a 14-stranded β-barrel domain,
which has also been annotated as a DUF560 domain (Figure 3D;
147, 176). In our PM study, we found no conditions that uniquely
affected a 1slam2 mutant, although 36 compounds were either
beneficial or detrimental to the growth of this strain, in common
with one or more of 6 other mutants (147). These results
suggested that Slam2 exerts an indirect effect on CE integrity,
potentially through an undiscovered lipoprotein substrate.

Another gonorrhea vaccine candidate we investigated in our
PM study was NGO1344, which contains an AsmA domain
(Figure 3L) and is homologous to the AsmA protein from E.
coli and Nm. In E. coli, loss of AsmA decreased LPS synthesis
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(177); however, a similar phenotype was not observed in a Nm
1asmA mutant (178). Our analysis of cell lysis indicated that
loss ofNg AsmA resulted in elevated levels of several cytoplasmic
proteins in culture supernatants, especially when grown in the
chemically-defined Graver-Wade liquid medium (147). Fifty-
three membrane-perturbing compounds affected the viability of
a 1asmAmutant, including polymyxin B and bile salts (63, 147).
Clustering analyses suggested that the loss of AsmA resulted in
phenotypes similar to those observed upon BamE deletion (147).
Our results indicate that gonococcal AsmA contributes to CE
integrity.

We also examined the role of the small lipoprotein NGO2054
in CE homeostasis. This protein is comprised of a lipoprotein
signal peptide, a Lambda-Bor motif that contributes to serum
resistance in E. coli (179), and a region with homology to the
C-terminus of the fragile site-associated protein involved in
adipocyte differentiation in mammalian cells [Figure 3I; (180)].
A1ngo2054mutant was the least affected in our PM screen; only
27 compounds altered its growth (147). Thus, although we have
established that NGO2054 is surface exposed, well conserved,
and elicits bactericidal antibodies (64), its function within the CE
remains enigmatic.

Metal co-factors such as zinc and iron are critical to facilitate
cellular and enzymatic processes within pathogenic bacteria.
During infection, bacteria rely on scavenging these metals
from the host. To combat against bacterial pathogens, host
organisms sequester available metals at the site of infection,
a strategy termed nutritional immunity. The Neisserial outer
membrane zinc uptake protein ZnuD overcomes host-imposed
zinc depletion (181). In Ng, ZnuD is encoded by the ngo1205
locus, which includes an amino terminal signal peptide, a plug
domain, as well as a TonB β-barrel (Figure 3E). In support of its
role as a zinc uptake protein, a Nm 1znuD mutant was more
sensitive to the bactericidal effects of neutrophil extracellular
traps (182), which contain calprotectin that sequesters zinc
ions (183). Additionally, meningococci deficient in ZnuD were
attenuated in a systemic infection model (181), although 1znuD
gonococci exhibited no survival defect during intracellular
infection of cervical epithelial cells (184). We performed our
PM analysis on Ng 1znuD bacteria to examine the contribution
of ZnuD to CE integrity. Thirty-seven conditions altered
the growth of bacteria lacking ZnuD, including the divalent
cation chelator ethylenediaminetetraacetic acid (147). Our results
provide support for the role of ZnuD as a zinc uptake protein
and suggest that downstream effects to the CE occur from the
decreased ability to acquire zinc.

Translocation of solutes across the CE is mediated by ABC
transporters, which utilize the hydrolysis of ATP to transport
molecules. A substrate binding protein is necessary to capture
the substrate. Our proteome-derived vaccine candidate MetQ
(63, 64), which was highly conserved inNg as well asNm (55, 64),
is homologous to the E. coli methionine binding protein MetQ
[also known as NlpA; (106)] and is annotated with a lipoprotein
signal peptide and a NlpA domain (Figure 3K). The presence of
an operon upstream from metQ, composed of an ATP-binding
protein (MetN) and a transmembrane permease (MetI) (106),
provides additional support for the role of MetQ as the substrate

binding protein in an ABC transport system. Surface plasmon
resonance experiments demonstrated that Ng MetQ binds L-
methionine with nanomolar affinity (106). These findings,
in combination with our experiments demonstrating that Ng
MetQ is surface exposed, highly conserved, and elicits strongly
bactericidal antibodies (64), suggest MetQ is a promising vaccine
candidate. Targeting MetQ could interfere with methionine
transport and result in downstream protein synthesis defects.

The studies described here illustrate the myriad cellular
processes in which our proteome-derived vaccine candidates
participate. A subunit vaccine composed of several of these
antigens has the potential to compromise gonococcal fitness
independent of factors beyond a neutralizing antibody response.

FUNCTION OF SLIC AND METQ IN
PATHOGENESIS

Bacterial pathogenicity is influenced by the number of infecting
bacteria, the route of entry, the presence of host defense barriers,
and bacterial virulence factors. Ng pathogenesis involves a
collection of factors: pili, Opa proteins, LOS, and peptidoglycan
all contribute to infection and are important for optimal
pathogenesis (6). The study of protein function has the potential
to reveal previously unrecognized virulence factors. A perfect
example is our discovery of the surface-exposed inhibitor of C-
type lysozyme, SliC (99). Through bioinformatic analyses, we
determined SliC, encoded by the ngo1063 locus, contained a
lipoprotein signal peptide and a domain similar to membrane-
bound lysozyme inhibitors of C-type lysozyme (MliC domain;
Figure 3J). Bacterial proteinaceous lysozyme inhibitors protect
the cell wall against host lysozyme attack during infection
(185). Lysozyme inhibitor proteins were not known to exist in
Neisseria until the recent discovery that the Neisserial adhesin
complex protein (ACP) is inhibitory toward human (HL) and
hen egg white lysozyme (HEWL), both of which are C-type
lysozymes (108). The activity of SliC as a lysozyme inhibitor
was comprehensively examined using an assay that involved
fluorescently labeled peptidoglycan. Pre-incubation of wild type
SliC with HL or HEWL completely obstructed peptidoglycan
hydrolysis. In contrast, SliC mutated in two residues predicted
to be key for the protein’s interaction with lysozyme (S83A
and K103A) showed no inhibition of cell wall hydrolysis with
the addition of HL or HEWL (99). Subsequently, bio-layer
interferometry was used to assess the kinetic interaction between
SliC and lysozyme. This analysis revealed moderate binding
between SliC andHL in vitro (KD 11µM), with one SliCmolecule
binding two HL molecules [Figure 4; (99)]. Surprisingly, cells
that lacked SliC showed no difference to wild type when exposed
to increasing levels of HL in vitro. However, a double SliC/ACP
knockout was strongly attenuated during HL exposure (99, 109),
suggesting that one lysozyme inhibitor compensates for the
lack of the other protein. Despite this compensatory activity,
Ng bacteria lacking SliC were up to 250-fold less fit during a
competitive infection with WT bacteria in the mouse model
(99). Further, bacteria complemented with a SliC S83A/K103A
mutant were also significantly attenuated during competitive
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infections (99). In vitro adhesion and invasion assays revealed no
difference between 1sliC and WT bacteria, which indicated that
the attenuation observed in the mouse was not due to defects in
the mutant’s ability to adhere to or invade epithelial cells. Finally,
1sliC bacteria were as fit as WT during competitive infections in
a lysozyme-deficient mouse, which provided conclusive evidence
that the inhibitory activity of SliC against host lysozyme is critical
for gonococcal colonization (99).

Substrate binding components of ABC transporters may
be localized to the outer surface and may contribute to cell
adherence (186, 187). MetQ from Ng was therefore assessed
for its ability to mediate bacterial adhesion and invasion of
cervical epithelial cells. Gonococci lacking MetQ exhibited a
2.4-fold decrease in adherence and a 1.5-fold lower level of
invasion compared to the wild type strain. These findings
were comparable to the level of adherence and invasion within
transformed primary cervical epithelial cells (106). Additionally,
bacterial survival in primary monocytes and macrophages was
evaluated, to determine whether MetQ exerts a protective role
against immune cells or other similar factors. Cells lacking MetQ
displayed a 2.3-fold reduction of viability in primary monocytes
and a 1.5-fold decline in macrophages. MetQ-deficient gonococci
were also significantly attenuated upon exposure to human
serum (106). The results of this study indicatedMetQ, in addition
to its role as a methionine transport protein, contributes to the
ability of Ng to adhere to and invade epithelial cells and protects
against the innate immune system.

The study of vaccine candidates’ contributions to bacterial
pathogenesis benefits vaccine development by revealing potential
vulnerabilities that can be exploited through rational vaccine
design to cripple the invading bacterial pathogen.

STRUCTURE OF PROTEOMIC-DERIVED
ANTIGENS

Structure-based antigen design offers new possibilities in vaccine
development and improvement by delivering novel immunogens
and informing about protective epitopes (188). This approach,
in combination with sequencing data and computational biology
studies (189), can drive rational optimization of vaccines as we
discussed above (Figure 2). In this section, we will focus on
summarizing structural investigations that have been performed
on our proteome-derived vaccine candidates. To this end, only
the structures of Ng BamA and BamE have been solved (79, 190).
However, Nm crystal structures of MetQ and ZnuD are available
in addition to LptD, BamA, BamE, and TamA obtained from
different bacterial species, all of which provide information about
antigen architecture and conformational conservation.

The first BamA crystal structure was solved from Ng
and revealed a 16-strand β-barrel domain within the
outer membrane, connected to five N-terminal periplasmic
polypeptide transport-associated (POTRA) domains [Figure 3A;
(190)]. The BamA crystal structure from E. coli displayed a high
level of flexibility between POTRA5 and the β-barrel domain,
suggesting that the POTRA domains assist in transferring the
substrate to the β-barrel domain of BamA (191). A prominent

difference was found in BamA conformation in Ng compared to
BamA in Haemophilus ducreyi, where the last β-strands within
the barrel are tightly meshed with hydrogen bonds, providing
more rigidity. However, in Ng, the last β-strand is bound to the
first by only two hydrogen bonds, which allows the pore itself to
twist. The POTRA5 domain of BamA in Ng is positioned closely
to the barrel, with periplasmic loops 3, 4, 5, and 7 stabilizing
the closed conformation. This is highly different in H. ducreyi,
as the POTRA region hinges outwards ∼70◦, which does not
allow POTRA5 to interact with the β-barrel periplasmic loops
(190). The difference in the interaction between POTRA5 and
the β-barrel may act as a secondary mechanism to prevent
unregulated solute entry into the pore and may compensate for
the lack of hydrogen bonding in Ng BamA. Further analysis
of the Ng BamA crystal structure revealed the hydrophobic
belt along the C-terminal strand was narrower (∼9Å) than the
opposite side of the barrel [∼20 Å; (190)]. The authors of this
study hypothesize that this reduced width may disrupt the lipid
membrane environment and act to allow easier insertion of the
OMP into the membrane (190). Based on the configuration of
BamA, two hypotheses have been proposed for the mechanism
of OMP folding and insertion, depending on the complexity
of the substrate protein. Complex proteins take advantage of
a lateral opening event facilitated by a conformational switch
of loop 6 and the gating motion of the POTRA domains. The
nascent OMP is threaded through the β-barrel and uses exposed
strands of BamA as a template for proper barrel formation
through a transient OMP-BamA complex until the new OMP
buds off into the OM. Simple substrates may bypass the BamA
β-barrel completely and may be inserted directly into the
destabilized portions of the membrane through their interactions
with the POTRA domains (190). Recent studies suggest that
OMP binding to BamD induces conformational changes in the
extracellular loops of BamA for substrate folding and membrane
insertion (192). Thus, antibodies against these extracellular
loops may interfere with proper OM biogenesis and cause severe
downstream effects to OM integrity.

Gonococcal BamE includes a lipoprotein signal peptide,
as well as a predicted SmpA_OmlA domain [Figure 3G;
(193)] In E. coli, X-ray crystallography showed BamE interacts
exclusively with BamA, and does not contact other accessory
lipoproteins. Instead, BamE directly assists OMP folding through
its interaction with BamA. In contrast to E. coli, where the
native form of BamE appears to be a periplasmic monomer
(194), Ng BamE is a surface-exposed dimer that also includes an
additional C-terminal helix not present in other solved structures
of BamE (79). Isolation of proteins from native membranes
should definitively establish which conformation is the active
state. The dimeric form of BamE possesses structural homology
to β-lactamase inhibitors, which has led to the hypothesis that
BamE has a secondary function as a β-lactamase inhibitor (195,
196). Surface-exposed dimers of BamE inNg may therefore act as
a first line of defense against β-lactam antimicrobials. In support
of this secondary function of BamE, Ng 1bamE mutants were
more sensitive to several different β-lactam antimicrobials (79,
147). Further investigation will be required to determine whether
BamE contributes to antibiotic resistance. If BamE does in fact
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possess dual functions, a neutralizing immune response could
both interfere with OM integrity as well as enhance antibacterial
efficacy.

Autotransporter biogenesis relies on a passenger-transport
complex to assist in the translocation of autotransporters across
the outer membrane. The translocation and assembly module
(TAM) comprises a two-membrane complex containing a
β-barrel OMP TamA and inner membrane protein TamB, a
nanomachine required for virulence of pathogenic bacteria
[Figure 4; (197)]. This complex facilitates the folding and
insertion of the autotransporter domain and has been
hypothesized to assist in proper effector domain folding.
Effector domains are responsible for protein activity and
frequently contribute to virulence (198). Consistent with its
role in translocation, TamA contains a β-barrel structure
homologous to BamA (199) and has been hypothesized to be the
result of a duplication event that arose from the evolutionary
convergence of BamA and TamB (200). In E.coli, the TamA
structure was determined at 2.25 Å resolution, revealing a
sixteen stranded β-barrel ring structure from amino acids
265-577 on the C-terminus, and three POTRA domains between
amino acids 22-264 on the N-terminus [Figure 3; (201)]. The
POTRA domains wind ∼50Å, oriented toward the periplasm
in a semi-circle arrangement (201). The initial contact between
substrate and TamA is facilitated by interactions between TamB
and the POTRA domains, which act as a hinge mechanism
(197, 200). Additional crystal structure analysis showed a kink
in the C-terminal β-strand pointing inward, which weakened
the lateral wall, implying a possible gate for substrates to route
toward the lipid bilayer (201). The kink resulted in a weak
β-strand pair of strand 1 and 16, because of three main chain
hydrogen bonds. The kink on β-strand 16 results in a large
gap between the ends of strands 1 and 15 near the POTRA3

attachment site. This cleft promotes insertion of the substrate,
mediated by interactions between the β-barrel and the POTRA
domains. The folding and insertion process is hypothesized to
begin when an autotransporter’s β-barrel domain engages with
POTRA3 within the periplasm and is guided toward the barrel of
TamA. The structure of TamA also includes a closed extracellular
lid from amino acids 456-495. Salt bridge interactions between
the lid and the β-barrel are mediated by Arg477 in the lid and
Asp521 in the barrel (201). Targeting the epitopes responsible
for stabilizing the interaction between lid and β-barrel with an
immune response could interfere with proper TamA function.

The crystal structures of the core LPS assembly LptDE protein
complexes from several bacteria, including medically important
pathogens, have been obtained, with only two full-length
structures of Shigella flexneri and Klebsiella pneumoniae LptDE
(167, 202). Overall, these studies revealed a strong structural
conservation of the two-protein plug and barrel assembly and
demonstrated that LptE was integrated within the 26-stranded,
C-shaped β-barrel architecture of LptD. All LptDE structures
have a negatively charged lumen which may facilitate LPS/LOS
insertion (202). Additionally, LptD contains a periplasmic β-
jellyroll domain, which is structurally similar to LptA and
facilitates LPS/LOS transit through the periplasm [Figure 3C;
(167)]. The N terminal domain of LptD undergoes a 21◦ rotation,

which may aid assembly or influence flexibility of the LptCAD
scaffold (202). The LptD β-barrel is large compared to other β-
barrel OMPs. Its dimensions accommodate large substrates and
facilitate efficient transport. Further, a kink was present in the
first two β-strands of the β-barrel due to two proline residues
in β1 and β2 (167), and they have been experimentally verified
to play a pivotal function in the lateral opening of the barrel
(202). The interaction between LptD and LptE is dependent on
polar connections within the LptD β-barrel inner cavity; thus,
LptE supports LptD structural maintenance, as well as export of
LPS to the outer leaflet. Disruption of the interaction between
LptD and LptE would be catastrophic to proper Lpt complex
function (167). Due to the significance of LOS, immune system
interference with LptD, and thus LOS transport, would severely
alter gonococcal CE composition, weakening the bacterium and
reducing its pathogenic capabilities.

The crystal structure of the outer membrane component
of the MlaA-F system, MlaA, was recently attained from X-
ray crystallography of MlaA proteins from Serratia marcescens
and K. pneumoniae. MlaA is a monomeric α-helical OMP.
Its six amphipathic α-helices facilitate the transport of polar
phospholipid headgroups while residing within the hydrophobic
interior of the outer membrane. The structure of MlaA allows
diffusion of outer leaflet phospholipids exclusively (170). It
is unclear how the phospholipid is transferred to MlaC, as
the MlaA pore does not appear to permit the passage of
acyl chains. Interactions between MlaA and MlaC have been
hypothesized to induce a conformational change in MlaA,
potentially by shifting helix 6 through a gate opening mechanism
to enable phospholipid transfer to occur (170). K. pneumoniae
and S. marcescens MlaA proteins were found in complex with
the outer membrane pore OmpF in a 3:3 or a 1:3 ratio,
respectively (170). The MlaA-porin interplay, mediated by van
der Waals interactions, does not appear to significantly influence
porin, although the presence of the porin appears to prevent
MlaA aggregation (170). Normal function is based on proper
architecture of the interaction and linkage of these two proteins.
Targeting the maintenance of OM lipid asymmetry through a
vaccine could sensitize bacteria to components of the immune
system that target the outer membrane.

Neisserial MetQ was originally believed to bind to D-
methionine (203, 204). However, structural elucidation from
Nm revealed L-methionine in the binding pocket, which could
not be displaced, even when the protein was heterologously
expressed in E. coli in minimal medium containing only D-
methionine. In support of these findings, and in contrast to the
protein’s annotation as a D-methionine binding protein, concrete
data indicate that D-amino acids are not incorporated into
proteins during ribosomal synthesis; L-amino acids are required
(205). Biologically, aminoacyl-tRNA synthetases distinguish
cognate L-amino acids against noncognate proteinogenic L-
amino acids and also nonproteinogenic D-amino acids, thus
regulating components for protein biosynthesis (206). However,
E. coli MetQ is able to bind both D- and L-enantiomers with
high affinity (207). Structural comparisons revealed similarities
betweenNmMetQ and L-methionine binding protein Tp32 from
Treponema pallidum as well as the dipeptide GlyMet-binding
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protein Pg110 from Staphylococcus aureus, despite low sequence
similarity (204). Nm MetQ is made up of 15 alpha helices and
10 β-strands, split into two domains, I and II, corresponding
to residues 43-119 and 236-281; and 120-235, respectively. The
two domains are connected by a hinge region and display a
Venus flytrap-like structure, which is typical of periplasmic
substrate binding proteins. The methionine binding site is
within the crevasse of these two globular lobes (204). Residues
critical for proper methionine coordination within the binding
pocket include Arg156, which forms a salt bridge with the
carboxyl group of L-methionine; Asn215, which forms one of
two hydrogen bonds to the nitrogen of L-methionine; and Asn
238, which forms the second hydrogen bond and appears to be
responsible for the stereospecificity of Neisserial MetQ (204).
MetQ is a surface-displayed lipoprotein (64, 106) and thus it
remains to be elucidated how L-methinonine is transported
through the periplasm to the inner membrane (Figure 4).

The structure of ZnuD, a member of the TonB-dependent
receptor (TbdR) family, was first crystalized in Nm by single
isomorphous replacement, combined with opposing signals for
native and seleno-derived ZnuD crystals (181). The crystal
structure of ZnuD revealed a 22-stranded β-barrel pore
architecture similar to that of siderophore domains common
to the TbdR family, which includes the amino-terminal plug
domain between residues 1-147 and its pore-forming domain
from residues 148-734 on the carboxyl terminus [Figure 3E;
(181)]. The plug domain of ZnuD is required for normal function
of TonB in the inner membrane. In contrast to most TbdR
proteins, which are involved in iron and cobalamin uptake,
ZnuD was the first zinc TbdR structure solved (208). Due to the
importance of metal co-factor acquisition, other gram-negative
bacteria like E.coli use ZnuD ABC transporters to overcome
zinc-deficient conditions (209). A key feature of meningococcal
ZnuD is the extracellular loops. These loops are arranged in
a way that displays a “comb” scaffold, allowing the uptake
of zinc. Substrate binding can induce multiple conformational
changes that are reversed upon zinc release (181). Key residues
assisting in coordination of the zinc ion are Asp99, His100,
Glu340 and His499. All four residues are highly conserved within
the binding pocket across three intermediate structures (native
ZnuD, ZnuD co-crystallized with cadmium, and ZnuD soaked
with zinc). The binding pocket is sealed through interactions
between the apical loop of the plug and extracellular loop 6.
Due to the flexibility of ZnuD, remodeling of the alpha helices
and β-strands occurs throughout different binding states. Zinc
transport through the β-barrel channel usually requires TonB
activation (181). Molecular dynamic simulations found TonB
exclusively interacts with the plug domain, which is unfolded
upon TonB activation (181). Further investigation using X-ray
absorption spectroscopy was performed to determine whether
ZnuD specifically binds zinc, or if it interacts with heme as well
(181). Superimposition of the ZnuD crystal framework with the
hemophore receptor HasR found a similar “lock-key” feature,
although ZnuD was determined not to be a heme uptake protein
(181, 210). Importantly, meningococcal ZnuD stimulates a

bactericidal antibody response that recognizes peptides 233-309,
430-459, and 706-722. These peptides correspond to extracellular
loops 3, 6, and 11. Loop 3 is the most immunogenic and performs
a pivotal role in blocking access to the zinc binding pocket.
A secondary feature of loop 3 is that it shifts to a rigid β-
strand conformation upon zinc binding and back to a flexible
alpha helix when the substrate is released (181). Despite the
significant Nm ZnuD conformational changes observed upon
zinc binding, its ability to elicit bactericidal antibodies suggests
it may be an appropriate vaccine candidate for gonorrhea as
well.

The structural studies we have discussed here not only
give context to the function of our proteome-derived vaccine
candidates, but also give insights into critical, surface-exposed
portions of the proteins that can be targeted through structural
vaccinology approaches.

CONCLUDING REMARKS

• Proteomics-driven vaccinology for gonorrhea has begun to
deliver novel antigens and determined the contents of NeMVs
from four different Ng isolates, which can further inform the
vaccine development and manufacturing processes.

• Proteomics-driven antigen discovery should be paired with
comprehensive bioinformatic analyses to enable more informed
decisions for rational development of subunit vaccines and
facilitate the inclusion of highly conserved surface-exposed
proteins with important functions.

• Our proposed approach to vaccine candidate evaluation may
facilitate development of the most effective vaccine against
gonorrhea in a systematic and cost-effective way suitable for an
academic setting.

• The proteomics-derived antigens described participate in
essential CE processes as well as pathogenesis. A subunit vaccine
composed of several of these antigens has the potential to
severely compromise Ng fitness.

• Our discovery of SliC as a previously uncharacterized
virulence factor illustrates that new lessons can still be learned
about Ng biology and also highlights the importance of
considering that infection occurs in a living host and involves
numerous elements that cannot be replicated in vitro.

• Structural vaccinology for gonorrhea is in its infancy and thus
enhanced efforts should be dedicated to solving structures of all
potential vaccine candidates.
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