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A B S T R A C T   

Background and purpose: Patients with rectal cancer could avoid major surgery if they achieve clinical complete 
response (cCR) post neoadjuvant treatment. Therefore, prediction of treatment outcomes before treatment has 
become necessary to select the best neo-adjuvant treatment option. This study investigates clinical and radiomics 
variables’ ability to predict cCR in patients pre chemoradiotherapy. 
Materials and methods: Using the OnCoRe database, we recruited a matched cohort of 304 patients (152 with cCR; 
152 without cCR) deriving training (N = 200) and validation (N = 104) sets. We collected pre-treatment MR 
(magnetic resonance) images, demographics and blood parameters (haemoglobin, neutrophil, lymphocyte, 
alkaline phosphate and albumin). We segmented the gross tumour volume on T2 Weighted MR Images and 
extracted 1430 stable radiomics features per patient. We used principal component analysis (PCA) and receiver 
operating characteristic area under the curve (ROC AUC) to reduce dimensionality and evaluate the models 
produced. 
Results: Using Logistic regression analysis, PCA-derived combined model (radiomics plus clinical variables) gave 
a ROC AUC of 0.76 (95% CI: 0.69–0.83) in the training set and 0.68 (95% CI 0.57–0.79) in the validation set. The 
clinical only model achieved an AUC of 0.73 (95% CI 0.66–0.80) and 0.62 (95% CI 0.51–0.74) in the training and 
validation set, respectively. The radiomics model had an AUC of 0.68 (95% CI 0.61–0.75) and 0.66 (95% CI 
0.56–0.77) in the training and validation sets. 
Conclusion: The predictive characteristics of both clinical and radiomics variables for clinical complete response 
remain modest but radiomics predictability is improved with addition of clinical variables.   

1. Introduction 

For patients with locally advanced rectal cancer, the standard of care 
treatment is neoadjuvant chemoradiotherapy followed by resective 
surgery either as a total mesorectal excision surgery or abdominoper-
ineal resection [1]. Surgical resection is associated with considerable 
short and long-term morbidity; up to 3% risk of perioperative mortality 
and 40% risk of requiring a permanent stoma [2]. For two decades, 

pathological complete response (pCR) (the absence of microscopic dis-
ease post-resection) has been recognised in 15%–27% of patients who 
had resective surgery post-chemoradiotherapy [3]. Clinical complete 
response (cCR) is the absence of clinically and radiologically detectable 
disease post neoadjuvant chemoradiotherapy and pre resective surgery. 
The identification of cCR followed by a decision between the patient and 
oncologist to actively monitor or ‘watch and wait (W&W)’, pioneered by 
Habr-Gama et al. [4], has become a novel management strategy to 
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reduce surgery-related morbidity, mortality and permanent stoma. Pa-
tients with cCR on watch and wait are carefully monitored on a sur-
veillance follow-up plan, and surgery is only needed in the event of a 
disease re-growth. About 25–30% of patients on this surveillance 
treatment plan will require surgery within the first three years after 
neoadjuvant treatment, while the rest will be managed without the need 
for surgery [5,6]. The growing evidence of organ preservation in rectal 
cancer has shown this management plan to be valid and safe without any 
decline in clinical outcome [5,7–9]. Pooled analysis of trials showed that 
pCR is associated with a good prognosis and an indicator of a biologi-
cally favourable tumour [3]. Patients with cCR also have a comparable 
excellent long term outcome similar to those with pCR [5]. Clinical 
complete response has become a surrogate for the pathological complete 
response for selecting patients who may not require surgery. Therefore it 
remains essential to predict patients likely to follow this treatment plan 
from the onset of their diagnosis in the era of personised medicine. 

However, there is no robust predictor of either pCR or cCR before 
neoadjuvant chemoradiotherapy. Ryan et al. reported a systematic re-
view, including 85 studies, evaluating predictors (including biochem-
ical, gene expression, mutational, and protein expression analyses) for 
pCR but concluded that there were ‘no robust markers’ [10]. Since the 
mid-2000s, magnetic resonance imaging (MRI) has been the standard of 
care for pre-treatment staging in rectal cancer patients [11]. MRI has 
shown good accuracy in determining the size and stage of the rectal 
tumours. It is also crucial in determining invasion into the mesorectal 
fascia, which is an essential factor in deciding if neo-adjuvant treatment 
is required [12]. However, the review by Ryan et al. concluded that 
volumetric measurement on standard pre-treatment MRI had not been 
shown accurately to predict the response [10]. 

MRI radiomics is an alternative dimension beyond standard clinical 
MR imaging, which might predict complete response. Radiomics is the 
mining and analysis of large amounts of advanced quantitative imaging 
features from routinely performed radiological investigations [13,14], 
from which statistical modelling can be used to predict treatment out-
comes. Thus, radiomics analysis has the potential utility as a biomarker 
in treatment selection. Many studies [15,16–18] have evaluated radio-
mics features’ predictive abilities for pCR using pre-treatment MRI scans 
alone. Notably, the end-points of these studies were either pCR or 
pathological tumour regression, which requires surgical resection to 
assess. In addition, the number of complete response cases was relatively 
small, which may lead to overfitting radiomics features’ contributions in 
the prediction models. 

Currently, different treatment options are available in neo-adjuvant 
rectal cancer treatment with differing toxicities. Predicting treatment 
response before treatment is essential in selecting the best treatment 
plan for a patient. Patients predicted to have cCR with chemo-
radiotherapy could have this treatment. In contrast, others could have 
an alternative neoadjuvant plan such as total neoadjuvant therapy or 
intensive doublet chemotherapy [19,20–21] in other to improve their 
overall treatment outcome. To produce a robust predictive model, we 
performed a matched cohort study enhancing the number of cCR cases 
to 152 to create a predictive model for cCR combining radiomics fea-
tures and routinely collected clinical parameters. 

2. Methods 

2.1. Study population 

All appropriate research governance and ethics approval was ob-
tained before starting this study (IRAS 265989). All patients recruited 
received their treatment either at the Christie NHS Foundation Trust or 
Lancashire University Teaching Hospital, both cancer centres in the 
north of England, UK. We recruited patients primarily from the OnCoRe 
(The Rectal Cancer Oncological Complete Response Database) database, 
The OnCoRe is a research database of patients who achieved clinical 
complete response. 

All patients had locally advanced rectal adenocarcinoma and 
received neo-adjuvant long course chemoradiotherapy between 2008 
and 2019. 395 patients were selected consecutively from the database – 
165 patients with cCR and 230 patients without cCR, non-clinical 
complete response (NcCR). From these, MR images for four patients 
with cCR were not available. Propensity score matching of 0.1 callipers 
based on T-stage, age, N-Stage and performance status was used to select 
161 patients out of 230 patients without complete response. Propensity 
score matching was used in this study to ensure that patients in both 
cohorts have equal numbers of similar baseline characteristics. A pro-
pensity matching of 0.1 resulted in the lowest bias in a study comparing 
different propensity widths [22]. After segmentation, 9 and 4 patients 
out of 161 patients belonging to the cCR and NcCR groups respectively 
were removed due to either low-quality MR images or incomplete 
tumour coverage in the required MR sequence. A re-run of the pro-
pensity matching was done after segmentation to select an equal number 
of patients in both cohorts. Finally, 152 patients from both groups (304 
patients) were enrolled in this study. (See supplementary A, Fig. S1). 

Clinical variables of each patient: demographics (age, gender, T- 
stage, N-stage tumour diameter) and blood parameters (haemoglobin, 
neutrophil, lymphocyte, alkaline phosphate and albumin) were ob-
tained from the clinical records held at the treating institution. All the 
clinical parameters including the blood parameters were taken pre- 
treatment. Patients were then split into two groups; a training group and 
a validation group at the ratio of 2:1. In line with prospective studies to 
limit the selection bias of retrospective studies, allocation to the training 
and validation cohort was done using the patient’s date of diagnosis 
rather than random assignment. Thus, the first 100 patients of the cCR 
and NcCR group were placed in the training cohort and the last 52 pa-
tients of the cCR and NcCR group in the validation cohort. 

2.2. Neo-adjuvant chemo-radiotherapy 

All patients were aged 18 and over and underwent conformal plan-
ned pelvic radiotherapy, concurrent with capecitabine 825 mg/m2 twice 
daily during treatment. They all received a prescribed dose of 45 Gy in 
25 fractions of pelvic radiotherapy. Post radiotherapy, they were all 
restaged with a pelvic MRI and CT imaging at 8–10 weeks. Patients that 
did not have a viable radiological tumour on this imaging (MRTRG 1 and 
2) were further investigated with a digital rectal examination (DRE) and 
colonoscopy. The multi-disciplinary team meeting independently veri-
fied the investigations. The absence of residue disease in all three 
investigatory modalities is defined as ‘clinical complete response’. Pa-
tients with cCR were offered ‘watch and wait’ surveillance. The patient’s 
population characteristics are summarized in Table 1. 

2.3. MRI and segmentation 

Retrospective pre-treatment MR pelvis sequences of recruited pa-
tients were acquired. All images were scanned on a 1.5 T diagnostic MR 
with a 24 cm field of view, 3-mm slide thickess and no intersection gap. 
Transverse T2-weighted (T2W) high-resolution axial MR images was the 
selected sequence. The T2W fast spin-echo sequence images were ac-
quired in a plane orthogonal to the tumour longitudinal axis. No contrast 
was given during image acquisition. T2WI sequence is chosen to reflect 
the most commonly used sequence in previous published MR radiomics 
work in rectal cancer [23]. The images were segmented in the con-
touring software RayStation v6.99. 

A clinical oncologist and a radiologist, both with expertise in lower 
GI malignancies, performed image segmentation. The region of interest 
(ROI) in this study is the segmented tumour volume. (A representation of 
a segmented slide is seen in the supplementary A, Fig. S2). 

Twenty-one patients were randomly selected and independently 
segmented by both the clinical oncologist and the radiologist to inves-
tigate inter-observer variations. The two volumes were assessed for 
consistency, using volumetric differences, dice coefficient, distance to 
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agreement, Hausdorff distance and intra-class correlation (ICC). (See 
supplementary B, table S1). 

2.4. Feature extraction and image normalisation 

DICOM files containing the MR image segmentation were exported 
from RayStation. Nifti files for the MR and the rasterised delineations 
(masks) were then created from the Dicom files using in-house software. 
The images were then normalised before extraction of features using 
histogram intensity normalisation. Histogram normalisation has shown 
to increase radiomics features reproducibility in a recent work looking at 
normalisation effects on the reproducibility of radiomics features 
relating to T2WI of the pelvis [24]. MR images intensity were normal-
ised in this study by applying histogram intensity matching using an 
arbitrary MR image as the reference (first image in the folder) [25]. 

As the images were acquired with different angles, we followed the 
recommendation of IBSI [26] and resample the images to a 3 mm 
isotropic resolution. In addition, we used Fixed Bin Size (FBS) as rec-
ommended in several reports [24,27] on MR feature reproducibility. All 
features available in pyradiomics v 3.0 were calculated (except for 2D 
specific features) on the original image and on the following filtered 
images: Laplacian of Gaussian (LOG, for edge detection, using sigma 3 
and 5), Wavelet, Square, SquareRoot, Logarithm, Exponential, Gradient 
and local binary pattern (LBP) [28] (See supplementary C). A total of 
1781 radiomics features were extracted per patient. The quantitative 
values of these features were tableted for feature selection and statistical 
analysis. 

2.5. Feature selection 

The features extracted from the twenty-one patients contoured by 
both clinicians were assessed to determine their stability. Features were 
extracted from both sets of images independently segmented by two 
observers. Using the intra-class correlation coefficient (ICC), the features 
with excellent correlations in the two cohorts were selected as stable. An 
ICC greater than 0.90 suggests excellent reliability [29]. We accepted 
features with an ICC of more than 0.9 to be stable features. 

2.6. Principal component analysis (PCA) 

Feature reduction is achieved through two forms of dimensionality 
reduction process; supervised or unsupervised. We choose to use unsu-
pervised feature reduction in this study due to its beneficial 

characteristics over supervised feature reduction which are prone to 
overfitting [30]. Unsupervised dimensional reduction is robust against 
overfitting and, therefore, more suitable [31]. The most commonly used 
unsupervised approaches in radiomics work are cluster analysis and PCA 
(28). PCA creates new variables from the existing ones which are un-
correlated and which maximise the variance captured in the data-set. 
PCA has returned the highest predictive performance in radiomics 
studies [32,33]. We performed principal components analysis on the 
dataset and clustered the observations using hierarchical clustering on 
the factor map. Using the Euclidean distance metric, the optimal number 
of clusters was determined by assessing the loss in entropy. 

2.7. Multivariable analysis 

First, PCA was applied to the radiomics features as above mentioned. 
Then the PCA generated variables were clustered using hierarchical 
clustering. The clusters were assessed for variation in tumour diameter 
and volume to evaluate whether the variations captured by PCA is only 
representing differences in tumour size or diameter. Next, we pooled the 
first two principal components, which accounts for most of the variation 
in the data, PC1 and PC2, as explanatory variables to construct three 
logistic regression models; combined radiomics and clinical model, 
clinical only model, and a radiomics model. These models were built on 
the training cohort, assessed with the validation cohort using ROC AUC. 

3. Results 

3.1. Interobserver analysis and feature selection 

Contours between the clinical oncologist and the radiologist were 
consistent. The average dice coefficient was 0.85 (range 0.78 to 0.92), 
average mean distance-to-agreement (DTA) was 0.08 cm (range 0.05 to 
0.15). The average Hausdorff distance was 0.55 cm (range 0.3 to 1.3 
cm). The ICC of the volumes generated was 0.998 (CI 0.995–0.999), 
showing excellent consistency (See supplementary B, table S1). 1430 out 
of 1781 features were selected for analysis as stable features. 

3.2. Principal component analysis/ hierarchical clustering 

Four clusters were identified by applying PCA hierarchical clustering 
to the selected 1430 radiomics features. We found that the probability of 
cCR correlates with the cluster groups (likelihood ratio-test p-value =
0.007). The odds ratio for cluster 4 vs 1 is 3.14 (95% CI: 1.56–6.46), 3 vs 
1 is 2.11 (95% CI: 1.05–4.29). 

The distribution of voxel volume (tumour volume) and diameter 
within the PCA derived clusters showed no significant differences (see 
Fig. 1). Moreover, we found that PC1 and PC2 remained correlated to 
cCR after adjusting for tumour diameter within a logistic regression 
analysis. Multivariable analysis of the two principal components and 
tumour diameter against cCR showed that PC1 has an odds ratio of 1.26 
(95% CI 1.12–1.42) and a p-value of < 0.001. PC2 had an odds ratio of 
0.92 (95% CI 0.84–1.00), p-value of 0.062 and the tumour diameter 0.85 
(95% CI 0.71–1.03) and a p-value of 0.094. Indicating that variations 
represented by PC1 and PC2 are independent of volumetric tumour 
measurements. 

3.3. Multivariable logistic regression models 

The multivariable logistic regression generated three models; clin-
ical, radiomics and combined clinical and radiomics model. Comparing 
model likelihoods, we found that the inclusion of the radiomics variable 
improved the model fit of the combined model, p = 0.006 (see Tables 2 
and 3). The accumulative weights of the radiomics feature group that 
form part of the model is seen on supplementary D, tables S2 and S3. 

Table 1 
Demographic table. Table showing the baseline characteristics of the two 
groups.  

Characteristics cCR group (n ¼
152) 

NcCR group (n ¼
152) 

Age in years (Mean and range) 66.3 (41–86) 66.8 (31–89) 
Gender (Male: Female) 111(73%) Male 

41 (27%) Female 
99(65%) Male 
53 (35%) Female 

T staging T2 31 (20%) 10 (7%) 
T3 108 (71%) 125 (82%) 
T4 13 (9%) 17 (11%) 
N staging N0 39 (26%) 35 (23%) 
N1 65 (43%) 66 (43%) 
N2 48 (31%) 47 (31%) 
N3 0 4 (3%) 
Tumour diameter* (cm) 

(Mean / range)  4.8 (2–10)  5.5 (2–10) 
Height above anal margin** 

(cm) 
(Mean/range)  

5.9 (0–15)  6.2 (0–18) 

*Tumour diameter is the maximum craino-caudal length of the tumour 
measured on the sagittal MRI planes. 
**Height above the anal margin is the length from the most distal part of the 
tumour to the anal verge measured on a sagittal MR image plane. 
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3.4. Evaluation of the model 

Table 3 gives the evaluation of the three models in both cohorts. In 
the models containing clinical variables, the AUC values have dropped 
significantly. The radiomics only model has a similar AUC between the 
training and validation model. 

The drop in ROC AUC between the validation and training cohorts 
was not due to differences in patient demographics (see Table 4). To 
assess why such a significant drop was seen when using clinical vari-
ables, we performed a multivariable logistic regression analysis on the 
validation cohort and compared the results to the training cohort (see 
Table 5). 

Looking at the clinical variables and comparing the odd ratios of 
individual variables in the training and validation cohorts, it is clear that 
the main clinical drivers of cCR have changed significantly, with shifts in 
some of the clinical variables which may have affected the validation of 
the models containing the clinical variables (highlighted variables in 
Table 5). 

4. Discussion 

Our study compared the discriminative characteristics performance 
of a combined radiomics and clinical model with a clinical or radiomics 
only model. We found that the clinical variables on their own (based on 
ROC AUC) are potentially a better predictor of cCR than radiomics 
variables alone. However, the models containing the clinical variables 
failed to validate successfully. Even though the study was designed to 
minimise its risk, overfitting could cause this discrepancy. Another 
possible reason is calibration drift. The predictive model reduces per-
formance with calibration drift [34,35] as the outcomes are reported 
differently over time. A recent paper [36] recommended that clinical 
prediction models be continuously updated and monitored to remain 
relevant over time. A dynamic prediction model approach [37], 
whereby a model consecutively adjusts to changes in population de-
mographics, disease incidence, and clinical practice over time, has been 
proposed as a potential solution to this problem. A notable example of a 

Fig. 1. Hierarchical clustering using the leading principal components is plotted against tumour volume (Voxel volume in cm3) and Diameter in cm. The distribution 
across the cluster groups shows that the clusters are independent of volume and diameter. Cluster 2 is an outlier in our database. 

Table 2 
Multivariable clinical and radiomics logistic regression analysis – training set.   

ROCAUC-0.76 (95% CI: 0.69–0.83)  

OR (95% CI) p-value 

PC1/10 1.23 (1.07–1.41)  0.004 
PC2/10 0.90 (0.80–1.01)  0.061 
Diameter (cm) 0.89 (0.72–1.11)  0.309 
Age/10 (years) 0.86 (0.62–1.20)  0.375 
Sex   
Female v Male 0.86 (0.40–1.84)  0.691 
T-Stage   
3 v 2 0.41 (0.14–1.24)  0.115 
4 v 2 0.21 (0.05–0.96)  0.044 
N-Stage   
1 v 0 0.93 (0.40–2.16)  0.869 
2/3 v 0 0.75 (0.30–1.89)  0.545 
Hb/10 (g/L) 1.27 (1.00–1.60)  0.047 
Neutrophils (x109/L) 1.01 (0.83–1.22)  0.945 
Lymphocytes (x109/L) 1.27 (0.86–1.88)  0.232 
log(Alkalinephosphatase(log iu/L) 0.23 (0.06–0.83)  0.024 
Albumin (g/L) 0.92 (0.82–1.04)  0.196 

Hb- Haemoglobin, g/L- grams per litre, iu/L- units per litre, cm-centimetre. 
Hightlighted variables have a p value < 0.05. 

Table 3 
Evaluation of the models. Table is comparing the AUC value between the 
training and validation cohort of each model. The models with clinical variables 
have notable differences in AUC.   

ROC AUC (95% CI)  

Training Validation 

Clinical alone 0.73 (0.66–0.80) 0.62 (0.51–0.74) 
Radiomics alone 0.68 (0.61–0.75) 0.66 (0.56–0.77) 
Clinical and Radiomics 0.76 (0.69–0.83) 0.68 (0.57–0.79)  
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clinical prediction model updated yearly and revised to include addi-
tional predictors is the QRISK [38]. Our results showed that even though 
the predictability of the radiomics only model is lower at ROC AUC of 
0.68, it is unaffected by calibration drift and was validated successfully. 
This study represents the most extensive MR radiomics work with pa-
tients who had chemoradiotherapy in rectal cancer to the best of our 
knowledge. It also recruited patients who had a clinical complete 
response (cCR), the target group for organ preservation treatment 
pathway, unlike other studies that predominantly used patients with 
pCR. We used a large 1:1 matched cohort of patients (Ccr; N = 152) and 
those without; N = 152), representing the largest proportion of patients 
with complete response in any rectal cancer radiomics work. 

Very few studies have used mono sequence pre-treatment images in 
the prediction of complete response. A similar study [39] used an in-
tensity histogram to predict pCR with external validation. Their results 
showed an AUC of 0.73 and 0.75 on external validation. Although this 
study demonstrated good predictability of the radiomics variable, the 
proportion of patients with pCR in the whole database is less than 30% 
which could skew the results. Patients in this study were also not 
matched to ensure a reduction in selection bias. 

This study comes with some limitations; firstly, all patients received 
their radiotherapy treatment in either two hospitals in the same region. 
A more diverse database would have been preferable to further reduced 
selection bias, which can be inherent in a few centre studies. This bias 
could be said to have been reduced by the use of propensity matching. 
The validation cohort in this study was chosen internally even though 
the recruited patients were treated in two institutions, an external 
validation cohort from a different regional hospital may have provided 
extra validity. The analysis of this study assumed cCR to be a binary 
response. The reality is that patients without cCR have a wide variety of 
responses; near-complete, partial, stable, and no response, so a future 
radiomics study should look at predictors of good response to neo- 
adjuvant treatment by combining preferred clinical outcomes in one 
group. Inter-observer variation in the segmentation of radiomics work 

has been a source of bias. This bias was reduced in this study by ensuring 
consistency between the two clinicians involved in the segmentation. 
For sizeable radiomics work in the future, there is a need to develop 
automatic contouring software to allow radiomics in day-to-day clinical 
practice. In the future, it will be expected that contouring of ROI in 
radiomics will be done by automatic delineation tools [40]. The most 
frequently used MR radiomics sequence is the T2WI; this was used as the 
protocol sequence in this work. It could be that combining different 
sequences might improve the predictability of radiomics features. A 
study [17] using MR radiomics in rectal cancer to predict pCR, showed 
that combining different image sequences performed better than using 
one sequence. Although this study showed an improved radiomics 
model with multiple sequences, it had only 31 patients with pCR out of 
186 patients recruited in the study, which is a significant drawback. 

The predictive abilities of our clinical variables, with or without 
radiomics, are modest, as demonstrated in this study. The predictive 
capabilities of the radiomics variables for cCR are improved by adding 
the clinical variables, but the absolute gains remain low. New ap-
proaches are essential to improve the predictability of cCR for neo-
adjuvant treatment selection in rectal cancer. Future approaches could 
investigate the addition of radiotherapy biomarkers such as hypoxia, 
gene expression signatures and deep learning techniques. Molecular 
markers could also be a valuable addition to a clinical model to improve 
the model’s predictability. 
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Table 4 
Patient’s characteristics between the two cohorts. The training and valida-
tion cohort show similar baseline characteristics.   

Training (N = 200) Validation (N = 104) 

PC1   
median (range) − 6.8 (− 53.2–95.0) − 2.1 (− 48.1–86.6) 
PC2   
median (range) − 7.9 (− 65.6–513.2) − 8.6 (− 60.1–144.7) 
Diameter (cm)   
median (range) 5 (2, 10) 5 (2, 9) 
Age (years)   
median (range) 66 (31–89) 68 (36–90) 
Sex – N (%)   
Female 62 (31) 31 (30) 
Male 138 (69) 73 (70) 
T-Stage – N (%)   
2 24 (12) 16 (15) 
3 155 (78) 79 (76) 
4 21 (10) 9 (9) 
N-Stage (%)   
0 49 (25) 24 (23) 
1 86 (43) 45 (43) 
2 61 (31) 35 (34) 
3 4 (2) 0 (0) 
Hb (g/L) 

median (range)  13.4 (7.7–16.6)  13.5 (8.7–16.9) 
Neutrophils (x109/L) 

median (range)  4.7 (1.7–12.4)  5.0 (1.9–11.4) 
Lymphocytes (x109/L) 

median (range)  1.7 (0.3–6.1)  1.7 (0.4–4.7) 
Alkaline Phosphatase(iu/L) 

median (range)  80 (40–155)  83 (42–158) 
Albumin (g/L) 

median (range)  44 (24–51)  44 (31–49) 

Hb- Haemoglobin, g/L- grams per litre, iu/L- units per litre, cm-centimetre. 

Table 5 
Multivariable logistic regression analysis in the training and validation 
cohort. This table shows the odd-ratios and p values of the variables. High-
lighted variables show a major difference in odd ratios between the two cohorts.   

Training (N = 200) Validation (N = 104)  

OR (95% CI) p- 
value 

OR (95% CI) p- 
value 

PC1/10 1.23 
(1.07–1.41) 

0.004 1.23 
(0.98–1.54) 

0.078 

PC2/10 0.90 
(0.80–1.01) 

0.061 1.02 
(0.86–1.20) 

0.853 

Diameter (cm) 0.89 
(0.72–1.11) 

0.309 0.58 
(0.38–0.88) 

0.012 

Age/10 (years) 0.86 
(0.62–1.20) 

0.375 1.30 
(0.73–2.31) 

0.377 

Sex 
Female v Male  0.86 

(0.40–1.84)  
0.691  1.13 

(0.29–4.42)  
0.856 

T-Stage 
3 v 2 
4 v 2  

0.41 
(0.14–1.24) 
0.21 
(0.05–0.96)  

0.115 
0.044  

0.07 
(0.01–0.48) 
0.35 
(0.02–0.52)  

0.007 
0.447 

N-Stage 
1 v 0 
2 v 0  

0.93 
(0.40–2.16) 
0.75 
(0.30–1.89)  

0.869 
0.545  

0.95 
(0.22–4.20) 
5.86 
(1.16–29.7)  

0.947 
0.033 

Hb/10 
(g/L) 

1.27 
(1.00–1.60) 

0.047 1.14 
(0.76–1.69) 

0.531 

Neutrophils (x109/L) 1.01 
(0.83–1.22) 

0.945 0.77 
(0.54–1.09) 

0.144 

Lymphocytes 
(x109/L) 

1.27 
(0.86–1.88) 

0.232 0.56 
(0.21–1.50) 

0.250 

log(Alkaline 
Phosphatase) (log iu/ 
L) 

0.23 
(0.06–0.83) 

0.024 0.85 
(0.09–7.74) 

0.887 

Albumin (g/L) 0.92 
(0.82–1.04) 

0.196 0.91 
(0.74–1.12) 

0.381 

Hb-Haemoglobin, g/L-grams per litre, iu/L-units per litre, cm-centimetre. 
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the work reported in this paper. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.phro.2022.06.010. 
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