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Recreation of the periodic table 
with an unsupervised machine 
learning algorithm
Minoru Kusaba1*, Chang Liu2, Yukinori Koyama3, Kiyoyuki Terakura4 & Ryo Yoshida1,2,3*

In 1869, the first draft of the periodic table was published by Russian chemist Dmitri Mendeleev. In 
terms of data science, his achievement can be viewed as a successful example of feature embedding 
based on human cognition: chemical properties of all known elements at that time were compressed 
onto the two-dimensional grid system for a tabular display. In this study, we seek to answer the 
question of whether machine learning can reproduce or recreate the periodic table by using observed 
physicochemical properties of the elements. To achieve this goal, we developed a periodic table 
generator (PTG). The PTG is an unsupervised machine learning algorithm based on the generative 
topographic mapping, which can automate the translation of high-dimensional data into a tabular 
form with varying layouts on-demand. The PTG autonomously produced various arrangements of 
chemical symbols, which organized a two-dimensional array such as Mendeleev’s periodic table or 
three-dimensional spiral table according to the underlying periodicity in the given data. We further 
showed what the PTG learned from the element data and how the element features, such as melting 
point and electronegativity, are compressed to the lower-dimensional latent spaces.

The periodic table is a tabular arrangement of elements such that the periodic patterns of their physical and 
chemical properties are clearly understood. The prototype of the current periodic table was first presented by 
Mendeleev in  18691. At that time, about 60 elements and their few chemical properties were known. When 
the elements were arranged according to their atomic weight, Mendeleev noticed an apparent periodicity and 
an increasing regularity. Inspired by this discovery, he constructed the first periodic table. Despite the subse-
quent emergence of significant  discoveries2,3, including the modern quantum mechanical theory of the atomic 
structure, Mendeleev’s achievement is still the de facto standard. Regardless, the design of the periodic table 
continues to evolve, and hundreds of periodic tables have been proposed in the last 150 years4,5. The structures 
of these proposed tables have not been limited to the two-dimensional tabular form, but also spiral, loop, or 
three-dimensional pyramid  forms6–8.

The periodic tables proposed so far have been products of human intelligence. However, a recent study has 
attempted to redesign the periodic table using computer intelligence—machine  learning9. From this approach, 
building a periodic table can be viewed as an unsupervised learning task. Precisely, the observed physicochemi-
cal properties of elements are mapped onto regular grid points in a two-dimensional latent space such that the 
configured chemical symbols adequately capture the underlying periodicity and similarity of the elements. Lemes 
and  Pino9 used Kohonen’s self-organizing map (SOM)10 to place five-dimensional features of elements (i.e. atomic 
weight, radius of connection, atomic radius, melting point, and reaction with oxygen) into two-dimensional rec-
tangular grids. This method successfully placed similarly behaved elements into neighbouring sub-regions in the 
lower-dimensional spaces. However, the machine learning algorithms never reached Mendeleev’s achievement 
as they missed important features such as between-group and between-family similarities.

In this study, we created various periodic tables using a machine learning algorithm. The dataset that we used 
consisted of 39 features (melting points, electronegativity, and so on) of 54 elements with the atomic number 
1–54, corresponding to hydrogen to xenon (Fig. S1 for the heatmap display). A wide variety of dimensionality 
reduction methods has so far been made available, such as principal component analysis (PCA), kernel  PCA11, 
isometric feature mapping (ISOMAP)12, local linear embedding (LLE)13, and t-distributed stochastic neigh-
bour embedding (t-SNE)14. However, none of these methods could well visualize underlying periodic laws 
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(Supplementary Fig. S3). To begin with, none of these methods offers a tabular representation. The task of build-
ing a periodic table can be regarded as the dimension reduction of the element data to arbitrary given ‘discrete’ 
points rather than a continuous space. To the best of our knowledge, no existing framework is available for such 
table summarization tasks. Therefore, we developed a new unsupervised machine learning algorithm called the 
periodic table generator (PTG), which relies on the generative topographic mapping (GTM)15 with latent variable 
dependent length-scale and variance (GTM-LDLV)16. One of the advantages of using the GTM-LDLV arises 
from its ability to represent complex response surfaces. Elemental data shows a complex response surface on 
the feature space. Controlling the two hyperparameters, the GTM-LDLV can flexibly represent functions whose 
smoothness and amplitude vary locally in the feature space. With this model, we automate the process of translat-
ing patterns of high-dimensional feature vectors to an arbitrary given layout of lower dimensional point clouds.

The PTG produced various arrangements of chemical symbols, which organized, for example, a two-dimen-
sional array such as Mendeleev’s table or three-dimensional spiral table according to the underlying periodicity 
in the given data. We will show what the machine intelligence learned from the given data and how the element 
features were compressed to the reduced dimensionality representations. The periodic tables can also be regarded 
as the most primitive descriptor of chemical elements. Hence, we will highlight the representation capability 
of such element-level descriptors in the description of materials that were used in machine learning tasks of 
materials property prediction.

Materials and methods
Computational workflow. The workflow of the PTG begins by specifying a set of point clouds, called 
‘nodes’ hereafter, in a low-dimensional latent space to which chemical elements with observed physicochemical 
features are assigned. The nodes can take any positional structure such as equally spaced grid points on a rec-
tangular for an ordinal table, spiral, cuboid, cylinder, cone, and so on. A Gaussian process (GP)  model17 is used 
to map the pre-defined nodes to the higher-dimensional feature space in which the element data are distributed. 
A trained GP defines a manifold in the feature space to be fitted with respect to the observed element data. The 
smoothness of the manifold is governed by a specified covariance function called the kernel function, which 
associates the similarity of nodes in the latent space with that in the feature space. The estimated GP defines a 
posterior probability or responsibility of each chemical element belonging to one of the nodes. An element is 
assigned to one node with the highest posterior probability.

As indicated by the failure of some existing methods of statistical dimension reduction, such as PCA, t-SNE, 
and LLE, the manifold surface of the mapping from chemical elements to their physiochemical properties is 
highly complex. Therefore, we adopted the GTM-LDLV as a model of PTG, which is a GTM that can model 
locally varying smoothness in the manifold. To ensure non-overlapping assignments such that no multiple ele-
ments shared the same node, we operated the GTM-LDLV with the constraint of one-to-one matching between 
nodes and elements. To satisfy this, the number of nodes, K , has to be larger than the number of elements, N . 
However, a direct learning with K > N suffers from high computational costs and instability of the estimation 
performance. Specifically, the use of redundant nodes leads to many suboptimal solutions corresponding to unde-
sirable matchings to the chemical elements. To alleviate this problem, the PTG was designed to take a three-step 
procedure (Fig. 1) that relies on a coarse-to-fine strategy. In the first step, we operated the training of GTM-LDLV 
with a small set of nodes such that K < N . In the following step, we generated additional nodes such that K > N , 
and the expanded node-set was transferred to the feature space by performing the interpolative prediction made 
by the given GTM-LDLV. Finally, the pre-trained model was fine-tuned subject to the one-to-one matching 
between the N elements and the K nodes for tabular construction. The procedure for each step is detailed below.

Step 1 (GTM-LDLV): the first step of the PTG is the same as the original GTM-LDLV. In the GTM-LDLV, 
K nodes, u1, . . . , uK , arbitrarily arranged in the L-dimensional latent space are first prepared. Then we build a 

Figure 1.  Workflow of PTG that relies on a three-step coarse-to-fine strategy to reduce the occurrence of 
undesirable matching between chemical elements and redundant nodes.
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nonlinear function f (uk) that maps the pre-defined nodes to the D-dimensional feature space. The model f (uk) 
defines an L-dimensional manifold in the D-dimensional feature space, which is fitted with respect the N data 
points of element features. The dimension of the latent space is set to L ≤ 3 for visualization.

It is assumed that the D-dimensional feature vector xn of element n is generated independently from a mixture 
of K Gaussian distributions, where the mixing rates are all equal to 1/K , and the mean and the covariance matrix 
of each distribution are yk = f (uk) and β−1I , respectively ( I denotes the identity matrix). According to the GTM-
LDLV, the mean f (uk) is modelled to be the product of two functions, a D-dimensional vector-valued function 
h(uk) and a positive scalar function g(uk) . Here, we introduce a vector of K latent variables, zn = (z1n, . . . , zKn)

′

 , 
that indicates the assignment of element n to one of the given K nodes. The k th entry zkn takes the value of 1 if 
xn is generated by the k th component distribution, and 0 otherwise. Here, let X denote a matrix of x1, . . . , xN of 
the elements, and Z be a matrix of z1, . . . , zN . Then, their joint distribution is given by

where N(·|µ,�) denotes the Gaussian density function with mean µ and covariance matrix � , g  is a vector of 
g(uk)(k = 1, . . . ,K) , and H is a matrix of h(uk)(k = 1, . . . ,K).

The prior distribution of g(u) is given as a truncated GP with mean 0 and covariance function cg (ui , uj; ξ g ) , 
which handles positive-bounded random functions. The prior distribution of the d th entry hd(u) of h(u) is given 
as a GP with mean 0 and covariance function ch(ui , uj) . To be specific, the covariance functions, cg (ui , uj; ξ g ) 
and ch(ui , uj) , are given by

In Eq. (3), the hyperparameter ξ g consists of νg and lg , referred to as the variance and the length-scale, that 
control the magnitude of variances and smoothness of a positive-valued function g(u) generated from the GP. In 
Eq. (4), the length-scale parameter l(u) is a function of u and parameterized as l(u) = exp(r(u)) with the func-
tion r(u) following the GP with mean 0 and covariance function cr(ui , uj; ξ r) . Finally, a gamma prior is placed 
on the precision parameter β in Eq. (1).

The covariance function in Eq. (4) is the key in the GTM-LDLV. In general, a covariance function in a GP 
governs a degree of preservation between the similarity of any inputs, e.g. ui and uj , and the similarity of their 
outputs. The heterogeneous variance over the latent space in Eq. (3) can bring locally varying smoothness in 
resulting manifolds in the feature space. In addition, the variance function is statistically estimated with the 
hierarchically specified GP prior based on the covariance function cr(ui , uj; ξ r).

The unknown parameter to be estimated is θ =
{

Z,β , g ,H , r
}

 . In the GTM-LDLV, the posterior distribution 
p(θ |X) is approximately evaluated using a Markov Chain Monte Carlo (MCMC) method. Iteratively sampling 
from the full conditional posterior distribution for each {Z,β , g ,H , r} , we obtained a set of ensembles that fol-
low the posterior distribution approximately. By taking the ensemble average over the samples from p(θ |X) , 
the parameters of the GTM-LDLV are estimated. A detailed description of the GTM-LDLV is given in the Sup-
plementary Information section.

Step 2 (Node expansion): to avoid the occurrence of improper assignments of the N elements to a redundant 
set of nodes, we adopt a coarse-to-fine strategy. Starting from an initially trained GP model of K < N at step 1, 
we refine the model with an increased number of nodes K ≥ N . For example, 5× 5 nodes evenly arranged on 
the area [−1, 1]× [−1, 1] at step 1 are incremented to K = 9× 9 by placing additional nodes at middle points 
of the line segments connecting between each node. With the currently given parameters, we can infer the val-
ues of r(u) of the covariance function in Eq. (4) at the expanded nodes, u1, . . . , uK . Likewise, the values of g(u) 
and h(u) are interpolated. By performing such initialization, we proceed to the next round of the GTM-LDLV.

Step 3 (GTM-LDLV subject to one-to-one assignments): finally, the resulting GTM-LDLV is fine-tuned to 
obtain a tabular display by running the above procedure subject to a one-to-one matching between the N ele-
ments and the K  nodes. By definition, the conditional posterior distribution of the assignment variables is 
represented as

where θ−A represents a set of the parameters obtained by removing A from θ . In the MCMC calculation in step 
1, we iteratively draw a sample of Z from this distribution. Here, instead of performing the random sampling, we 
conduct the maximization of the logarithmic posterior with respect to Z subject to the constraint of one-to-one 
assignments. The problem amounts to finding the solution of

(1)p
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)

= K−N
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This is regarded as a transportation problem where the sum of the squared Euclidean distance between an 
element feature xn and a node yk embedded in the feature space is the cost of transporting one item from source 
k to destination n under the constraint A . We use the lpSolve  package18 in  R19 to solve the transportation problem.

This partially modified MCMC is iterated few times (e.g. T = 10 ) to make a fine-tuning of the currently given 
parameters. The assignment variables and the other parameters that exhibit the highest likelihood are chosen to 
form the final estimate of the PTG. A summary of the algorithm of PTG is shown in Supplementary Algorithm 1.

Interpretation. The PTG autonomously creates a tabular display of the chemical elements according to the 
estimated Z . To understand how the element features such as melting point and electronegativity are compressed 
on the low-dimensional tabular display, each of the features is mapped onto the resulting table. Specifically, we 
overlay a smoothed heatmap of each feature on the table. With this PTG property  landscape20, we can visually 
understand the distribution of the topographical mapping that indicates how the element features are embedded 
in the latent space.

Periodic table as an element descriptor. We consider an evaluation basis for the quality of a designed 
periodic table in terms of a novel view from data science. A periodic table, including Mendeleev’s classic table, 
can be considered as one of the most primitive descriptors that encodes known element features into the coor-
dinate system of a low-dimensional latent space. Neighbouring elements on a table should behave similarly and 
possess similar physicochemical properties. Inspired by such an idea, we consider the use of a periodic table as 
a descriptor of chemical elements in a task of predicting materials properties based on machine  learning21. The 
periodic table is then evaluated quantitatively based on the predictive performance of the descriptor.

For a given table, its coordinates uk(1), . . . , uk(N) of the nodes to which the N  elements are assigned 
are used as a set of element descriptors. For a compound S , its fraction of the N  elements is denoted by 
w1(S), . . . ,wN (S) where 0 ≤ wn(S) ≤ 1 and 

∑N
n=1wn(S) = 1 . The compositional descriptor of S is calculated by 

φ(S) =
∑N

n=1wn(S)uk(n) . With this descriptor, we derive a prediction model Y = f (φ(S)) , which is trained in 
m training instances {Yi , Si}

m
i=1 , that describes a physicochemical property Y  as a function of the descriptor φ(S) 

for any given compound S . Descriptors exhibiting higher predictability should be recognised as providing more 
efficient compression performances on the N elements. For comparison, the same analysis was performed using 
two-dimensional coordinates of the standard periodic table, PCA, and t-SNE, respectively.

Data: element features. The element feature set was extracted from  XenonPy22, which is a Python library 
for materials informatics, by using an Application Programming Interface (API) (see the XenonPy  website23). 
The original dataset consisted of 74 features of 118 elements. Since elements with large atomic numbers con-
tained many missing values, we selected 54 elements with the atomic number 1–54 corresponding to hydrogen 
to xenon that are considered sufficient to retain the periodic rule. After removing features that contained one 
or more missing values, the dataset was reduced to 39 features of 54 elements. For the 54 × 39 data matrix, each 
feature (column) was standardized to have mean 0 and variance 1. A heatmap display of the data matrix and a 
detailed description of the 39 features are provided in Supplementary Fig. S1 and S2, respectively.

Analysis procedure. We performed the PTG on two different layouts of nodes, square, and three-dimen-
sional conical layouts. In the square layout of L = 2 , we set K = 25 in the first step of PTG in which the 5× 5 
nodes were evenly arranged on the area [−1, 1]× [−1, 1] . In the second step, we increased the number of nodes 
to 9× 9 by placing new nodes at the middle points of the line segments connecting between each node. In the 
conical layout of L = 3, we first used a set of nodes with K = 25 that were arranged uniformly on the surface of 
the cone placed in the area [−1, 1]× [−1, 1]× [−1, 1] . The cone was sliced into 4 sections in the same height 
along the vertical axis. Then, 1 (vertex), 4, 8, and 12 (bottom) nodes were uniformly placed on the outer part of 
the 4 cut surfaces. In the next step, the number of slices was increased by 7, and 1 (vertex), 4, 8, 12, 16, 20, and 
24 (bottom) nodes were uniformly arranged in the same way. In both the cases, we set ξ g = ξ r = (1/3, 3) , the 
number of iteration in MCMC was set to T = 10, 000 with the burn-in step Tb = 5000 , and the number of itera-
tion in the third step of fine-tuning was set to T = 10 . See the Supplementary Information section for further 
details on the hyperparameter settings and analysis procedure.

The PTG algorithm was implemented using R codes, which are available  at24 with the element dataset. Readers 
can run the PTG algorithm with the element data used in this paper. As a demonstration, the PTG was performed 
on another three different layouts: a rectangular table with 5× 18 equally spaced grids, which is same to the 
layout of the standard periodic table, and two three-dimensional layouts taking the forms of cylinder, and cubic, 
respectively. The results are shown in Fig. S8.

Results
Results of PTG. Square table. Figure 2 shows a PTG-created layout of the 54 elements on the 9× 9 square 
lattice. Elements in each period of the standard periodic table were configured in a fan shape from the top left 
to the bottom right. The elements in the square table are clearly separated into metal and nonmetal by the red 
dashed line shown in Fig. 2. The 3d and 4d transition elements were separated and both clustered in the lower 
right. In addition, the elements were clearly clustered by groups such as alkali metals, alkaline earth metals, 

max
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−
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halogens, and noble gases. This looked like a variant of the original periodic table: the original table was folded 
around the centre on which transition elements are positioned, the two separated blocks of group 1–2 and 13–18 
in the first to third periods were brought nearer with each other while keeping away from the area of transition 
elements, and they were stored into the square table. Notably, the square table exhibited the discontinuity from 

Figure 2.  (a) The currently most common periodic table of the elements. (b) Square PTG table created from 
the training data of 39 features of the 54 elements. The elements are colour-coded by periods and numbered 
by atomic numbers. The number shown in blue below each element symbol represents the group number (the 
column in the standard periodic table).

Figure 3.  Created conical table of 54 chemical elements. The elements are colour-coded according to five 
periods and numbered by atomic numbers. A line passing through the elements is drawn in the order of 
atomic numbers. The number shown in blue below each element symbol represents the group number (the 
column in the standard periodic table). The left and right figures show the same table viewed from top and side, 
respectively.
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group 18 to group 1 as in the original table. Though results are not shown, the same discontinuity appeared fre-
quently in most square tables created in the experiments under different conditions.

Conical table. Figure 3 shows a layout on the three-dimensional conical nodes. The elements were arranged in 
a spiral structure starting from the top of the cone according to increasing atomic numbers. Viewed from the top, 
the elements were stratified concentrically by the periods of the standard periodic table. This view was slightly 
similar to the circular periodic table that was constructed in a different  study7. One block corresponded to a set 
of elements divided according to the orbital type of the electrons of the highest energy levels. In the standard 
periodic table, helium (He: an element circled by the red line in Fig. 4) is located away from the other s-block 
elements (a set of elements coloured red in Fig. 4), but in the conical table, it was located close to them. It was also 
seen that the elements in the conical table were clearly classified into typical elements and transition elements 
by the red line shown in Fig. 4. A blank space was observed between group 1 and group 18 on the conical table 
implying that there is a gap of properties between them in the feature space.

In the spiral structure viewed from above, the atomic numbers were monotonically arranged from top to 
bottom except for a few elements. The disorder appeared in group 6 to 7: chromium (Cr: atomic number = 24) 
and manganese (Mn: 25) in period 4 or molybdenum (Mo: 42) and technetium (Tc: 43) in period 5. In the coni-
cal table, the elements were arranged radially according to groups, and elements of group 1 and 2 were located 
a little away from group 3.

Interpretation. To understand how the element features have been embedded on the created tables, each 
of the features was mapped on the lower-dimensional latent space (Fig. 5). In the property landscape of the 
conical table, atomic radius increased gradually and concentrically from the top of the cone, electron negativity 
decreased gradually and concentrically from the top of the cone, and melting point gradually increased from 
right to left. The distribution of thermal conductivity looked a little more complicated than the former three, but 
continuity and unimodality still held on the surface of the three-dimensional conical table. On the other hand, in 
the square table, the landscapes of some element features, e.g. atomic radius and thermal conductivity, exhibited 
multimodality. This discontinuity arose from the unnatural layout of the elements in the two-dimensional tabu-
lar representation as in the standard periodic table. The PTG property landscapes of the 39 features are shown in 
the Supplementary Information section.

Quantitative comparison of periodic tables. To evaluate the validity of a periodic table and uncover 
the information gain and loss of the reduced representation, we considered the use of a table as an element 
descriptor in machine learning tasks. The task to be addressed was the prediction of formation energies of 
inorganic compounds. The dataset that we used for the training of random forest regressors (RF)25 was obtained 
from Materials  Project26, which is a database of materials properties generated from high-throughput first-prin-
ciples calculations. Among all inorganic compounds in Materials Project, we selected compounds that are stable 

Figure 4.  The left panel shows a conical table viewed from above. The elements are colour-coded according to 
three blocks in the standard periodic table that are indicated in the right panel. The red line in the left indicates 
the segment between transition elements and typical elements.
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and consist of elements with the atomic number 1–54 (H to Xe). The dataset consisted of the formation energies 
per atom of 12,373 inorganic compounds.

The objective here was to train an RF that describes the formation energy as a function of the conical descrip-
tor φ(S) obtained by composing S and the three-dimensional coordinates of the elements in the conical table. This 
is described in the Methods section above. For comparison, we built four different models using the descriptors 
based on the two-dimensional coordinates in the created square table, the standard periodic table, PCA, and 
t-SNE, respectively.

We performed the five-fold cross-validation on the 12,373 samples for the six types of descriptors. As shown 
in Fig. 6, the conical PTG achieved a mean absolute error (MAE) of 0.464 eV/atom and a root mean square 
error (RMSE) of 0.643 eV/atom, whereas the MAE and the RMSE of the square PTG and the standard periodic 

Figure 5.  Property landscapes of atomic radius (Rahm et al.27), electron negativity, melting point, and thermal 
conductivity at 25 ℃ that are embedded in the latent spaces. The heatmaps are laid on (a) the square table in 
Fig. 2 and (b) the conical table (top view) in Fig. 3.

Figure 6.  Performance of the prediction of the formation energy per atom for the models using six different 
descriptors. The vertical axis indicates cross-validated MAE and RMSE of RF regressors trained with the six 
different descriptors obtained from the coordinates of elements in the representation made by t-SNE and PCA 
(corresponding to top-left and top-right in Fig. S3, respectively), the standard periodic table, the square PTG 
table, the conical PTG table, and the complete set of the 39-dimensional feature that were used to build the 
PTG table, respectively. The error bars denote the standard deviations in five independent trials of the cross-
validation (the error bars are invisible because of substantially small scales).
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table were 0.533 eV/atom and 0.719 eV/atom, and 0.549 eV/atom and 0.734 eV/atom, respectively. The models 
based on PCA and t-SNE gave the MAE of 0.631 eV/atom and 0.667 eV/atom respectively, and the RMSE of 
0.830 eV/atom and 0.859 eV/atom respectively, which were clearly less accurate in their predictions. Finally, the 
model based on the complete set of the 39-dimensional feature gave the MAE of 0.197 eV/atom and the RMSE 
of 0.311 eV/atom (This is added to show how the overall information being retained by the tables). In summary, 
the square PTG was slightly superior to the standard periodic table, but the conical PTG table outperformed the 
standard periodic table, the square PTG, PCA, and t-SNE, respectively.

A detailed investigation of the prediction results provided some insights into the difference in information 
compression between the three-dimensional conical table and the standard periodic table. We focused on a subset 
of the compounds used in the validation, hereafter denoted by Dcone (i.e. the conical descriptor dominant set), 
that had the MAE values less than 0.3 eV/atom for the conical descriptor, but 1.0 eV/atom greater than the conical 
descriptor for the standard periodic table. Likewise, we identified Dstandard with the MAE values less than 0.3 eV/
atom for the standard periodic table, but 1.0 eV/atom greater than the standard periodic table for the conical 
table. We counted the frequency of a chemical element in Dcone and Dstandard , and evaluated the enrichment 
of the element by comparing its expected frequency calculated with the background, i.e. the number of occur-
rence in the overall population (the 12,373 compounds in Materials Project). As shown in Fig. 7, a significantly 
enriched group in Dcone comprised transition elements in the fourth period that correspond to atomic number 
21–29. Aluminium (Al) was also enriched in Dcone (Fig. 7: a set of elements circled by a blue line). Notably, 
these over-represented elements formed a cluster in the created conical table (Fig. 4: a set of elements circled by 
a blue line). On the other hand, hydrogen (H) was significantly enriched in Dstandard (Fig. 7: an element circled 
by green line). H is located just above lithium (Li) in the standard periodic table (Fig. 4: an element circled by a 
green line), while it was located between fluorine (F) and Li in the conical periodic table.

Concluding remarks
Since the emergence of Mendeleev’s periodic table, hundreds of redesigned tables have been created. In terms 
of machine learning, the tabular construction can be considered a task of reducing the dimensionality of high-
dimensional data. A previous study first attempted to yield the periodic table using machine learning by apply-
ing SOM to five element features available in Mendeleev’s  time9. Though the SOM successfully placed similarly 
behaved elements in neighbouring sub-regions on the table, the reported results still never reached Mendeleev’s 
achievement as it obviously failed to capture the underlying periodicity of the elements. To reach Mendeleev’s 
achievement, we attempted to develop PTG as an unsupervised machine learning algorithm that can automate 
the translation of high-dimensional data into a tabular form with varying layouts on-demand. The proposed 
method is applicable as long as a feature set and a template of the table are given. The task of compiling data into 
tabular displays is the most basic task in data analysis. Nonetheless, there has been much less research of this 
kind so far in data science.

In the previous study based on SOM, some chemical elements having similar properties occupied the same 
cell in the table due to SOM inability to guarantee non-overlapping assignments of elements. When we began 
this study, there had been no existing machine learning methods for the task of tabular construction. To the best 
of our knowledge, the PTG algorithm that we present is the first tabular constructor based on machine learning, 
yet this is a secondary contribution of this study.

In this study, we created the two types of periodic tables with three additional layouts. The square table 
was considerably similar to the currently most common periodic table, but some outstanding differences were 
observed, for example in the arrangement of H and He. These elements were placed far away in the standard 
periodic table, but their physicochemical properties were similar. The PTG suggested that these elements should 
be put closer according to the observed data. The three-dimensional layout on the cone also provided some 
insight into how the transition elements in the fourth period, including aluminium (Al), should be arranged. 
In addition, the created conical table provided a re-ordering from Cr to Mn in period 4 and from Mo to Tc in 
period 5 in the standard table.

Figure 7.  Comparison of the frequencies of chemical elements in Dcone (top: black bar chart) and Dstandard 
(bottom: black bar chart). White bar charts show the expected frequency calculated with the number of 
occurrences in the overall population.



9

Vol.:(0123456789)

Scientific Reports |         (2021) 11:4780  | https://doi.org/10.1038/s41598-021-81850-z

www.nature.com/scientificreports/

A periodic table is the most basic descriptor of chemical elements. Historically, the primary design objective 
has focused on the understandability and the interpretability to humans even at the expense of reducing some 
key detailed features. Here, we provided a new way of looking at periodic tables. The coordinates of elements put 
on a table can be considered as an element descriptor, which is also converted to a descriptor of materials. The 
quality of designed tables should be assessed on the performance of predicting physicochemical properties of 
resulting machine learning models. This study focused only on the prediction of formation energies, but more 
diverse properties should be incorporated into the design objective. Also, we focused only on the two types of 
layouts, but there are a lot of options for potentially promising layouts. Our algorithm would contribute to the 
recreation of more sophisticated tabular displays of chemical elements.

Received: 23 December 2019; Accepted: 29 December 2020

References
 1. Mendeleev, D. On the relationship of the properties of the elements to their atomic weights. Zeitschrift für Chemie 12, 405–406 

(1869).
 2. Moseley, H. G. J. The high frequency spectra of the elements. Philos. Mag. 27, 1024 (1913).
 3. Bohr, N. On the constitution of atoms and molecules. Philos. Mag. 26, 1 (1913).
 4. Marchese, F. T. The chemical table: an open dialog between visualization and design. In 12th International Conference Information 

Visualisation. 75–81. https ://doi.org/10.1109/IV.2008.79 (2008).
 5. The internet database of periodic tables https ://www.meta-synth esis.com/webbo ok/35_pt/pt_datab ase.php.
 6. Scerri, E. Trouble in the periodic table. Educat. Chem. 49, 13–17 (2012).
 7. Abubakr, M. An alternate graphical representation of periodic table of chemical elements. https ://arxiv .org/pdf/0910.0273.pdf 

(2009).
 8. Katz, G. The periodic table: an eight period table for the 21st century. Chem. Educat. 6, 324–332 (2001).
 9. Lemes, M. R. & Pino, A. D. Periodic table of the elements in the perspective of artificial neural networks. J. Chem. Educat. 88, 

1511–1514. https ://doi.org/10.1021/ed100 779v (2011).
 10. Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 43, 59–69 (1982).
 11. Schölkopf, B., Smola, A. & Müller, K. R. Kernel principal component analysis. In International Conference on Artificial Neural 

Networks 583–588 (Springer, 1997).
 12. Tenenbaum, J. B., Silva, V. & Langford, J. C. A global geometric framework for nonlinear dimensionality reduction. Science 290, 

2319–2323 (2000).
 13. Roweis, S. T. & Saul, L. K. Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000).
 14. Maaten, L. & Hinton, G. Visualizing data using t-sne. J. Mach. Learn. Res. 9, 2579–2605 (2008).
 15. Bishop, C. M., Svensén, M. & Williams, C. K. I. G. T. M. The generative topographic mapping. Neural Comput. 10, 215–234 (1998).
 16. Yamaguchi, N. GTM with latent variable dependent length-scale and variance. In International Automatic Control Conference 

(CACS) 532–538 (IEEE, 2013).
 17. Williams, C. K. I. Prediction with Gaussian process: from linear regression to linear prediction and beyond. In Learning in Graphi-

cal Models. NATO ASI Series (Series D: Behavioural and Social Sciences) (ed. Jordan, M. I.) 599–621 (Springer, Berlin, 1997).
 18. Berkelaar, M. & Others. R package ‘lpSolve’. CRAN (2015).
 19. R Development Core Team. R: a language and environment for statistical computing. http://www.R-proje ct.org (2013).
 20. Gaspar, H. A. et al. Chemical data visualization and analysis with incremental generative topographic mapping: big data challenge. 

J. Chem. Inf. Model. 55, 84–94 (2015).
 21. Zhou, Q. et al. Learning atoms for materials discovery. Proc. Natl. Acad. Sci. USA 115, 6411–6417 (2018).
 22. Xenonpy http://xenon py.readt hedoc s.io/en/lates t/ (2019).
 23. https ://githu b.com/yoshi da-lab/Xenon Py/blob/maste r/sampl es/datas et_and_prese t.ipynb .
 24. https ://githu b.com/Minor u938/PTG.
 25. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
 26. Materials Project https ://mater ialsp rojec t.org/ (2019).
 27. Rahm, M., Hoffmann, R. & Ashcroft, N. W. Atomic and ionic radii of elements. Chem. Eur. J. 22, 14625–14632 (2016).

Acknowledgements
This work was supported in part by the Materials Research by Information Integration Initiative (MI2I) of the 
Support Program for Starting Up Innovation Hub from the Japan Science and Technology Agency (JST). Ryo 
Yoshida acknowledges financial support from a Grant-in-Aid for Scientific Research (A) 19H01132 from the 
Japan Society for the Promotion of Science (JSPS), JST CREST Grant Number JPMJCR19I3, Japan, and JSPS 
KAKENHI Grant Number 19H50820.

Author contributions
M.K. and R.Y. designed the research; M.K. and R.Y. wrote the manuscript; M.K. wrote the program and per-
formed the analysis; C.L. and Y.K. interpreted the results; K.T. and R.Y. supervised the research.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material availlable at https ://doi.
org/10.1038/s4159 8-021-81850 -z.

Correspondence and requests for materials should be addressed to M.K. or R.Y.

Reprints and permissions information is available at www.nature.com/reprints.

https://doi.org/10.1109/IV.2008.79
https://www.meta-synthesis.com/webbook/35_pt/pt_database.php
https://arxiv.org/pdf/0910.0273.pdf
https://doi.org/10.1021/ed100779v
http://www.R-project.org
http://xenonpy.readthedocs.io/en/latest/
https://github.com/yoshida-lab/XenonPy/blob/master/samples/dataset_and_preset.ipynb
https://github.com/Minoru938/PTG
https://materialsproject.org/
https://doi.org/10.1038/s41598-021-81850-z
https://doi.org/10.1038/s41598-021-81850-z
www.nature.com/reprints


10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:4780  | https://doi.org/10.1038/s41598-021-81850-z

www.nature.com/scientificreports/

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2021

http://creativecommons.org/licenses/by/4.0/

	Recreation of the periodic table with an unsupervised machine learning algorithm
	Materials and methods
	Computational workflow. 
	Interpretation. 
	Periodic table as an element descriptor. 
	Data: element features. 
	Analysis procedure. 

	Results
	Results of PTG. 
	Square table. 
	Conical table. 

	Interpretation. 
	Quantitative comparison of periodic tables. 

	Concluding remarks
	References
	Acknowledgements


