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Abstract

Vessel growth integrates diverse extrinsic signals with intrinsic signaling cascades to coordi-

nate cell migration and sprouting morphogenesis. The pro-angiogenic effects of Vascular

Endothelial Growth Factor (VEGF) are carefully controlled during sprouting to generate an

efficiently patterned vascular network. We identify crosstalk between VEGF signaling and

that of the secreted ligand Semaphorin 3fb (Sema3fb), one of two zebrafish paralogs of

mammalian Sema3F. The sema3fb gene is expressed by endothelial cells in actively sprout-

ing vessels. Loss of sema3fb results in abnormally wide and stunted intersegmental vessel

artery sprouts. Although the sprouts initiate at the correct developmental time, they have a

reduced migration speed. These sprouts have persistent filopodia and abnormally spaced

nuclei suggesting dysregulated control of actin assembly. sema3fb mutants show simulta-

neously higher expression of pro-angiogenic (VEGF receptor 2 (vegfr2) and delta-like 4

(dll4)) and anti-angiogenic (soluble VEGF receptor 1 (svegfr1)/ soluble Fms Related Recep-

tor Tyrosine Kinase 1 (sflt1)) pathway components. We show increased phospho-ERK

staining in migrating angioblasts, consistent with enhanced Vegf activity. Reducing Vegfr2

kinase activity in sema3fb mutants rescues angiogenic sprouting. Our data suggest that

Sema3fb plays a critical role in promoting endothelial sprouting through modulating the

VEGF signaling pathway, acting as an autocrine cue that modulates intrinsic growth factor

signaling.

Author summary

To supply tissues with essential oxygen and nutrients, blood vessel development is care-

fully orchestrated by positive ‘go’ and negative ‘stop’ growth signals as well as directional

cues to shape patterning. Semaphorin proteins are named after the ‘Semaphore’ railway

signaling system that directed trains along the appropriate tracks. Our work highlights the

role of the Semaphorin 3fb protein in providing a pro-growth signal to developing vessels.

Semaphorin 3fb is both produced by, and acts on the precursors of blood vessels as they

migrate, a process known as autocrine control. We find that losing Semaphorin 3fb leads

to stalled blood vessel growth, indicating it normally acts as a positive signal. It acts via
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modulating the VEGF growth factor signaling pathway that in turn, controls the migra-

tion process. We propose that Semaphorin3b fine-tunes vessel growth, thus ensuring a

properly patterned network develops.

Introduction

Sprouting angiogenesis is a process by which new vessels branch and grow from existing ves-

sels, establishing the perfusion of tissues and organs. How sprouting angiogenesis is coordi-

nated at the intrinsic and extrinsic levels is one of the most important questions in vascular

biology. Vessel growth is highly dependent on Vascular Endothelial Growth Factor (VEGF)

signaling, which functions as a master regulator to promote angiogenesis, and is often dysregu-

lated in disease [1–4]. VEGF gradients within tissues are responsible for the initial triggering

and guidance of the sprouting process signaling through the endothelial-expressed tyrosine

kinase VEGF receptor 2 (VEGFR2) [5–7], activating downstream signaling including that of

the MAPK-ERK pathway. The cellular response to VEGF must be carefully regulated to ensure

the stereotypical patterning of vessels.

During sprout formation, angioblasts adopt two distinct cellular states–termed tip and

stalk- that respond to internal and external stimuli to promote and guide vessel growth [5,8,9].

Tip cells utilize filopodia to scan the environment for attractive and repulsive cues that dynam-

ically control proliferation and migration [10,11]. In contrast, trailing stalk cells have limited

filopodia, are quiescent, and contribute to forming the vascular lumen and phalanx [5,12]. Tip

and stalk identity are determined competitively through a Delta-like 4 (Dll4)-Notch lateral

inhibition pathway and VEGF signaling feedback loop. Dll4 expression is induced down-

stream of VEGF signaling in tip cells [13]. Dll4 positive cells activate the Notch receptor in

stalk cells [14–16] to down-regulate VEGF receptor expression and limit the response of the

stalk cell to environmental VEGF [17–19].

The vertebrate-specific secreted Class 3 Semaphorins (Sema3s) including Sema3a, Sema3c,

and Sema3f typically act as repulsive guidance cues to limit vessel growth. Sema3 control of

angiogenesis is evolutionarily conserved across multiple species [20–23]. The exact role of

these instructive cues can differ depending on the species and tissue expression of ligands and/

or receptors. PlexinD1 is an endothelial-specific receptor conserved in zebrafish and mouse

and integrates signals from multiple Sema3 ligands. During embryonic vessel growth, zebra-

fish Sema3a is expressed in a caudal-to-rostral gradient across each somite. Paracrine signaling

from Sema3a to its receptor PlexinD1 in the endothelium acts to spatially restrict intersegmen-

tal vessels [22]. In mouse Sema3E guides intersegmental vessel growth via PlexinD1 [20,24]. In

contrast, fish Sema3e shows endothelial expression and acts as an autocrine pro-angiogenic

factor to antagonize PlexinD1 during intersegmental vessel growth [25]. PlexinD1 also limits

responses to VEGF by increasing the expression of a soluble decoy Vegf receptor (sVegfr2/

sFlt1) [26]. sFlt1 antagonizes Vegfr2 signaling by sequestering Vegf ligand thus providing a

link between Sema-Plexin and Vegf signaling.

Sema3F is highly expressed by cultured human and mouse endothelial cells [27–30] and in

endothelial cells in scRNAseq databases [31,32]. SEMA3F typically signals through Neuropilin

receptors (NRP) to modulate migration in cell culture models [30,33]. Exogenous human

SEMA3F inhibits tumor progression and vascularization [21]. However, SEMA3F has a versa-

tile role in regulating vessel growth depending on context; it functions either as a pro-angio-

genic or anti-angiogenic cue. For instance, exogenously applied Sema3F limits aberrant

growth of mouse retinal vessels [34], and we recently showed similar anti-angiogenic functions
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for sema3fa in the zebrafish retina [35]. At the same time, Sema3F is pro-angiogenic during

placental development in mice [29,36]. There is still a limited understanding of how an endo-

thelial cell can receive the same signal, yet coordinate different downstream molecular path-

ways driving angiogenic growth. Context-dependent and tissue specific expression can further

influence cell behaviors, for example in the mouse brain Sema3E/PlexinD1 signaling switches

from attractive to repulsive depending on NRP co-receptor expression [37].

Here we investigate the role of zebrafish Sema3f in regulating angiogenic growth. We find

that sema3fb is expressed within endothelial cells of the dorsal aorta and is necessary for pro-

moting sprout migration in the trunk. We show that sema3fb regulates the expression of the

VEGF receptor vegfr2 to promote angioblast migration, as well as regulating the expression of

genes mediating feedback on Vegf signaling such as sflt1 and dll4. Together these data reveal a

new autocrine role for a secreted ligand from endothelial cells in modulating VEGF pathway

activity in angiogenic sprouting.

Results

sema3fb is expressed by developing blood vessels

To investigate the role of Sema3F in vascular angiogenesis, we use zebrafish. The zebrafish

genome contains duplicated orthologs of human SEMA3F - sema3fa and sema3fb [38]. The

stereotypic patterning of major trunk vessels in the zebrafish begins at around 20 hours post

fertilization (hpf) when angioblasts (endothelial precursors) migrate collectively from the dor-

sal aorta (DA) and sprout laterally in between each pair of somites to form the intersegmental

arteries (ISAs). The ISAs then migrate dorsally and connect to form the dorsal longitudinal

vessel (DLAV) between 30–32 hpf [39]. Using whole mount in situ hybridization (ISH), we

analyzed the expression of sema3fa and sema3fb and find non-overlapping patterns of expres-

sion in the trunk of developing embryos. sema3fb is expressed in the dorsal aorta at 26 hpf and

in ISAs by 28–30 hpf (Figs 1A and S1), similar to the endothelial expression pattern of sema3e
[25]. In contrast, its homolog sema3fa is absent from the trunk endothelium and is expressed

laterally in somites (S1 Fig). These expression patterns are consistent with published zebrafish

single-cell sequencing data showing expression of sema3fb (but not sema3fa) in pecam, tie1,

and flt1-expressing endothelial cells of developing zebrafish embryos [40]. Endothelial expres-

sion of Sema3f in murine and human and of sema3fb in zebrafish vasculature is supportive of

the conserved role for Sema3f in endothelial cells.

Loss of sema3fb results in angiogenic deficits

To investigate the endogenous role of Sema3fb in regulating vessel growth in an intact animal,

we used the sema3fbca305 CRISPR mutant with a 19 base pair deletion in exon1 that is pre-

dicted to produce a premature truncated protein (32 amino acids in length), deleting most of

the Sema domain which is necessary for intracellular signaling [41,42]. To visualize real-time

vascular development, we crossed sema3fbca305 loss of function mutants to Tg(kdrl:mCherry)ci5

transgenic fish that fluorescently mark endothelial cells, and generated wild type, heterozygote,

and mutant siblings. We analyzed angiogenic sprouting at 30hpf when ISA sprouts first con-

nect to form the DLAV (Fig 1B) and observed angiogenic deficits in both sema3fbca305/+ het-

erozygotes (Fig 1D) and sema3fbca305 homozygous mutants (Fig 1E) as compared to wild type

siblings (Fig 1C). Specifically, we note a significant reduction in the average length of the ISA

sprouts at 30 hpf from 106 μm in wild type to 91 μm and 92 μm in heterozygote and homozy-

gote mutant embryos, respectively (Fig 1F). Second, the percentage of ISAs connected at the

DLAV is reduced from 80% in wild type to 50% in heterozygote and 40% in homozygote

mutants (Fig 1G). Lastly, ventral sprout diameter is increased from 7 μm in wild type to
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8.5 μm in heterozygotes and 9 μm in homozygotes (Fig 1H). These data suggest Sema3fb nor-

mally promotes angiogenic migration, resulting in stunted wider sprouts when lost.

We observed that losing a single mutated allele of sema3fb results in highly penetrant vascu-

lar defects in the developing trunk, with a similar magnitude to homozygous loss of the gene.

This could result if the loss of function of sema3fb is haploinsufficient. To induce a loss of func-

tion by an independent method, we injected 1-cell stage embryos with 1ng of a validated mor-

pholino antisense oligonucleotide (morpholino, MO) against sema3fb [43]. sema3fb
morphants have an identical phenotype to sema3fbca305 mutants at 30 hpf, with no additional

defects in morpholino-injected sema3fbca305 mutants suggesting that the sema3fb mutant is a

Fig 1. Endothelial expressed sema3fb promotes endothelial cell sprouting. A) Lateral view of sema3fb expression at 30hpf by ISH. Inset shows expression in the

dorsal aorta (DA) and intersegmental arteries (ISAs). B) Schematic representation of the zebrafish vasculature at 30 hpf. Inset: The ISAs sprout from the DA and connect

to form the Dorsal Longitudinal Anastomotic Vessel (DLAV) by 30 hpf. C-E) Lateral confocal images of the trunk vasculature (black) of 30 hpf (C) wild type sibling

(sib), (D) heterozygous (het) sema3fbca305/+ and (E) homozygous (hom) sema3fbca305 mutants. Gaps in the DLAV (blue asterisks) and truncated ISA sprouts (yellow

arrowhead) are noted. Abbreviations: DA (Dorsal Aorta), and PCV (Posterior Cardinal Vein). Anterior, left; Dorsal, up. Scale bar, 100 μm. F) ISA Sprout length at 30

hpf in wild type (WT) sibs (mean length of 106±10 μm), het sema3fbca305/+ (92±19μm), and hom sema3fbca305 (91±18μm), ����p<0.0001. G) Percentage of ISA sprouts

connecting to form DLAV at 30 hpf. WT sib (mean 83% connected), het sema3fbca305/+ (50% connected) and hom sema3fbca305 (42% connected), ����p<0.0001. H)

Quantification of the cross-sectional diameter of ISA sprout at the level of the horizontal myoseptum (HM; dashed red line). WT sib (mean diameter of 6.9±2 μm), het

sema3fbca305/+ (8.5±2.7 μm), and hom sema3fbca305 (9.2±2.9 μm)., ��p<0.0016 and ���p = 0.0002. F-G) N = 3; WT sib = 11 embryos (n = 86 ISAs), het sema3fbca305/+ =

22 embryos (n = 163 ISAs), and hom sema3fbca305 = 9 embryos (n = 75 ISAs), 2-Way ANOVA Tukey’s multiple comparisons test. Error bars = ±SD.

https://doi.org/10.1371/journal.pgen.1009769.g001
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loss of function allele (S1 Fig). As a note, haploinsufficiency is also observed for members of

the Vegf pathway including the Vegf and Dll4 genes, both critical for angiogenesis.

As the sema3fb paralog sema3fa is not expressed in trunk vasculature (S1 Fig), we did not

expect the loss of sema3fa to affect ISA growth. Indeed, sema3faca304 mutants display normal

sprouting and connections (S1 Fig). There also does not appear to be genetic compensation by

sema3fa, as sema3faca304 mutants injected with sema3fb morpholino show no additional

defects over sema3fbca305 mutants or morphants (S1 Fig). These results suggest that only one

of the two zebrafish Sema3f orthologs, sema3fb, regulates angiogenic sprouting in the trunk at

this developmental stage.

Despite Semaphorin involvement in axon and angioblast guidance in other systems, we

find no significant changes in sprout direction between sema3fb heterozygotes or homozygous

mutants as observed by the position of sprouts with reference to laminin staining at the myo-

tendinous junctions that separate somites (S2 Fig). Like other angiogenic mutants with stalled

migration [44], sema3fb mutant vessels eventually recover, likely through compensation by

unknown genes and pathways, with no noticeable differences in vessel patterning at 48 hpf

(S3 Fig).

We did not expect blood flow to contribute to sema3fb mutant ISA phenotypes as the

migration of cells forming primary ISAs between 20–30 hpf occurs independently of blood

flow [45,46]. However, as sema3fbca305 mutants have a heart function defect [41] we next tested

whether there were effects of blood flow on the phenotype. We injected 1ng of a commonly

used translation blocking morpholino against cardiac troponin 2a (tnnt2aMO; [47]) in wild

type and sema3fb mutants at the one-cell stage, to limit heart contractility and blood flow. In

tnnt2 MO-injected wildtypes, ISA growth is unaffected by the loss of blood flow as previously

reported. Similarly, there is no significant difference in vessel growth or numbers of connec-

tions in the tnnt2a MO-injected sema3fb mutants as compared to their uninjected counter-

parts (S2 Fig). These data demonstrate the angiogenic defects in sema3fb mutants at 30 hpf are

not a result of modified blood flow. We note that uninjected sema3fbca305 fish show a reduction

in the DA diameter (S2 Fig), an effect also seen in tnnt2a morphants. This suggests that axial

vessel diameter is sensitive to cardiac output at early time points while sprouting angiogenesis

is not. Thus, our data to this point suggest that Sema3fb normally promotes ISA sprouting

from the dorsal aorta, with no apparent role in spatial guidance.

Loss of sema3fb disrupts ISA migration and endothelial nuclei morphology

The stunted morphology of sema3fbca30 ISA vessels at 30 hpf suggests there might be delays in

EC sprout initiation and/or migration. To examine whether these are impacted by the loss of

Sema3fb, we crossed sema3fbca305 Tg(kdrl:mCherry) fish to the Tg(fli1a:nEGFP) line, which

labels endothelial nuclei (Fig 2A). Using time-lapse confocal imaging we tracked ISA vessel

elongation between wild type and sema3fbca305 embryos from 25–29 hpf (Fig 2A and 2B). We

find no significant difference in sprout initiation from 25.0–25.5 hpf in either wild type or

sema3fbca305 mutant ISAs, both having an average length of 54 μm. However, as sprouts begin

to elongate, the average ISA migration distance for mutants starts to fall behind wild type dis-

tances by 26. 5 hpf and vessels are shorter at all subsequent time points analyzed, with an aver-

age 5–9 μm difference in length between wild type and mutant (Fig 2B and S1 Table). ISA

angioblast migration speed from 25–26 hpf averages 0.21 μm/min (S4 Fig) and slows to

0.15 μm/min between 26–27 hpf (Fig 2C) before increasing to 0.19 μm/min by 27–28 hpf (Fig

2D) and continues at 0.16 μm/min between 28–29 hpf (Fig 2E). In contrast, the average rate of

migration for sem3fbca305 vessels is significantly reduced to an average of 0.12–0.13 μm/min

from 25–28 hpf when compared to wild type (Figs 2C, 2D and S4). We also measured the lead
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Fig 2. Loss of sema3fb disrupts ISA migration. A) Lateral confocal time-lapse images from 25–29 hpf double transgenic Tg(kdrl:

mCherry;fli1a:nEGFP) endothelial cells (magenta) and nuclei (white). The location of the horizontal myoseptum (green dashed line) and

DLAV (blue dashed line) are noted to highlight ISA growth over time. Scale bar, 50 μm. B) Average ISA Sprout Length at 30-minute

intervals from 25–29 hpf: WT vs sema3fbca305 at 25.0 hpf, p = 0.474; at 25.5 hpf p = 0.262; at 26.0 hpf p = 0.081; at 26.5 hpf �p = 0.023; at

27.0 hpf �p = 0.020; at 27.5 hpf ��p = 0.030; at 28.0 hpf ��p = 0.008; at 28.5 hpf ��p = 0.007; at 29.0 hpf �p = 0.024. C-E) Quantification of
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angioblast (tip cell) distance from the DA at hourly intervals as a measure of EC motility and

similarly find no difference in the distance traveled between wild type and mutant vessels at

25–26 hpf (S4 Fig). There is a significant difference by 27hpf, with an average distance traveled

of 55 μm for wild type at 27 hpf (Fig 2F) to 70 μm at 28 hpf (Fig 2G), while mutants only reach

47 μm and 55 μm respectively. By 29 hpf mutants migrate an average of 69 μm from the DA

whereas wildtype angioblasts migrate significantly further and reach 85 μm (Fig 2H). Together

these data suggest that sprout initiation is normal, but angioblast movement is significantly

delayed with loss of sema3fb.Alongside the stunted morphology, we observed that loss of

sema3fb resulted in wider vessels (Fig 1H). Previous studies in zebrafish have linked increased

ISA width to changes in EC proliferation [48–50]. To determine whether changes in cell num-

ber could account for the change in vessel diameter, we assayed ISA sprout formation in the

Tg(kdrl:mCherry); (fli1a:nEGFP) lines (Fig 2I). ISA growth follows a stereotypic series of angio-

blast movements initiated by the migration of an angioblast tip cell from the dorsal aorta fol-

lowed by a second trailing stalk cell. Once the leading angioblast reaches the horizontal

myoseptum, it typically divides and a single daughter cell migrates dorsally to form the DLAV

[25,51,52]. This process results in an average of 3–4 endothelial cell nuclei per ISA sprout (Fig

2B). sema3fbca305 mutants and heterozygotes have a similar number of endothelial cells per

vessel as wild type animals (Fig 2J). sema3fb morphants also have the same number of endothe-

lial nuclei per vessel as wild type (S4 Fig), suggesting that loss of sema3fb does not affect endo-

thelial cell number.

Analysis of the distance between endothelial nuclei, however, revealed a significant decrease

in the spacing between endothelial cell nuclei in sema3fb mutants (Fig 2I and 2K). Reduced

spacing gives the appearance of nuclear clumps. Clump location below the horizontal myosep-

tum correlates with an increased width of ISAs (Fig 1H). We also find that endothelial nuclei

are significantly larger in mutants than in wild type controls, increased from an average of

49 μm2 in wild type to 60 μm2 heterozygous and homozygous mutants (Fig 2L). The increase

in nuclear size is also observed in sema3fb morphants (S4 Fig). Taken together, this data sug-

gests that sema3fb mutant sprouts have the correct number of cells, can migrate along the cor-

rect path, but do not migrate as far as wild type sprouts. By 30hpf, stalled growth disrupts ISA

elongation resulting in aberrant cell and nuclear morphology.

sema3fb mutants display persistent filopodia

As Sema3F signaling controls actin dynamics, we reasoned that angioblast migration defects

might also be accompanied by a change in filopodia activity. As ISAs begin to connect by 28

ISA migration speeds (μm/min). C) At 26–27 hpf WT = 0.15 μm/min and sema3fbca305 = 0.12 μm/min, p = 0.157. D) At 27–28 hpf

WT = 0.19 μm/min and sema3fbca305 = 0.13 μm/min, �p = 0.020. E) At 28–29 hpf: WT = 0.16 μm/min and sema3fbca305 = 0.19 μm/min,

p = 0.461. B-E) N = 2; WT = 7 embryos (n = 33 ISAs) and sema3fbca305 = 7 embryos (n = 35 ISAs), Unpaired t-test with Welch’s

correction. F-H) Lead angioblast distance from DA at 1hr intervals. F) At 27 hpf mean distance from DA: WT = 55.12±14.06 μm and

sema3fbca305 = 47.18±5.75 μm, �p = 0.030. G) At 28 hpf mean distance from DA: WT = 71.57±15.47 μm and sema3fbca305 = 55.47

±9.65 μm, ���p = 0.0008. H) At 29 hpf mean distance from DA: WT = 85.19±18.03 μm and sema3fbca305 = 68.36±16.64 μm, ��p = 0.008.

F-H) N = 1: WT = 4 embryos (20 ISAs) and sema3fbca305 = 3 embryos (15 ISAs), Unpaired t-test with Welch’s correction. I) Lateral

confocal images of 30hpf double transgenic Tg(kdrl:mCherry;fli1a:nEGFP) endothelial cells (ECs, magenta) and nuclei (white). EC nuclei

clumps (blue arrows/arrowheads) are noted. Scale bar, 100 μm. Inset: Schematics show method for measuring distance between EC nuclei

and highlight EC nuclei clumps in ISAs. J) Number of EC nuclei (angioblasts) per ISAs at 30 hpf. WT (mean of 3 nuclei/ISA),

heterozygous (het) sema3fbca305/+ (3 nuclei/ISA), and homozygous (hom) sema3fbca305 (3 nuclei/ISA). K) Quantification of inter-

endothelial nuclei spacing per ISA at 30 hpf. WT (mean 28±13 μm), het sema3fbca305/+ (23±13μm), and hom sema3fbca305 (22±14 μm),
���p = 0.0002 and ����p<0.0001. L) Quantification of Average Area EC fli1a:nEGFP positive nuclei (angioblasts) per ISAs at 30 hpf. WT

(mean 49±18 μm2), het sema3fbca305/+ (mean 60±24 μm2), and hom sema3fbca305 (mean 56±23 μm2),��p = 0.0069 and ����p<0.0001. I-L)

N = 3; WT = 14 embryos (n = 138 ISAs), het sema3fbca305/+ = 19 embryos (n = 190 ISAs), and homsema3fbca305 = 11 embryos (n = 110

ISAs),. 2-Way ANOVA Tukey’s multiple comparisons test Error bars = ±SD.

https://doi.org/10.1371/journal.pgen.1009769.g002
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hpf, through a process termed anastomosis, actin-rich filopodia projections resolve to allow

stable vessel connections forming a patent DLAV. In sema3fbca305 mutants, a small proportion

of ISAs can reach and connect to form the DLAV by 30 hpf (Fig 1G). To assay whether loss of

sema3fb can impact the vessel connection process, we injected wild type and sema3fbca305

mutants with an endothelial-specific F-actin reporter, Tol2(fli1epLifeact-EGFP), in which fila-

mentous actin (F-actin), a major component of the cytoskeleton, is labeled with GFP to visual-

ize filopodia on migrating endothelial cells (Figs 3A and S5). We selected GFP positive ISA

sprouts that have reached the level of the DLAV, and assayed filopodia above the horizontal

myoseptum but below the DLAV (S5 Fig) to capture filopodia projections along the upper seg-

ment of each ISA. These filopodia should rapidly disappear once the ISV is connected from

around 28 hpf. Time-lapse confocal imaging of mosaically labeled sprouts from 28–30 hpf in

stage-matched embryos revealed that wild type sprouts have filopodia when they first reach

the DLAV but filopodial numbers gradually reduce over time as the cells lumenize and become

quiescent once connected to neighboring vessels (Figs 3B and S5). At 28hpf, wild type and

sema3fb mutants have the same number of filopodia per ISA (average of 9 filopodia). By 29hpf,

wild type sprouts have an average of 5 filopodia, while sema3fb mutants have 7. By 30hpf,

there is an average of 4 filopodia remaining in wild type, while sema3fb mutants maintain

comparable numbers to the earlier time points (Fig 3B and 3C). These data suggest that in the

few sprouts of sema3fb mutants that reach the DLAV, cells fail to restrict filopodia formation

at the appropriate time.

VEGF signaling is altered in sema3fb mutants

To investigate the molecular mechanisms controlling migration downstream of sema3fb we

assayed gene expression in FACS-sorted Tg(kdrl:mCherry) wildtype and sema3fb mutant

endothelial cells by Taqman RT-qPCR. We analyzed the expression of a key set of endothelial

cell markers that regulate angiogenic sprouting (Figs 4A and S6). Analysis of FACs-sorted

endothelial cells reveals a 4.3-fold increase in vegfr2/kdrl and a 2.3-fold increase in dll4 in

sema3fb mutant endothelial cells as compared to controls. Comparison of the fluorescence

intensity of transgenic Tg(kdrl:mCherry) also revealed a significant increase in mCherry fluo-

rescence in live sema3fbca305 mutants (S6 Fig). We find no significant difference in notch2 or

jagged1a or the vegfr2 ligand vegfab expression (Fig 4A). Surprisingly, we also find a significant

near 3-fold increase in the expression of the decoy receptor soluble vegfr1/soluble flt1 (sflt1) in

mutants as compared to controls (Fig 4B). As an independent experiment, we confirmed upre-

gulated vegfr2 and sflt1 expression in mutants using quantitative fluorescent ISH (FISH) (Fig

4B and 4C). We next assayed the expression of Phospho-ERK (pERK), a downstream effector

of VEGF signaling in vascular sprouting. Although there is no difference in the number of

ISAs with a positive pERK signal between wildtype and mutant (Fig 4D and 4E), we find that

there is a significant increase in fluorescent intensity of pERK positive EC nuclei in mutant

ISV angioblasts (Fig 4D and 4F), which is supportive of increased Vegfr2 pathway activity in

ECs (Fig 4D and 4E). These data suggest the loss of Sema3fb results in upregulation of both

VEGF-pathway promoting (vegfr2/dll4) and VEGF-inhibiting (sflt1) genes in endothelial cells,

which could account for disrupted angioblast migration.

To test whether the angiogenic defects in sema3fb mutants are the result of increased

Vegfr2 activity, we treated wild type and sema3fb mutant embryos with 0.5 μM SU5416, a

selective Vegfr2 inhibitor, from 20–30 hpf (Fig 4G). Inhibitor-treated wild type embryos have

stunted sprouts as reported (104 μm in untreated wildtype vs. 50 μm in treated wild type

embryos), but sema3fb mutants are unaffected with no significant changes in sprout length

(average length 82 μm in both treated and untreated mutants; S6 Fig). This suggests that
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increased vegfr2 expression in sema3fb mutants renders them less sensitive to pharmacological

Vegfr2 inhibition as compared to wild type embryos. However, we reasoned that this inhibitor

dose severely disrupts VEGF signaling and vessel growth and may mask more subtle changes

in sprout dynamics. Therefore, we lowered the SU4516 concentration to a sub-optimal dose

that others have used (low-dose: 0.2μM SU5416) to induce minimal angiogenic deficits (Fig

4H) [53]. As expected, in wild type embryos low-dose treatment results in a mild reduction in

sprout length from 104 μm to 92 μm and a 60% decrease in the number of ISA connections to

the DLAV (Fig 4I and 4J). However, in sema3fb mutants, sub-optimal Vegf inhibition

Fig 3. sema3fb mutants display aberrant and persistent filopodia in the dorsal ISA. A) Lateral images of the trunk vasculature with mosaic endothelial expression of

the transgene fli1ep: Lifeact-EGFP highlighting actin (green) and endothelial cytoplasm using Tg(kdrl:mCherry; white) in ISAs at 30 hpf. DLAV gaps (blue asterisks)

and truncated ISA sprouts (yellow arrowheads) are marked. Inset shows an enlarged view of single ISAs with Lifeact-EGFP expression that have reached the level of

DLAV at 30hpf. Scale bar, 100 μm. B) Representative still images from time-lapse imaging from 28–30 hpf. Enlarged still images of stage-matched embryos with mosaic

Lifeact-EGFP (green) in endothelial cells spanning the ISA and reaching the level of the DLAV by 28 hpf in both wild type and sema3fbca305 embryo. Endothelial

cytoplasm is shown in red Tg(kdrl:mCherry). White arrowheads indicate filopodia present in connecting ISA sprouts within the boxed regions below the DLAV. C)

Quantification of number Lifeact-EGFP positive filopodia on ISAs from 28–30 hpf from embryos of the indicated genotypes. N = 3: WT (14 EGFP positive ISAs/ 30

ISAs total, 6 embryos, mean of 4 filopodia/ISA) and homozygous sema3fbca305 (18 EGFP positive ISAs/35s ISAs total, 7 embryos, mean of 7 filopodia/ISA). Unpaired t-

test with Welch’s correction,�p = 0.03 and ���p = 0.0002. Error bars = ±SD.

https://doi.org/10.1371/journal.pgen.1009769.g003
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significantly rescues sema3fb mutant defects. The length of ISAs in treated sema3fb mutants

increases to 98 μm from an average of 85 μm in untreated mutants, restoring them to an ISA

length indistinguishable from wildtype (Fig 4I). Connections at the DLAV are also signifi-

cantly increased from 46% in untreated mutants to 73% in treated embryos, which is compara-

ble to untreated wild types and significantly increased beyond treated wildtypes. (Fig 4J). We

also applied a second VEGF inhibitor, DMH4 at a low dose to partially block ISA growth

[54,55]. Similar to SU4516 treatment, wild type vessels have decreased in length following

treatment with DMH4. Interestingly, although treatment with 15 μM or 25 μM DMH4 also

reduces vessel length in sema3fb mutants, ISAs are still able to sprout an average 23 μm or

35 μm further than the treated wild type vessels, at each dose respectively (S6 Fig). Thus, slight

reductions in Vegfr2 activity can restore sema3fb endothelial migration. Our data shows that

the increase in vegfr2 expression in sema3fb mutants has functional consequences on sprout

migration.

Discussion

Vegf activity must be tightly regulated during embryonic development and homeostasis

[18,56–59]. This control is exquisite, and the zebrafish model has uncovered many regulatory

layers of Vegfr2 pathway activity in endothelial cells [14,48,60]. Here we find that sema3fb

offers an additional layer of control to VEGF signaling. Zebrafish sema3fb mRNA is expressed

by developing trunk angioblasts. Loss of sema3fb stalls vessel migration and disrupts ISA mor-

phology, resulting in wider and shorter ISAs in which nuclei are clumped and larger. Expres-

sion analysis revealed upregulation of vegfr2 and dll4 and a significant increase in pERK

staining intensity in mutant endothelial cells. We also observed upregulation of an inhibitory

molecule svegfr1/sflt1 in mutant endothelium, suggesting sema3fb signaling also normally

represses sflt1 expression. Taken together, our results from an intact animal model suggest

Sema3fb acts in an autocrine manner to regulate Vegf-mediated angiogenesis (Model; Fig 5).

In cultured endothelial cells, the anti-angiogenic effects of SEMA3F are primarily mediated

through competitive binding of SEMA3F to NRP2 to antagonize VEGF-induced proliferation

and migration, as observed in both cultured human umbilical vein endothelial cells (HUVECs)

[61,62] and porcine aortic endothelial cells [63]. The SEMA3F-NRP pathway generally also

opposes VEGF activity in tumor models, where a loss of SEMA3F leads to gross vessel over-

growth [29,63]. However, in our intact zebrafish sema3fb loss of function model, we were sur-

prised to find reduced vessel growth despite upregulation of the vegfr2 gene and an increase in

Fig 4. sema3fb mutants have increased VEGF receptor expression and activity. A) RT-qPCR analysis of key endothelial markers in wild type and sema3fbca305 FACS

isolated Tg(kdrl:mCherry) positive endothelial cells at 26hpf (inset). N = 2, 2-Way ANOVA Tukey’s multiple comparisons test, �p = 0.0184, ��p = 0.0021, and
����p<0.0001 (Refer to S3 Table for fold-change details). B) Fluorescent HCR in situ of 30 hpf whole-mount wild type and embryos sema3fbca305 embryos.

Representative images show punctate overlapping expression of vegfr2 (white) and sflt1 (red) mRNA transcripts within the DA and ISAs (dashed white outline). C)

Quantification of HCR in situ pixel density in ISAs and DA, wild type (WT, n = 3 embryos, 15 ISAs) and sema3fbca305 (n = 3 embryos, 15 ISAs), Unpaired Student’s t-

test with Welch’s correction WT vs. sema3fbca305: vegfr2 �p = 0.047 and sflt1 �p = 0.036. D) Whole-mount Immunostaining for phosphoERK (pERK) in WT and

sema3fbca305 embryos fixed at 30 hpf. Representative images show Tg(kdrl:mCherry) positive ISAs (purple) and pERK positive ECs (green). Inset: pERK positive ISAs are

traced using kdrl:mCherry expression (dashed white line) and dashed oval outlines highlight individual ECs with pERK staining within each ISA. E) Number of pERK

positive ISAs at 30hpf. F) Quantification of average pERK fluorescence intensity in embryos at 30 hpf. D-E) N = 3, WT (n = 21 embryos, mean of 5 pERK positive ISAs),

and homzygous sema3fbca305 (n = 19 embryos, mean of 5 pERK positive ISAs). 2-Way ANOVA Tukey’s multiple comparisons test, �p = 0.012. G) Schematic of Vegfr2

inhibition time course, embryos are treated at 20 hpf with either 0.1%DMSO or Vegfr2 inhibitors and removed from treatment for live imaging at 30hpf. H)

Representative confocal images of trunk vasculature (black) of 30 hpf embryos treated with DMSO control or 0.2 μM SU5416. DLAV gaps (blue asterisks) and truncated

ISA (yellow arrowheads) are marked. Scale bar, 100 μm. I) Length of ISA sprouts in treated embryos at 30 hpf: WT + DMSO (n = 25 ISAs, mean of 104±9 μm), WT

+ 0.2 μM SU5416 (n = 25 ISAs, mean of 92±17 μm), sema3fbca305 + DMSO (n = 30 ISAs, mean of 85±17 μm), and sema3fbca305 + 0.2μm SU5416 (n = 30 ISAs, mean of

98±11 μm) ��p = 0.0039 and ����p<0.0001. J) Percentage of ISA sprouts connected at DLAV in treated embryos at 30 hpf. WT + DMSO (n = 25 ISA-DLAV, 5 embryos,

mean 88±11%), WT + 0.2μM SU5416 (n = 25 ISA-DLAV, mean 32±11%), sema3fbca305 + DMSO (n = 30 ISA-DLAV, mean 46±16%), and sema3fbca305 +0.2 μm SU5416

(n = 30 ISA-DLAV, mean 73±10%), ��p = 0.0084, ���p = 0.0002, and ����p<0.0001. I-J N = 2; WT+DMSO = 5 embryos, WT + 0.2 μM SU5416 = 5 embryos,

sema3fbca305 + DMSO = 6 embryos, sema3fbca305 + 0.2 μm SU5416 = 6 embryos,. 2-Way ANOVA Tukey’s multiple comparisons test. Error Bars = ±SD.

https://doi.org/10.1371/journal.pgen.1009769.g004
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Vegfr2 activity. We find that inhibiting VEGF signaling rescued endothelial migration, sug-

gesting that upregulation of Vegf signaling contributes to the observed phenotype. Intrigu-

ingly, the stunted sprout morphology of sema3fb mutants is also reflective of the phenotype

reported for a gain of function for the inhibitory molecule sflt1 [58]. Plexin-Semaphorin sig-

naling is complex, with multiple co-expressed ligands and receptors present in cells that can

mediate either additive or opposing effects. The Plexin receptor for Sema3f in zebrafish is not

yet known, but in cell culture, Sema3F binds to PlexinA family receptors. PlexinD1 is a major

endothelial cell receptor for other Sema3’s (Sema3A, Sema3E) in mouse and has an exuberant

angiogenic sprouting phenotype when lost. The fish sema3fb mutant phenotype appears oppo-

site to that of plexind1 loss of function [22,52]. Further, both sema3fb and plexind1 regulate the

expression of the decoy receptor sflt1, but in opposing, directions, suggesting their signaling

has opposing action on common downstream pathways to fine-tune angiogenesis.

Increases in VEGF activity are reported to paradoxically increase both pro-angiogenic sig-

naling via Dll4 as well as the expression of anti-angiogenic molecules such as sFlt1 in cell cul-

ture models [53]. Where excessive VEGFR-2 stimulation is reported to increase sFLT1

expression in HUVECs to limit inappropriate vessel growth [64,65]. If this feedback regulation

is also at play in zebrafish, reducing excessive Vegfr2 activity in sema3fb mutants would be

expected to decrease levels of sFlt1, thus allowing sprouting to occur. It is not obvious from the

results of our expression analysis whether the stalled vessel phenotype occurs from an increase

in Vegf signaling (upregulated vegfr2 and pERK) or inhibited Vegf signaling (increased sflt1).

Although we demonstrate that reducing Vegf signaling rescues the angioblast migration defect,

we lack the tools to test protein levels of sFlt1, which might have distinct regulation, apart from

Fig 5. Model of sema3fb action in sprouting vessels. Sema3fb is expressed by endothelial cells during angiogenic sprout formation

and acts through an autocrine mechanism to suppress Vegfr2 expression and maintain endothelial cell dynamics via controlling Dll4

expression and Notch signaling in addition to modulation of pERK. Loss of sema3fb increases Vegfr2, pERK, Dll4, and sFlt1

expression. This results in aberrant cellular morphology with wider sprouts, persistent filopodia, and larger nuclei. The changes in

nuclear size and disrupted sprouting suggest a possible role for Sema3b to limit Vegf-mediated induction of downstream pERK

signaling.

https://doi.org/10.1371/journal.pgen.1009769.g005
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the mRNA levels we could measure here. The sFlt1 protein might contribute to our observed

phenotype in ways that we cannot assess in vivo. For instance, the relative abundance of

ligands (Sema3f), receptors (Nrp and Plexin), and co-receptor (Nrp2, note this is also a Vegfr2

co-receptor) present in a sprouting endothelial cell may influence intrinsic signaling responses.

Increased sflt1 mRNA may result in increased sFlt1 protein expression downstream of Vegfr2

upregulation, similar to what is observed in HUVEC cells [64]. However, increased mRNA

may not result in increased protein, and protein subcellular localization may also play a role in

the signaling. For instance, Vegf directly controls the expression of PlexinD1 to spatially

restrict endothelial tip cell responses to Sema3e in retinal murine models [24]. Further, in cell

culture models, there is higher SEMA3F expression on the leading edge of the cell that may

influence directional tip cell migration of HUVECs [61,66].

Semaphorins traditionally play guidance roles to control vessel patterning. Interestingly,

loss of Sema3fb does not affect spatial guidance during early angiogenesis. This either suggests

that Sema3f signals through a different receptor or is one of several ligands of PlexinD1 in zeb-

rafish, with other ligands conveying spatial guidance information. Indeed the synergy between

Sema3A and Sema3F in HUVECs [36], suggests a combination of ligands more effectively

antagonizes VEGF-mediated migration, and thus multiple Sema3s may control both the

growth and trajectory of a sprout in the zebrafish trunk [67]. Studies in mouse and zebrafish

demonstrate that inhibition of VEGFR2 results in dysregulation of actinomycin contractility

necessary for endothelial cell elongation and vessel connections [68,69], similar to the pheno-

type we observe in sema3fb mutants. Sequestration of VEGF by SFLT1 further diminishes cell

responses to limit endothelial cell size and actin rearrangements [70–72].

In cultured cells, exogenous SEMA3F controls F-actin/stress fiber formation, cell size, and

elongation through disrupting the mTOR-RHOA/GTPase axis [30]. Although filopodia are

dispensable for sprout initiation in zebrafish, assembly of F-actin into filopodia influences the

speed, direction of migration, and anastomosis of endothelial cells into a connected vessel bed

[73,74]. We observe that filopodia persist in sema3fb mutants (i.e., are abnormally stable). Loss

of sema3fb may therefore hinder a pathway that destabilizes filopodia and vessel anastomosis

may be impeded by underlying actin assembly defects. This is in line with the classic definition

of Semas in regulating cell size and collapse of the cytoskeleton [11,75]. Our data applies to the

role of Sema3fb in the initial formation and early elongation of ISA sprouts. In later develop-

ment, RhoA- dependent mechanisms [76] control arterial lumen diameter and remodeling in

response to changes in Vegf bioavailability and sFlt localization. Sema3fb may therefore have

additional roles in regulating structural vessel adaptations; however, we were unable to assay

late changes to vessel morphology in sema3fb mutants as they recover by this stage.

Here we demonstrate an autocrine role for Sema3f to modulate Vegf function in vivo.

Together, our data suggest that Sema3fb acts to limit both positive (Vegfr2) and negative

(sFlt1) signals, allowing endothelial cells to adopt an appropriate level of signaling downstream

of Vegfr2 (Fig 5). Our data highlights a delicate balance of stop-go signals that can toggle the

endothelial migration activity necessary for vessel growth. Together this work offers insight

into understanding how context-dependent Sema3F modulation of endothelial responses to

Vegf can be used to treat vascular disorders.

Materials and methods

Ethics statement

All animal procedures were approved by the University of Calgary Animal Care Committee

(AC17-0189). Anesthesia and euthanasia used MS-222 (Tricaine) at 10–40 mg/L. Raw data

underlying all graphs in the manuscript can be found in S1 Data.

PLOS GENETICS Endothelial Semaphorin 3fb regulates Vegf pathway-mediated angiogenic sprouting

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009769 August 23, 2021 13 / 23

https://doi.org/10.1371/journal.pgen.1009769


Zebrafish strains and maintenance

Wild type Tupfel longfin (TL) zebrafish or transgenic Tg(-6.5kdrl:mCherry)ci5, Tg(fli1a:

nEGFP)y7 [50], sema3faca304 [35], and sema3fbca305 [43] were used for experiments. Embryos

were collected within 10-minute intervals and incubated at 28.5˚C in E3 embryo medium (E3)

and staged in hours post-fertilization (hpf). Endogenous pigmentation was inhibited from 24

hpf by the addition of 0.003% 1-phenyl-2-thiourea (PTU, Sigma-Aldrich, St. Louis, MO) to E3.

To genotype, tissue was collected from single 30 hpf embryos following blinded imaging.

Genomic DNA was extracted in 50μl of 50mM NaOH, boiled for 10 minutes and buffered

with 1/10 volume of 100mM Tris-HCl pH 7.4, as described in [77] and amplified by PCR (as

described by [43]) using the following primers: sema3fb forward (5’-ATTGCCCCACAAAAT

AACATTC-3’) and sema3fb reverse (5’-GTCTACTCTGTGAATTTCCCGC-3’).

Morpholino and fli:lifeact injections

Morpholinos (MO) against the sema3fb start codon (sema3fbATG; ATG underlined) 5’- CATA-

GACTGTCCAAGAGCATGGTGC-3’ and against the tnnt2a start codon (tnnt2aATG, ATG

underlined) 5’- CATGTTTGCTCTGATCTGACACGCA– 3’ were obtained from Gene Tools

LLC (Corvallis, OR, USA). Morpholinos were injected into one- to four-cell stage embryos

within recommended dosage guidelines at 1ng/ embryo [78,79]. For endothelial-specific

expression of Lifeact, a Tol2 construct using the Fli1ep promoter driving the expression of Life-

act-EGFP, fli1epLifeact-EGFP [73], was injected into one-cell stage embryos at 20 ng/μl plasmid

with 25 ng/μl Tol2 transposase RNA.

FAC sorting, RNA isolation, and RT-qPCR

For FACS analysis, 24 hpf Tg(kdrl:mCherry) wild type or mutant embryos were subjected to

single-cell dissociation according to [80]. Briefly, embryos were washed once with calcium-

free Ringers Solution and gently triturated 5 times before dissociation solution was added and

incubated in a 28.5˚C water bath with shaking and periodic trituration for 20–30 min. The

reaction was stopped, centrifuged, and resuspended in Dulbecco’s Phosphate-Buffered Saline

(GE Healthcare Life Sciences, Logan, Utah, USA), centrifuged and resuspended in fresh resus-

pension solution. The single-cell suspension was filtered with 75 μm, followed by 35 μm filters.

Cells were sorted with a BD FACSAria III (BD Bioscience, San Jose, USA) and collected. Total

RNA from 24hpf whole embryos or FACS sorted cells was isolated using the miRNeasy Mini

Kit (Qiagen). 500 ng of total RNA from each sample was reverse transcribed into cDNA using

SuperScript III First-Strand Synthesis SuperMix (18080–400; Invitrogen). cDNA in a 5ng/

10ul final reaction was used in a TaqMan Fast Advanced Master Mix (Thermo Fisher Scien-

tific, Massachusetts, U.S). Reactions were assayed using a QuantStudio6 Real-time system

(Thermo Fisher Scientific). Zebrafish specific Taqman assays (Thermo Fisher Scientific, Wal-

tham, Massachusetts, USA) were used: vegfab (Cat# 4448892, Clone ID: Dr03072613_m1),

kdrl(vegfr2) (4448892, Dr03432904_m1), dll4 (4448892,Dr03428646_m1), notch2 (4448892,

Dr03436779_m1), jag1a (4448892, Dr03093490_m1), sflt1 (4331448, ADP47YD4) and nor-

malized to β-actin (4448489, Dr03432610_m1). The ΔΔCt method was used to calculate the

normalized relative expression level of a target gene from triplicate measurements. Experi-

ments were repeated three times independently unless stated otherwise.

Drug treatments

For Vegfr2 inhibition, a 200 μM SU5416 (Sigma #S8442) stock solution in DMSO (Sigma

#D8418) or a 100 μM DMH4 (Sigma #8696) stock solution in DMSO was diluted to working
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concentrations in fish water. For SU5416 final concentrations of 0.2 μM SU5416 and 0.5 μM

in 0.1% DMSO were used as described in [53,56,81]. For DMH4 15 μM and 25 μM in 0.1%

DMSO was used as described in [54,55]. Embryos were treated from 20 to 30 hpf to target

both ISA and DLAV angiogenesis. WT and homozygous sema3fbca305 mutant embryos were

manually dechorionated before receiving the SU5416 or DMH4 and control (0.1% DMSO)

treatments using a common solution for both genotypes.

In situ hybridization and immunostaining

All embryos were fixed in 4% paraformaldehyde in PBS with 0.1% Tween-20 at 4˚C overnight,

followed by 100% methanol at −20˚C.

For colorimetric in situ hybridization (ISH) Digoxigenin (DIG)-labeled antisense RNA

probes were synthesized using SP6 or T7 RNA polymerase (Roche, Basel, Switzerland). Digox-

igenin RNA probes were generated from plasmid template (sema3fa—pCR4, linearized with

PmeI) (sema3fb—pCR4, linearized with NotI). Wholemount and section in situ hybridization

were performed as described by [82] with some minor modifications: steps with gradient

changes in hybridization buffer: 2 x SSC: and 0.2 x SSC:PBST were carried out at 70˚C and 0.2

x SSC at 37˚C. NBT/BCIP was used at a 2.5/3.5μl/ml ratio, respectively. Stained embryos were

transferred to microcentrifuge tubes, fixed in 4% paraformaldehyde (PFA), and washed in 1 x

PBST before imaging. For transverse sections of the trunk, following wholemount ISH

embryos were embedded in JB4 medium (PolySciences, Warrington, PA). Briefly, embryos

were fixed in 4% PFA overnight at 4˚C, washed in PBS, and dehydrated in 100% EtOH. Fol-

lowing dehydration, embryos were soaked in infiltration solution (2-hydroxyethyl methacry-

late/benzoyl peroxide) until they sank to the bottom of the tube and then transferred and

positioned in molds filled with embedding solution (infiltration with N-Dimethylaniline),

allowed to harden overnight, and sectioned at 7 μm using a Leica microtome.

For Hybridization Chain Reaction (HCR) in situ hybridization, custom probes were

obtained from Molecular Instruments (Los Angeles, CA) for soluble Flt1 (targeted to the

unique region of the gene) and VEGFR2. The in-situ staining reactions were as recommended

by the manufacturer.

For antibody staining, embryos were permeabilized in 50:50 acetone/methanol for 20 min-

utes, rehydrated at room temperature, and then blocked in 10% normal sheep serum in PBST

with 1% triton, and incubated for at least 48 hours at 4˚C in primary antibody. Immunostain-

ing for Laminin (1:400, Sigma-Aldrich, Missouri, United States), mCherry (1:200, Develop-

mental Studies Hybridoma Bank, Iowa City, United States), and phosphoERK (pERK) (1:500,

Cell Signaling 43701:Danvers, MA, USA) were detected with mouse anti-mCherry antibody,

(1:500, Clontech, Mountain View, California, USA) and detected with Alexafluor 555 or 488

secondary antibodies (1:500; Invitrogen), for 1 hour at RT in 5% NSS/PBST/0.1% triton.

Image acquisition and measurements

For wholemount imaging, embryos were immobilized in 0.004% Tricaine (Sigma) and

mounted in 0.8% low melt agarose on glass-bottom dishes (MatTek, Ashland, MA). Confocal

images were collected on a Zeiss LSM 700 inverted microscope. Slices 1–3 μm apart were gath-

ered and processed in Zen Blue 2012 software and presented as maximal intensity projections

(z-stacks, total of 10–15 slices per embryo/image), and analyzed using FIJI/ImageJ [83].

For time-lapse, z-stacks were acquired every 10–30 min for 5 hours, from 25 hpf—29 hpf.

ZEN Blue 2012 software was used to extract timepoints and image processing/measurements

were performed using Fiji (ImageJ).
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Unless otherwise, ISA measurements were performed on at least 8 ISAs per embryo. ISA

length measurements were made with a segmented line tool along the vessel from the edge of

the aorta to the leading edge of the spout. To calculate the % connected, each ISA connection

to its neighboring sprout was counted and expressed as a percentage of the total number of

ISA counted. For ISA sprout diameter, 5 sprouts were measured at the boundary of the hori-

zontal myoseptum. For DA and PCV measurements, 5 measurements were taken along the

DA and PCV, directly below the ISAs above the yolk extension. For endothelial cell nuclei

spacing, 2 measurements were taken from the middle of each nucleus to the next nucleus. To

measure fluorescent kdrl:mCherry intensity, total fluorescence (TF) was calculated using the

formula: TF = Integrated Density—(Area of selected cell X Mean fluorescence of background

readings). The area for measurement was gated by tracing 5 ISVs above the yolk extension.

For angioblast migration and ISA speed calculations, analysis was from images obtained at

30min intervals from 25 hpf– 29hpf. For ISA length over time, 5 ISAs were measured per

embryo (as described above) at each extracted timepoint. For ISA migration speed, changes in

ISA length were compared at 1hr intervals, 25 (T1)– 26(T2) hpf, 26 (T2)- 27(T3) hpf, 27(T3)–

28(T4) hpf, and 28 (T4)– 29 (T5) hpf, and distance traveled was calculated using the formula

Distance = End Length (μm)–Start Length (μm). (e.g., Distance from 25–26 hpf = Length at T2

–Length at T1). The speed of ISA migration at each interval was calculated using the formula

Speed = Distance (μm) /Time (min) (See S1 and S2 Tables) For lead angioblast migration, the

distance of a fli1a:nEGFP positive nucleus from the DA was measured at 1-hour intervals from

25–29 hpf.

Statistics

All data sets for quantitation (qualitative scorings or absolute measurements) were analyzed

blinded. Results are expressed as mean ± SD. All statistical analysis was performed using Prism

7 software (Graph Pad). Unpaired, nonparametric tests were used for all statistical tests, either

the Student T-test with Welch’s correction for comparisons of two samples, or Two-Way

ANOVA with a Kruskal-Wallis test for comparisons between multiple samples.

Supporting information

S1 Fig. sema3f expression and sema3fa mutant phenotype. A) Lateral view of whole-mount

ISH from 26-30hpf shows sema3fa expression in the ventral lateral somites and sema3fb
expression in the dorsal aorta (DA) and intersegmental arteries (ISAs). HM: Horizontal Myo-

septum. B) Expression of sema3fa and sema3fb in transverse sections of the trunk at 28hpf.

sema3fa is expressed in ventral and lateral somite (arrows) while sema3fb is strongly expressed

in the DA (arrowhead), Neural tube (nt), notochord (nc). C) Lateral confocal images of trunk

vasculature (black) of 30hpf control wild type (WT), homozygous sema3faca304 and

sema3fbca305 mutant embryos with and without injection of 1ng sema3fbATG-MO. Scale bar,

100 μm. n/N = number of embryos with angiogenic defects/Total number of embryos. D)

Length of ISA sprouts in WT, sema3fbATG-MO morphants and sema3fb ca305 knockdown

embryos with sema3fbATG-MO at 30 hpf; N = 1, WT = 2 embryos (10 ISAs, mean 105±7 μm),

sema3fbATG-MO = 5 embryos (25 ISAs, mean of 78±20 μm), and sema3fbca305 + sema3fbATG-MO

5 embryos (25 ISAs, mean 87±15 μm), ����p<0.0001. E) Length of ISA sprouts in WT and

sema3faca304 mutant and embryos with sema3fbATG-MO at 30 hpf; N = 2, 6 embryos per group:

WT (30 ISAs, mean 109±7 μm), sema3faca304 (28 ISAs, mean of 106±9 μm), and sema3faca304 +

sema3fbATG-MO (30 ISAs, mean 91±17 μm), ����p<0.0001. One-Way ANOVA Tukey’s multi-

ple comparisons test. Error bars = ±SD.

(TIF)
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S2 Fig. Loss of sema3fb angiogenic deficits are independent of blood flow. A) Confocal lat-

eral images of laminin-stained embryos at 30hpf. Tg(kdrl:mCherry) endothelium (red) and

laminin (green). Embryos derived from a heterozygous sema3fbca305/+ incross. B) Quantifica-

tion of the length of ISA sprouts at 30hpf, N = 1: wild type (WT) (40 ISAs, 4 embryos, mean of

102±1 μm2), sema3fbca305/+ (120 ISAs, 12 embryos, mean of 90±8 μm2), and sema3fbca305 (150

ISAs, 15 embryos, mean of 90±14 μm2). C) Confocal lateral images of the trunk endothelium

(black) in blood flow-stopped tnnt2ATG-MO injected wild type siblings (WT) and

sema3fbca305 mutants. DLAV gaps (blue asterisks) and truncated ISAs sprouts (yellow arrow-

heads) are marked. Scale bar, 100μm. D) Length of ISA sprouts at 30 hpf, N = 3: WT (80 ISAs,

8 embryos, mean length of 106±3 μm), WT + tnnt2aATG-MO (100 ISAs, 10 embryos, mean 98

±8.4 μm), sema3fbca305 (80 ISAs, 8 embryos, mean 86±17 μm), and sema3fbca305 +

tnnt2aATG-MO (100 ISAs, 10 embryos, mean 85±22 μm). E) Percentage of ISAs connected at

DLAV at 30 hpf, N = 3: WT (mean 82±9% connected), WT + tnnt2aATG-MO (mean 86±7%

connected), sema3fbca305 (80 ISAs, 8 embryos, mean 54±15% connected), and sema3fbca305 +

tnnt2aATG-MO (mean 54±16% connected). F) Quantification of width of DA in 30 hpf

embryos, N = 3: WT (8 embryos, 5 measurements per embryo/n = 40 total, mean width of 18

±3 μm), WT + tnnt2aATG-MO (10 embryos, 5 measurements per embryo/n = 50 total, mean

9±1 μm), sema3fbca305 (8 embryos, 5 measurements per embryo/n = 40 total, mean 11±3 μm),

and sema3fbca305 + tnnt2aATG-MO (10 embryos, 5 measurements per embryo/n = 50 total,

mean 10±1 μm). G) Quantification of width of PCV in 30 hpf embryos, N = 3: WT (n = 40,

mean width of 22±3 μm), WT + tnnt2aATG-MO (n = 50, mean 19±4 μm), sema3fbca305 (n = 40,

mean 20±3 μm), and sema3fbca305 + tnnt2aATG-MO(n = 50, mean 19±4 μm). 2-Way ANOVA

Tukey’s multiple comparisons test, ���� means p = <0.001. Error bars = ±SD.

(TIF)

S3 Fig. Sema6b mutants recover by 48 hpf. A) Representative Lateral confocal images of

trunk vasculature (black) of 48 hpf control wild type (WT), heterozygous sema3fbca305/+ and

homozygous sema3fbca305 mutant embryos with no obvious differences in vessel morphology

or Segmental vessel (Se) connections. Scale bar, 100 μm. SIV = sub-intestinal vein (plexus),

DA = Dorsal Aorta, PCV = Post Caudal Vein, CA = Caudal Artery, CV = Caudal Vein. N = 2,

n: WT = 5, sema3faca305/+ = 5, and sema3fbca305 = 7.

(TIF)

S4 Fig. sema3fb morphant endothelial nuclei phenotype. A) Lateral confocal timelapse

images of time-lapse images in 25.5–28.5 hpf double transgenic Tg(kdrl:mCherry;fli1a:

nEGFP) endothelial cells (magenta) and nuclei (white). The horizontal myoseptum (green

dashed line) is noted to highlight ISA growth over time. Scale bar, 50 μm. B) During the 25–26

hpf interval there is no significant difference in speed between wild type and mutant embryos,

see S2 Table for details. C) Lead angioblast mean distance from DA at 25 hpf: WT = 44.47

±8.36 μm and sema3fbca305 = 43.14±6.84 μm, p = 0.609. D) Lead angioblast at 26 hpf mean dis-

tance from DA: WT = 55.12±14.06 μm and sema3fbca305 = 47.18±5.75 μm, p = 0.572. C-D)

N = 1: WT = 4 embryos (20 ISAs) and sema3fbca305 = 3 embryos (15 ISAs), Unpaired t-test

with Welch’s correction. E) Lateral confocal images of double transgenic Tg(kdrl:mCherry;

fli1a:nEGFP) endothelium (red) and endothelial cell nuclei (green). DLAV gaps (blue aster-

isks) and truncated ISAs sprouts (white arrowheads) are noted. Embryos derived from a het-

erozygous sema3fbca305/+ incross. Scale bar, 100 μm. G) Quantification of the number of

endothelial cell nuclei per ISAs in 30 hpf embryos, N = 2: WT (6 embryos, mean of 3 nuclei/

ISA)), and sema3fbMO (7 embryos, mean of 3 nuclei /ISA). Unpaired t-test with Welch’s cor-

rection, p = 0.17. G) Quantification of the average area of endothelial cell nuclei per ISAs in 30
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hpf embryos, N = 3: WT (60 ISAs, 6 embryos, mean of 42±16 μm2), and sema3fbMO (70 ISAs,

7 embryos, mean 61±19 μm2). Unpaired t-test with Welch’s correction, ����p<0.0001. Error

bars = ±SD

(TIF)

S5 Fig. sema3fb mutants display aberrant and persistent filopodia. A) Representative still

images of single-cell expression of fli1ep: Lifeact-EGFP (green) in ISA endothelial cells from

28-30hpf wildtype and sema3fbca305 embryo time-lapse imaging. A dashed white line repre-

sents the horizontal myoseptum and selected areas for filopodia counts are highlighted in

white boxes. B) Quantification of number Lifeact-EGFP positive filopodia on ISA at 28hpf

from embryos of the indicated genotypes. Unpaired t-test, p = 0.3566. C) Quantification of

number Lifeact-EGFP positive filopodia on ISA at 29hpf from embryos of the indicated geno-

types. Unpaired t-test, p = 0.0029. D) Quantification of number Lifeact-EGFP positive filopo-

dia on ISA at 30hpf from embryos of the indicated genotypes. N = 3 for each quantification:

WT (14 ISAs, 6 embryos, mean of 3 filopodia/ISA) and homozygous sema3fbca305 (18 ISAs, 7

embryos, mean of 8 filopodia/ISA). Unpaired t-test, p = 0.0002.

(TIF)

S6 Fig. Interactions between VEGFR inhibitor and sprouting in sema3fb mutants. A) A

model of signaling pathways that regulate angiogenic sprouting, highlighting key genes con-

trolling tip and stalk cell identity. B) Quantification of Tg(kdrl:mCherry) transgene expression

levels in wild type and sema3fbca305 ISAs at 30hpf. N = 3: wild type (n = 13 embryos, average of

6500 a.u.) and sema3fbca305 (n = 14 embryos, average of 8400 a.u.). T-test with Welches correc-

tion, �p = 0.0186, a.u. = arbitrary unit of intensity. C). B) Fluorescent HCR in situ for vegfr2

and sflt1 RNA transcripts in whole-mount wild type and embryos sema3fbca305 embryos fixed

at 30 hpf. D) Whole-mount Immunostaining for phosphoERK (pERK) in WT and

sema3fbca305 embryos fixed at 30 hpf. E) Lateral confocal images of the trunk vasculature Tg

(kdrl:mCherry) (white) in embryos treated with 0.5 μM SU5416 from 20hpf-30hpf. DLAV

gaps (blue asterisks) and ISA truncated sprouts (yellow dashed line at the level of horizontal

myoseptum are indicated. Scale bar, 100 μm. F) Quantification of ISA sprout length in 30 hpf

embryos treated with 0.5 μM SU5416, N = 1: WT + DMSO (25 ISAs, 5 embryos, mean of 107

±8 μm), WT + 0.5μM SU5416 (25 ISAs, 5 embryos, mean of 50±14 μm), sema3fbca305 + DMSO

(30 ISAs, 6 embryos, mean of 82±17 μm), and sema3fbca305 +0.5μM SU5416 (30 ISAs, 6

embryos, mean of 82±19 μm). G) Percentage of ISA sprouts connected at DLAV in 30 hpf

embryos treated with 0.5 μM SU5416, N = 1: WT + DMSO (25 ISA-DLAV, 5 embryos, mean

78% of ISA-DLAV/embryo), WT + 0.5 μM SU5416 (25 ISA-DLAV, 5 embryos, mean of 78%),

sema3fbca305 + DMSO (30 ISA-DLAV, 6 embryos, mean of 51%), and sema3fbca305 + 0.5 μM

SU5416 (30 ISA-DLAV, 6 embryos, mean of 82±19%). Error bars = ±SD. H) Lateral confocal

images of the trunk vasculature Tg(kdrl:mCherry) (white) in embryos treated with low doses

of DMH4 μM SU5416 from 20hpf-30hpf. ISA truncated sprouts (yellow dashed line at the

level of horizontal myoseptum are indicated. Scale bar, 50 μm. I) Quantification of length of

ISA sprouts in 30 hpf embryos treated with 15 μM DMH4, J) Quantification of length of ISA

sprouts in 30 hpf embryos treated with 25 μM DMH4. I-J) N = 1; WT+ DMSO n = 3, 15 ISAs,

average (ave.) 102±9 μm; WT+ μM DMH4 n = 2, 10 ISA, ave. 17±17 μm; WT+ 25 μM DMH4

n = 3, 15 ISAs, ave. 7±8 μm. sema3fbca305 + DMSO = 3, 15 ISA, ave. 87±18 μm, sema3fbca305

+ 15 μM DMH4 n = 2, 10 ISA, ave. 40±16 μm; sema3fbca305 + 25 μM DMH4 n = 3,15 ISA, 32

±13 μm. One-Way ANOVA Tukey’s multiple comparisons test, � means ¬¬p = 0.012, �����p =

<0.0001. Error bars = ±SD.

(TIF)
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