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The endoplasmic reticulum (ER) is the biggest organelle in most cell types, but its characterization as an
organelle with a continuous membrane belies the fact that the ER is actually an assembly of several, distinct
membrane domains that execute diverse functions. Almost 20 years ago, an essay by Sitia and Meldolesi first
listed what was known at the time about domain formation within the ER. In the time that has passed since,
additional ER domains have been discovered and characterized. These include the mitochondria-associated
membrane (MAM), the ER quality control compartment (ERQC), where ER-associated degradation (ERAD)
occurs, and the plasma membrane-associated membrane (PAM). Insight has been gained into the separation
of nuclear envelope proteins from the remainder of the ER. Research has also shown that the biogenesis of
peroxisomes and lipid droplets occurs on specialized membranes of the ER. Several studies have shown the
existence of specific marker proteins found on all these domains and how they are targeted there. Moreover, a
first set of cytosolic ER-associated sorting proteins, including phosphofurin acidic cluster sorting protein 2
(PACS-2) and Rab32 have been identified. Intra-ER targeting mechanisms appear to be superimposed onto ER
retention mechanisms and rely on transmembrane and cytosolic sequences. The crucial roles of ER domain
formation for cell physiology are highlighted with the specific targeting of the tumor metastasis regulator
gp78 to ERAD-mediating membranes or of the promyelocytic leukemia protein to the MAM.
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1. Introduction

The endoplasmic reticulum (ER) is a multi-functional organelle
that distinguishes itself from other organelles by its size and the
plethora of functions associated with it. The size of this organelle and
the potential array of targeting mechanisms required to build this
little intracellular city were first recognized almost 20 years ago [1].
Initial studies on the ER were done at the beginning of the 20th
century by Santiago Ramon y Cajal in neurons [2]. Following its proper
discovery in 1945 by Keith Porter and co-workers on electron
micrographs [3] and its designation in 1952 [4], microscopic and
biochemical observations led to the identification of two distinct
domains of the ER: the rough ER, characterized by the presence of
ribosomes, and the smooth ER that is devoid of ribosomes [5,6]. Both
are found in biochemical preparations first generated in the early
1940s and termed microsomes by Albert Claude [7]. Quite early, it
became also clear that the nuclear envelope is another domain of the
ER [8]. Recent progress has highlighted how the same set of proteins
that shape rough and smooth ER tubules also determine the formation
of the nuclear pore complex, a decisive event in the biogenesis of the
nucleus [9].

The presence of ribosomes and mRNA on rough ER preparations
suggested that this domain of the ER mediates the synthesis of
secretory andmembrane proteins [5]. Consistentwith this hypothesis,
the machineries responsible for the translocation of proteins into
the ER [10–13] and their glycosylation were found on the rough
ER [14]. Sorting to this domain of the ER is thought to involve
preferential targeting of rough ER proteins to sheet-like, low
curvature domains of the ER that are decorated with ribosomes
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[15]. However, the functions of the rough ER may not be restricted to
secretory protein production, since recent studies have shown that
autophagosome formation involves membranes of the rough ER
[16,17], suggesting that this domain of the ER may exhibit hetero-
geneity under certain circumstances.

Contrary to these numerous breakthroughs in the understanding
of the functions of the rough ER, progress on the smooth ER has been
slower. Initially, this portion of the ERwas identified by the absence of
ribosomes on its surface [6]. The past two decades have seen the
identification and characterization of subdomains of the smooth ER,
including ER exit sites (ERES), the cortical ER (also known as
peripheral ER or plasma membrane-associated ER, PAM), the
mitochondria-associated membrane (MAM), and the ER quality
control compartment (ERQC). Our image of the smooth ER as the
lesser cousin of the rough ER is therefore changing quickly and the
smooth ER emerges as a heterogeneous mix of highly specialized
subdomains. Moreover, the existence of these membrane domains
within the smooth ER supports the hypothesis that smooth ER
proteins are actively sorted away from rough ER proteins [15], but the
deciphering of such putative mechanisms is not yet very advanced.

Biochemical characterizations of the smooth ER determined that
this domain is rich in enzymes involved in drug detoxification such as
NADPH cytochrome c reductase [18] and epoxide hydrolase [19]. In
the presence of high amounts of toxins such as ethanol, the smooth ER
increases in size [20,21], concomitant with an increased production of
smooth ER-associated detoxifying enzymes such as cytochrome P450
2E1 [22]. Similar expansion of the rough ER is observed when protein
secretion increases, for example, during the differentiation of B cells
into plasma cells, coinciding with an increase of proteins involved in
the production of secretory proteins [23]. Together, these findings
demonstrate not only the existence of rough and smooth ER-specific
transcriptional responses, but also the ability of the cell to specifically
expand either ER membrane system, including mechanisms that keep
rough and smooth ER separate in a state of ER expansion.
Interestingly, the site of lipid synthesis during ER expansion is the
smooth ER [24], suggesting that ER expansion may first result in
naked, smooth ER that can later be decorated with ribosomes [25].

Research during the past decade has shown that both rough and
smooth ER enzymes rely on the precision of intra-ER targeting
mechanisms. For example, triacylglycerol hydrolase becomes ineffi-
cient in the mobilization of lipids when its ER localization motif is
mutated from a histidine-isoleucine-aspartic acid-leucine (HIEL) to a
classical lysine-glutamic acid-aspartic acid-leucine (KDEL) sequence.
Although both motifs allow the interaction with the KDEL receptor,
only the HIEL motif leads to proper targeting of triacylglycerol
hydrolase to the peripheral smooth ER [26]. Intra-ER targeting is also
relevant for the study of the ER using fluorescent proteins in vivo.
Studies had initially indicated that ER-targeted green fluorescent
protein (GFP) is freely diffusible within the ER lumen, albeit at a
slower speed than in aqueous solutions and three- to sixfold slower
than in the cytoplasm [27]. However, red and green fluorescent
proteins (RFP/GFP) when fused to the KDEL motif do not co-localize
within the ER of neuronal cells [28]. This finding corroborates that
intra-ER sorting is distinct from ER retention. Similarly, GFP fusions
with presumed ER proteins have led to spurious results, such as in the
case of the oxidoreductase ERp44, which targets to the rough ERwhen
fused to GFP, although its endogenous form is found close to ER exit
sites and the Golgi [29,30]. Another example is GFP-tagged Sec61β
that loses its specific targeting to the rough ER seen for the
endogenous protein [31]. This review aims to outline what is known
about the composition of individual domains of the ER and the
intracellular sorting mechanisms that give rise to the unique
architecture of the ER. We will usually refer to what is known about
ER domain enrichment in mammalian cells, unless noted otherwise.
Individual domains discussed in the text and known bona fide
markers are summarized in Fig. 1.
2. Targeting to rough ER domains

The distinctive feature of the rough ER is the presence of ribosomes
and protein translocation channels, also called translocons. Together,
these proteins mediate the production of secretory proteins and
proteins to be inserted into the membranes of the secretory pathway.
Translocons are made up of more than 20 polypeptides that span the
membrane individually multiple times [32]; associated with them are
the translocon-associated protein (TRAP) complex, translocating
chain-associated membrane protein (TRAM), oligosaccharyltrans-
ferases (OST), signal peptidase, the signal recognition particle (SRP)
receptor and accessory proteins [33,34]. Within the translocons, the
Sec61 α, β, and γ proteins are thought to capture and bind ribosomes
[32,35,36] that are also associated with translation initiation factors
and mRNAs [37,38]. Formation of these interactions is thus a critical
determinant of rough ER formation. Moreover, the interaction
between the Sec61 proteins and ribosomes depends on the formation
of a complex between the ER-associated signal receptor and the SRP
that recognizes mRNAs giving rise to signal peptides [39,40].
However, secretory protein mRNA localization to the ER does not
require the presence of SRPs, suggesting thesemRNAs are additionally
equipped with so far unknown targeting information [41,42]. A
special case of ER targeting of mRNAs is observed with the mRNA for
the yeast transcription factor Hac1, the substrate of the ER-stress
activated endonuclease Ire1p. Here, the 3′ untranslated region
element is sufficient for the targeting to localized accumulation of
Ire1 activity [43].

Overall, associationwith the translocondepends frequently ondirect
protein–protein interactions with translocon and ribosome compo-
nents. This mechanism is utilized in particular by the OST complex [44],
composed of ribophorin I and II, OST48, STT3A, STT3B, and DAD1 in
mammals [45,46], which can bind to the translocon in a ribosome-
dependent or -independent manner [46,47]. These divergent OST
targeting mechanisms stem from the sequence of events in the
glycosylation process, which comprises ribosome-requiring cotransla-
tional N-glycosylation, but also posttranslational N-glycosylation of
newly synthesized proteins [48]. For some subunits of the OST complex,
specific targeting information has been described: ribophorin I requires
luminal domains for its retention within the ER, whereas cytosolic and
transmembrane sequences are needed in the case of ribophorin II
[49,50]. The roughER-localizedHsp40 family protein ERj1 interactswith
ribosomes that mediate its targeting to the rough ER via a positively
charged motif in its cytosolic domain [51]. Additional translocon-
associated proteins are the Sec62/Sec63 complex proteins [52]. The
phosphorylation of Sec63p by protein kinase CK2 is required for the
association of this complex with the protein translocation apparatus in
yeast [53].

In addition to the directly involved translocation machinery, the
rough ER also contains ER chaperones and oxidoreductases, which
mediate the folding of newly synthesized polypeptides. Not all
proteins of this group target tightly to the rough ER; some perform
important and in some instances predominant roles on other parts of
the ER [54]. Another caveat is that some chaperones and oxidoreduc-
tases associate with translocons that are not bound to ribosomes,
suggesting they are preferentially associated with retro-translocation
of misfolded proteins on domains of the smooth ER (see below).
GRP78/BiP is among the chaperones that interact with active,
importing translocons and serves to close the translocon during
protein integration into the ER membrane [55–57]. In yeast, it has
been shown that this interaction boosts the ATPase activity of GRP78/
BiP and depends on the binding to Sec63p, a member of the DnaJ
family [58]. ER oxidoreductases are also found on ribosome-
associated translocons, among them in particular ERp57 [59]. Another
example is the lectin chaperone calnexin, a transmembrane protein,
which associates with incompletely translocated polypeptides at the
translocon [60,61]. Like Sec63, calnexin is a substrate of protein kinase
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on the cytoplasmic face, where nesprins (pink ovals) are also found.
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CK2, but also of extracellular signal-regulated kinase 1 (ERK1); when
phosphorylated, calnexin interacts more strongly with ribosomes,
suggesting that phosphorylated calnexin targets to the rough ER [62].
However, calnexin is one of many ER chaperones, which perform
additional functions within the ER and which therefore is not
restricted to the rough ER [63]. Consistent with this, a considerable
portion of calnexin localizes to tubular, smooth ER [64], and in
particular the MAM, to which it targets with the assistance of
phosphofurin acidic cluster sorting protein 2 (PACS-2) [63].

A major determinant of the ribosome and translocon aggregation
on the membranes of the rough ER appears to be the extent of ER
membrane curvature. The rough ER is characterized by low curvature,
resulting in sheet-like appearance [65,66]. Contrary to mechanisms
that determine the formation of peripheral tubular ER, the formation
of ER sheets is not well understood [67]. A mammalian coiled-coil
protein, the cytoskeleton-linking membrane protein of 63 kDa
(Climp63), actively promotes the formation of these ER sheets, to
which ribosomes can attach [64], but also limits the diffusion of
translocons within ER membranes [68]. The ER-localized, ribosome-
interacting protein p180 plays a central role in the attachment of
ribosomes to ER sheets in mammalian cells [69,70]. Expression
levels of this protein determine the speed of ER-associated
protein synthesis and the extent of ribosome attachment [70].
Interestingly, both Climp63 and p180 also tether the ER to micro-
tubules [68,69], which could have implications into the intracellular
distribution of the rough ER domains. This is evident in particular in
yeast that lacks both Climp63 and p180 and whose ER does not fill the
entire cell volume [64]. In addition, the abundance of tubule- and
curvature-promoting smooth ER proteins also governs the abundance
of rough ER sheets. Since mammalian cells are able to adapt their ER
structure and function to particular demands, as seen for example
during B cell development, ER domains are likely dynamically defined
by their redox homeostasis and the extent of oxidative protein folding
[23,71–73].

The nuclear envelope, which delineates the nucleus, is contiguous
with the rough ER. This membrane is equipped with ribosomes on the
cytoplasmic face, called the outer nuclear membrane, but lacks them
on the nuclear face, the inner nuclear membrane [74]. The inner
nuclear membrane distinguishes itself from ER membranes by an
extensive, unique set of proteins. Many of these proteins are integral
membrane proteins that connect the inner nuclear membrane to
chromatin or the nuclear lamina, such as the lamin B receptor [75,76].
The sorting of these proteins to the inner nuclear membrane is
thought to involve diverse mechanisms based on diffusion through
the nuclear envelope membrane, translocation by vesicular transport
from the inner nuclear envelope membrane and transport via the
nuclear pore complex [77,78]. The outer nuclear contains a unique set
of proteins that distinguishes it from the remainder of the rough ER.
Among these proteins are members of the nesprin protein family
[79,80]. The nesprins bridge nuclear lamina to the cytoskeleton with
the help of inner nuclear membrane proteins, thus regulating nuclear
migration and anchoring [81]. The outer nuclear membrane targeting
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mechanism of nesprins relies on their interaction with inner nuclear
membrane proteins with a nesprin klarsicht/ANC-1/syne homology
(KASH) domain [82–85].

3. The smooth ER

In most cells, the sheet-like rough ER is interspersed with smooth
ER tubules [15,86]. The over-expression of certain smooth ER proteins
such as cytochrome b(5) or a mutant form of vesicle-associated
membrane protein-associated protein B (VAPB) can induce the
proliferation of smooth tubules, which then become stacked against
each other [87,88].While themechanism behind these observations is
not entirely clear, recent research has identified a group of proteins
composed of reticulons and DP1/Yop1p that promotes the curvature
of ER membranes by transforming sheet-like ER (as found on the
rough ER or the nuclear envelope) into tubular ER. Conversely, the loss
of these proteins leads to the loss of tubule-shaped ER in both yeast
and mammalian cells [89]. Reticulons span the ER membrane at least
twice with two hydrophobic domains, thus forming a hairpin-like
structure, which is required for their function, but also for their
targeting to the smooth ER [90,91]. Additionally, reticulon 4a also
localizes to the X. laevis nuclear envelope, where it may promote
nuclear envelope growth [92]. Similarly, the combined deletion of S.
cerevisiae RTN1 and YOP1 leads to the clustering of nuclear pore
complexes and a defect in nuclear import [9].

The atlastin protein family, related to dynamin and the mitofusins,
interacts with reticulons and DP1/Yop1p and complements their
function, likely promoting the homotypic fusion of ER tubules and
catalyzing the branching of ER tubules at the expense of GTP [93,94].
The absence of atlastins leads to fragmented, unbranched smooth ER,
whereas their over-expression promotes sheet-like ER. Interestingly,
mitochondria structure may be maintained by a related and
connected mechanism, since mitofusin-2, a GTPase closely related to
the atlastins not only mediates the fusion of mitochondrial tubules,
but also the attachment of mitochondria to the ER at the MAM [95]. At
the moment, it is unclear if and how dynamin-related protein 1
(Drp1), the dynamin-related GTPase that mediates mitochondria
fission, also influences the structure of the ER [96].

Other proteins with functions in intracellular sorting and traffick-
ing have been associated with the formation and maintenance of the
rough ER/smooth ER domain formation. For example, interference
with the ER-Golgi SNARE protein syntaxin 18 specifically alters the
distribution of smooth ER proteins, but not of rough ER proteins,
although the exact mechanism for this observation is currently not
known [97]. Moreover, some members of the Rab protein family can
regulate the structure of the ER (Rab5) and its apposition to lipid
droplets (Rab18) [98,99]. Although commonly associated with
endosomal trafficking in mammalian cells, the absence of Rab5 in C.
elegans recapitulates the phenotype of a reticulon knockout and
results in a loss of peripheral tubules. Conversely, the over-expression
of Rab18 leads to increased apposition of lipid droplets to the rough
ER.

One of the major functions of the smooth ER is the storage of
calcium [100,101]. Whereas luminal calcium binding proteins such as
calreticulin [102] and SERCA calcium pumps appear to be widely
distributed throughout the ER, IP3R and ryanodine receptor calcium
channels often cluster within the smooth endoplasmic reticulum
[103,104], not overlapping perfectly with SERCA calcium pumps
[105]. The result of these distinct distributions is the formation of ER
subcompartments with different calcium uptake and release abilities
[106–108]. An ER domain termed MAM fulfills a central role in ER
calcium release, suggesting that this domain could be an important
location of ER calcium release channels [54,109]. However, IP3Rs are
not particularly enriched on this domain [110,111] and rather show a
pan-ER distribution that includes in particular ER domains close to the
plasmamembrane, as seen for example in confluent, polarizedMadin-
Darby canine kidney cells [112,113]. Regardless of the IP3R intra-ER
distribution, the MAM has clearly been identified as a major calcium
release site.

What mechanism could explain this apparent contradiction? One
reason could be the interaction of calcium release channels and/or
calcium pumps with regulatory proteins, which could be unevenly
distributed throughout the ER and which would then be primarily
responsible for the formation of these distinct calcium release
domains. In this hypothesis, the locally distinct interaction of
regulatory proteins with IP3R and SERCA would determine whether
the ER takes up or releases calcium at specific points within the ER
network. Both the IP3R and SERCA are known to interact with
numerous such proteins, including the ER chaperones and oxidore-
ductases ERp44, Ero1α and the sigma-1 receptor (IP3) as well as
ERp57 and calnexin (SERCA) [114–118]. Indeed, the IP3R1 activator
Ero1α and the SERCA2b inhibitor calnexin target preferentially to the
MAM [63,111,119]. Similar to these examples, presenilin-2, an
aspartyl protease associated with Alzheimer's disease, localizes to
the MAM and inhibits SERCA activity [120,121]. Another mechanism
could rely on local accumulations of calcium storage proteins within
the sarcoplasmic reticulum of muscle cells (calsequestrin and
calreticulin) or the smooth ER of nonmuscle cells (calreticulin)
[122,123]. Here, the availability of calcium for intracellular signaling
would be determined by the distinct intra-ER localization of
releasable calcium. Support for this idea comes from the finding
that the location of ER calcium release largely depends on the calcium
buffering capacity of the ER, which is chiefly determined by
calreticulin and calsequestrin, respectively [124]. In the case of
calsequestrin, intra-ER accumulations are mediated by a head-to-tail
oligomerization mechanism [125,126]. We will next discuss what is
known about the targeting of proteins to the domains of the smooth
ER.

4. The mitochondria-associated membrane (MAM)

Many of the smooth ER domains form interfaces with other
organelles, an idea that was first proposed by Alex Novikoff for
contacts between the smooth ER and lysosomes as the GERL (Golgi-
ER-lysosome) compartment, whose presumed role is the formation of
special types of lysosomes directly from the ER [127,128]. The role of
ER-organelle contacts is particularly well studied in the case of the ER-
mitochondria interface, the MAM subdomain [54,109,129], a domain
of the ER that lacks ribosomes [130,131]. Today, we know that as
much as 20% of the mitochondria surface is in contact with the ER that
itself encompasses close to 50% of the total membrane in liver cells,
suggesting that the MAM is a major player in cell physiology [132–
134]. The existence of the MAM was first postulated after close
contacts were observed between ER and mitochondria on electron
micrographs, in which the resolution is high enough to see structures
and measure distances between the two organelles [135]. More
recently, 3D electron tomography has been used to visualize the
structure of MAM in fixed and live cells [134,136]. Since the resolution
of lightmicroscopy is not sufficient to resolve the distance between ER
and mitochondria at the MAM (10–50 nm), biochemical fractionation
has been the main tool to study the MAM, beginning with the
development of a Percoll MAM fractionation protocol by the Vance
laboratory [111,137,138], although it is not clear whether this
protocol reliably separates MAM from other domains of the ER, in
particular from the rough ER [111]. Instead, such a separation can be
reliably achieved on Optiprep-based gradients [63,119,139,140].

Historically, the MAM has been associated with lipid exchange
between the ER and mitochondria [141]. This is reflected by the
enrichment of lipid synthesis and transfer proteins on the MAM,
which give the MAM a characteristic composition that distinguishes it
from the remainder of the smooth ER [137,138]. Enzymes that are
particularly enriched on the MAM include acyl-CoA synthase 4 (ACS4/
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FACL4), acyl-CoA cholesteryl acyl transferase (ACAT/SOAT), and Acyl-
CoA:diacylglycerol acyltransferase (DGAT) [138,140]. For the proteins
of this group, a MAM targeting signal has only been detected for
DGAT2 in the form of a cytosolic 67 amino acid sequence that is
sufficient to target RFP to mitochondria [142].

Lipid transfer between the ER and mitochondria requires protein-
aceous links, since it becomes inefficient after the treatment of MAM
with proteases [143,144]. The identity of the links has been partially
elucidated during the past decade. In yeast, the endoplasmic
reticulum–mitochondria encounter structure (ERMES) forms a pro-
tein complex that tethers the ER to mitochondria and mediates
mitochondria inheritance and movement. The ERMES complex is
formed between the integral ER membrane protein Mmm1p, the
peripheral ER membrane protein Mdm12p, and the two mitochon-
drial outer membrane proteins Mdm10p and Mdm34p [145,146].
Mdm12p and Mmm1p are members of the synaptotagmin-like,
mitochondrial and lipid-binding protein (SMP) family, whose mem-
bers are widespread among eukaryotic species and play roles ranging
from endocytosis to lipid metabolism and mitochondrial inheritance
[147]. We currently do not know which mammalian proteins fulfill
the function of the ERMES complex.

In mammalian cell systems, the MAM has revealed itself as a major
cellular signaling hub that controls cellular metabolism and death via
the controlled exchange of calcium between the ER and mitochondria
[148,149]. Whereas the IP3R-mediated calcium release during resting
conditions directly boosts the mitochondrial metabolism, apoptosis
triggers the release of cytochrome c, which binds to ER IP3Rs, thus
potentiating and accelerating apoptosis progression. Consistent with
these functions, the disruption of ER-mitochondria contacts by
depleting tethering complexes leads to delayed apoptosis progression
and altered calcium homeostasis in both the ER and mitochondria
[95,110,150]. The link between MAM formation and the maintenance
of cellular homeostasis as well as the sensing of cellular stress is
highlighted by the observations that the extent of the MAM and the
proximity of the ER and mitochondria increase under conditions of ER
stress [136,151]. The full significance of this observation is currently
not clear, but juxtaposed mitochondria could in principle serve to
alleviate ER stress by providing additional ATP for oxidative protein
folding [54]. Together, these observations highlight the significance of
the MAM for cellular physiology and stress the importance of
identifying protein tethers between the two organelles. One of these
tethers is the cytosolic chaperone Grp75, which interacts with both
the IP3R on the ER and the voltage-dependent anion channel on
mitochondria, thus facilitating calcium transfer between the two
organelles [110]. However, Grp75 bridging does not influence the
proximity between the ER and mitochondria, suggesting that the role
of this protein is restricted to calcium signaling. Another protein
complex at the MAM is formed when mitochondrial Fis1 and the
smooth ER protein BAP31 (see also Section 5) interact with each
during the onset of apoptosis. The formation of this complex leads to
recruitment of procaspase-8 to the MAM, but how this is connected to
pro-apoptotic, IP3R-mediated calcium release is currently not clear
[152]. Another example is the formation of complexes of ER- and
mitochondria-localized mitofusin-2, a dynamin-related GTPase. Mito-
fusin-2 complexes are required for the formation of the MAM and the
efficient transfer of calcium between the ER and mitochondria in
mammalian cells [95]. Moreover, the complete absence of mitofusin-2
leads to the formation of swollen and aggregated ER that shows
reduced branching, whereas the mitochondria undergo fragmenta-
tion [95]. Since ER-targeted mitofusin-2 can rescue the ER, but not the
mitochondria or the MAM phenotype, it has been hypothesized that
the altered ERmorphology in mitofusin-2 knockout cells stems from a
so far uncharacterized function ofmitofusin-2 on the ER. Interestingly,
such a function appears to mirror the impact of atlastins on the
equilibrium between the smooth and the rough ER, since the absence
of atlastins also leads to tubulated, poorly branched ER [67,93].
Despite these parallels, it is currently not knownwhether the atlastins
andmitofusins functionally or physically interact with each other. The
mechanism that determines ER or mitochondria targeting of mitofu-
sin-2 is also unclear at this point.

To date, four MAM targeting mechanisms are known. The first
described MAM targeting mechanism requires the cytosolic sorting
protein PACS-2. PACS-2 had initially been identified as a possible
MAM-organizing protein, since its knockdown leads to a disruption of
the MAM, whose consequences on ER-mitochondria calcium and
apoptosis signaling are similar to what is known about mitofusin-2
knockout [150]. However, in cooperation with the cytosolic protein
coat COPI, PACS-2 also contributes to the MAM-enrichment of the
chaperone calnexin [63], a repressor of SERCA2b [117]. PACS-2
interacts with calnexin on two serines that are substrates for protein
kinase CK2 [63]. Since COPI mediates retrieval from the cis-Golgi to
the ER [153], these findings suggest an involvement of ER-to-Golgi
trafficking in the distribution of ER proteins to specific smooth ER
domains and the MAM in particular. Rab32 is another trafficking
molecule that regulates the composition of the MAM [139]. Upon its
activation, select MAM-localized ER proteins are relocated to the
cellular periphery, concomitant with altered ER calcium handling.

A second MAM targeting mechanism has been demonstrated for
the ER oxidoreductase Ero1α, which requires oxidizing conditions to
target to the MAM [119]. This enzyme can recharge PDI to allow for
efficient production of disulfide bonds in secretory proteins [154], but
also is a target of the CCAAT/enhancer binding protein (C/EBP)
homologous protein (CHOP), an ER-stress-triggered transcription
factor. Increased amounts of Ero1α after extended periods of ER stress
promote ER calcium release through a direct interaction with IP3R1
[115]. However, we currently do not know where this interaction
occurs, since Ero1α quickly relocates from the MAM upon redox or
oxygen stress [119].

A small number of MAM proteins utilize a mitochondria targeting
sequence in their cytosolic domains to target to theMAM, for example
DGAT2 [142]. DGAT2 does not target exclusively to the MAM, as
shown by its relocation to lipid droplets in cells loaded with oleic acid
[142].

The presence of large quantities of lipid synthesizing enzymes on
the MAM might be at the basis of ER lipid microdomains [155–157].
For example, the MAM contains glycosphingolipid-enriched micro-
domains [158,159]. Moreover, staining of the ERwith filipin that binds
to cholesterol rafts, shows the presence of isolated such struc-
tures [160]. In contrast to the rough ER, which contains little raft-
associated cholesterol compared to the plasma membrane [161–163],
the MAM is apparently enriched for it, despite the absence of
cholesterol-synthesizing enzymes on the MAM [164]. Interestingly,
the sigma-1 receptor, a regulator of the IP3R3, localizes to lipid rafts
within the ER in a cholesterol-dependent manner [59,165]. Normally
found on the MAM in a complex with the chaperone BiP/GRP78, the
sigma-1 receptor interacts with the IP3R3 upon IP3R stimulation or ER
stress to boost this calcium channel's activity [114]. Moreover, the
sigma-1 receptor, through its ability to bind cholesterol, regulates the
distribution of cholesterol within the ER; cholesterol rafts within the
ER dissipate upon transfection of sigma-1 receptor mutants unable to
bind to cholesterol [160]. Interestingly, increased free ER cholesterol
also inhibits the import of calcium via SERCA2b, suggesting that ER
cholesterol homeostasis is a powerful control mechanism for ER
calcium content [166]. Together, these observations suggest impor-
tant connections between a modulation of ER cholesterol content and
ER calcium homeostasis.

5. Other smooth ER domains: ER exit sites, plasma
membrane-associated ER, ER quality control compartment

Less information is available on targeting mechanisms to other
smooth ER domains, including ER exit sites (ERES), the PAM, which is
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apposed to the plasma membrane, and the ER Quality Control
Compartment (ERQC). ERES mediate the bulk of secretory protein
export from the ER and generate the ER-Golgi intermediate
compartment (ERGIC) [167,168]. ER exit sites are part of the
transitional ER, which is characterized by its overlap with the rough
ER and its juxtaposition to the Golgi complex [169]. It is thought that
the transitional ER mediates the enrichment of fully folded, export-
competent proteins [170]. Targeting to and formation of ERES is
thought to depend on an interactor of COPII family proteins [167], the
peripherally membrane associated protein Sec16, in mammals
present as Sec16A and Sec16B, which can form a heteromeric
complex in mammalian cells [171]. RNAi-mediated knockdown of
this protein results in the disruption of ERES [171,172]. Sec16A
localizes to ERES without the help of other COPII components in an
area that is spatially distinct from the location of the COPII proteins
Sec24C and Sec31A [173]. Targeting of Sec16 to ERES requires the
presence of a central conserved domain, which contains a positively
charged stretch, a potential interaction site with polar phospholipids
or a yet-to-be-identified receptor protein [171,173,174]. Following
the targeting of Sec16 to ERES, assembly of the COPII coat drives
vesicle budding and export from the ER toward the ERGIC and Golgi
complex [175,176].

For a long time, it was thought that this export and protein
secretion in general occurs by bulk flow, even though it had been
known for quite a while that the lack of anterograde signals can lead
to the retention of mutant proteins along the secretory pathway [177].
The properties of secretory protein transmembrane domains have
recently emerged as one determinant of membrane protein sorting to
ERES and subsequent incorporation into transport vesicles. For
example, a 22 residue transmembrane domain leads to COPII
interaction and ER export of a fluorescent fusion chimeric protein,
but it was shown that a 17 residue transmembrane domain did not
give such an effect [178]. Furthermore, lipid modifications may lead to
ER domain sorting, since the presence of a palmitoylation acceptor
site on the Wnt signaling protein LRP6 mediates its targeting to the
secretory pathway via ERES [179]. In yeast, chitin synthase Chs3 also
requires palmitoylation for its export from the ER [180]. Whether
these signals correspond to bona fide anterograde transport signals or
whether they are based on differentmechanisms remains to be tested.

Interestingly, the control of ER cholesterol content takes advantage
of export from the transitional ER as well. Sterol-regulatory element-
binding protein-2 (SREBP-2) is exported from the ER in a complex
with the polytopic transmembrane protein Scap through interaction
with COPII at ERES as long as the ER cholesterol content is below 5%
[162]. This export from the ER subsequently allows proteolytic
cleavage of SREBP-2 at the level of Golgi complex [181]. The
proteolytic fragments of SREBP then boost production of cholesterol
by promoting transcription of the cholesterol metabolism genes.
Conversely, if ER cholesterol content rises above 5%, Scap binds
cholesterol and undergoes a conformational change that allows Scap
to bind the ER resident protein insulin-induced gene (Insig),
precluding interaction of the Scap/SREBP complex with COPII at
ERES [182]. A similar mechanism utilizes the translocation in renal
cancer from chromosome 8 protein (TRC8), which also hampers COPII
interaction with the Scap/SREBP complex [183].

Recent research has demonstrated that the ER is not only the point
of origin for classical secretory pathway protein traffic to the cell
surface, but also influences the plasma membrane in other, unex-
pected ways. During the past decade, a domain of the smooth ER that
is in close contact with the plasma membrane has been designated as
PAM. The PAM interacts with the plasmamembrane extensively on as
many as 1100 contact sites [184]. Most of the research on this domain
has so far been done in yeast, where this domain is known to mediate
direct sterol trafficking to the plasma membrane [185,186]. The
interaction between translocons and components of the exocyst
complex on this domain of the ER also mediates the inheritance of the
cortical ER in yeast [187,188], as well as the targeting of secretory and
basolateral proteins in polarized mammalian cells [189]. In this cell
system, the proximity of the ER at contact sites has been estimated at
10–25 nm [190]. In yeast andmammalian cells, the PAM is amajor site
of synthesis for phosphatidylserine. This prominent plasma mem-
brane lipid is predominantly found on the cytoplasmic leaflet of the
plasma membrane [184,191]. Phosphatidylserine plays an important
role during apoptosis, when it becomes exposed on the outer leaflet of
the plasmamembrane [192,193]. This exposure enables phagocytes to
recognize apoptotic cells and subsequently engulf them [194,195].
Similar to the MAM, the PAM also plays an important role in cellular
calcium homeostasis. This became evident, when ER-localized stromal
interaction molecule 1 (STIM1) and Orai1, a plasma membrane
calcium channel, two key players of store-operated calcium exchange
were discovered to interact with each other [196,197]. The interaction
between the two calcium handling proteins is triggered when ER
calcium stores have been depleted [198,199]. The translocation of
STIM1 to the PAM coincides with its multimerization [200,201] and
requires the cytosolic domain of STIM1, which can interact with Orai1
to promote calcium funneling to the ER [202–204]. Another parallel to
the MAM is that the PAM undergoes massive remodeling upon
interference with ER calcium homeostasis. Upon calcium depletion,
preformed precortical ER containing STIM1 translocates to the plasma
membrane, where it loses its ribosomes and becomes smooth PAM
that is sometimes stacked close to the plasma membrane [205].

In addition to export of proteins and lipids, the ER can also
segregate folding intermediates. This is the function of the ER quality
control compartment (ERQC), where incompletely folded proteins
await ER-associated degradation (ERAD) [206]. The ER chaperone
calnexin was the first protein found to localize to this ER domain upon
ER stress that results in the accumulation of unfolded proteins
[207,208]. The presence of calnexin on the MAM and its absence from
the ERQC under resting conditions, suggests that this lectin can
shuttle from the MAM to the ERQC upon ER stress [63]. On the MAM,
calnexin likely modulates calcium handling, whereas on the ERQC,
this chaperone either promotes or inhibits ERAD in a substrate-
dependent manner [209]. Analogous to calnexin, the smooth ER
protein BAP31 can interact with mitochondrial Fis1 on the MAM
[152], but is also a component of the ERQC and an interactor of
calnexin [210]. Within the ERQC, BAP31 promotes retrotranslocation
of misfolded proteins through an interaction with the translocon
components Sec61β and TRAM, as well as the Derlin-1 ERAD
translocation complex [211]. Import of BAP31 into the ERQC requires
microtubules and depends on Arf1 and COPII, suggesting that an intra-
ER vesicular transport step may regulate transition from the rough ER
to the ERQC [212]. Additional enzymes of the ERQC include the
oxidoreductases PDI and ERp57, which promote retro-translocation of
ERAD substrates [207,213]. Whether these two proteins are enriched
on or specifically targeted to the ERQC is currently not known.
Moreover, it is unclear, whether there is a relationship between the
ERQC and the so-called EDEMosomes, where the ER disposes of
unused ERAD components [214,215]. EDEMosomes are decorated
with non-lipidated LC3 and are capable to fuse with the endosomal/
lysosomal compartment, suggesting a direct pathway and connection
from the smooth ER to lysosomes.

6. The smooth ER as a point of origin for Russell body, peroxisome
and lipid droplet biogenesis

The functional differentiation of the ER is now known to go one
step further by providing the point of origin for entire organelles. This
is exemplified with Russell bodies, which were first described at the
end of the 19th century as a characteristic of cancer cells, and were
mistakenly thought to be a fungal parasite [216]. Indeed, we now
know that plasma cells of multiple myeloma patients frequently
exhibit Russell bodies [217]. However, over a hundred years of
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research have shown that Russell bodies represent a differentiation of
the ER and are used to store mutant, detergent-insoluble immuno-
globulin that can neither be secreted nor degraded [218]. These
condensations are generated by covalent disulfide bonds between
multiple immunoglobulins, which explain why mild reducing agents
can lead to the dissolution of Russell bodies [219]. Dependent on the
type of immunoglobulin present, Russell bodies form either at the
rough or at the smooth ER, suggesting that both domains are equipped
to remove unwanted waste [220]. Their formation requires the
recognition of immunoglobulins by the ERES-associated ER proteins
ERGIC-53 and ERp44, which recognize the immunoglobulin sugar
structure and unpaired disulfide bonds, respectively [220,221]. These
two chaperones thus serve as Russell body sorting molecules at the
level of ERES and ERGIC. Future research will have to examine
whether there is a relationship between the ERQC and Russell bodies
andwhether there are any distinguishing characteristics of the Russell
body membrane.

The smooth ER is also involved in the formation of peroxisomes,
the organelles that mediate the degradation of fatty acids and the
synthesis of ether lipids such as plasmalogens [222,223]. Although cell
biologists first classified peroxisomes as endosymbionts, not unlike
what had initially been suspected about Russell bodies, these
organelles actually derive from a special domain of the ER, the pre-
peroxisomal compartment [224,225]. Here, a subset of Pex proteins, a
group of proteins that are required for peroxisome biogenesis, target
to peroxisome-generating domains of the ER and are then incorpo-
rated into the nascent organelle [224]. The Pex proteins that have such
a function are Pex3, Pex16 and Pex19. The correct targeting of Pex3p
requires the formation of a Sec20p, Sec39p and Dsl1p protein complex
at the ER in yeast [226]. Similar to Russell body biogenesis,
peroxisome biogenesis might be influenced by the secretory pathway
[227]. Specifically, proteins of the coatomer coat complex and
members of the Arf protein family might be involved in the
anterograde and retrograde transport to and from peroxisomes
[228,229]. The role of Sec20p and Sec39p in ER-Golgi trafficking
again highlights the potential connection between protein secretion
and peroxisome biogenesis [230,231]. However, peroxisome biogen-
esis at the level of the ER does not depend on ongoing protein
secretion, since peroxisome targeting is maintained in the presence of
COPII transport inhibitors [232].

Yet another complex relationship between the ER, protein
secretion and organelle biogenesis exists in the case of lipid droplets.
In this case, trafficking between the ER and the Golgi mediated by
COPI coated vesicles is essential for lipid droplet biogenesis [233].
Lipid droplets have been well known to be closely associated with ER
membranes since the early 1970s [234]. Proteomic analysis of their
content showed that the ER oxidoreductases ERp29 and peroxi-
redoxin 4 as well as the chaperones BiP/GRP78 and calnexin are found
on lipid droplet membranes [235,236]. Proteins found in the lipid
droplet membrane such as 17β-hydroxysteroid dehydrogenase type
11 andmethyltransferase-like 7B (also known as AAM-B) target to the
lipid droplet membrane from the ER using N-terminal hydrophobic
sequences [237,238]. Interestingly, this targeting is reversible,
suggesting the existence of modifiable lipid droplet targeting signals
and mechanisms [239]. Lipid droplet biogenesis also appears to
require the spatial confinement of enzymes that synthesize their lipid
contents, mostly triacylglycerides and cholesterol esters [240]. DGAT1
and DGAT2 catalyze the final step in the synthesis of triacylglycerides,
but only DGAT2 can translocate from the MAM to sites of lipid droplet
biogenesis upon oleate treatment of cells [142]. At these sites, the
DGAT2 enzymatic activity may channel triacylglycerides into nascent
cytosolic lipid droplets [241]. Studies using mistargeted DGAT2 have
shown that the intracellular localization of the DGAT2 enzymatic
activity determines the site of lipid droplet formation [242].
Subsequently, lipid droplets become coated with proteins of the
perilipin, adipose differentiation-related protein, tail-interacting
protein of 47 kDa (PAT) family [243]. PAT proteins such as tail-
interacting protein of 47 kDa (TIP47) target to lipid droplets using
multiple amphipathic helices as targeting information to influence the
structure of lipid droplets [244]. The trafficking to lipid droplets of the
proteins of this family also requires COPI and COPII-based mecha-
nisms, suggesting that lipid droplets like Russell bodies are in close
contact with ERES and ERGIC [245]. PAT proteins regulate the
metabolism of triacylglycerides contained in lipid droplets. For
example, protein kinase A (PKA) phosphorylates perilipin onmultiple
sites [243], which leads to the activation of lipid droplet-associated
lipid hydrolases and the translocation of lipid hydrolases to lipid
droplets [246].

Together, the findings on Russell bodies, peroxisomes and lipid
droplets demonstrate how the ER functions as a point of origin for
organelle biogenesis. The fact that all three organelles originate from
ER domains at or close to ERES underscores the ability of the ER to
execute very tight control of membrane domain formation.

7. ER domain enrichment and disease

Given the importance of ER membrane domain sorting for critical
functions of the ER and organelle biogenesis of Russell bodies,
peroxisomes and lipid droplets, a main area of research aims to
understand which mechanisms are needed to implement the
blueprint of the ER's urban planning department. A better under-
standing of these functions is expected to give insight into diseases
that are associated with malfunctioning ER, but also ER-derived
organelles such as the Golgi complex, lipid droplets and peroxisomes.
While numerous diseases are separately tied to those organelles,
historically, ER-associated diseases were summarized as ER storage
diseases and are characterized by a decreased or increased extent of
ER folding or retention [247]. Examples include cystic fibrosis, low
density lipoprotein receptor defects and coagulation factor V and VIII
deficiencies. Conceivably, the mislocalization of the ER retention and
export machinery, such as the coatomer and COPII coat or the KDEL
receptor could lead to such diseases. Malfunctioning ERAD could also
lead to such diseases. In this context, the ubiquitin ligase RNF45, also
known as gp78 or autocrine motility factor receptor (AMFR) is of
interest. The intracellular localization of this protein has not been
conclusively determined, since it has been found on the MAM and the
plasma membrane [131,248]. The knockdown of this ER protein leads
to a block of sarcoma metastasis in primary tumor, due to RNF45/
gp78/AMFR promoting the degradation of the metastasis suppressor
KAI1/CD82 by the proteasome [249,250]. At the same time, cells
expressing low levels of gp78 are more susceptible to ERAD-mediated
apoptosis, again dependent on its relationship with KAI1/CD82.
Another connection of ER protein folding and degradation with
cancer is the role of the unfolded protein response in tumor cell
metabolism. Ire1, a type I transmembrane endonuclease, cleaves the
XBP-1 mRNA, but also activates apoptosis signal regulating kinase 1
(ASK1) [251,252]. Similarly, protein kinase (PKR)-like endoplasmic
reticulum kinase (PERK) induces the production of the pro-apoptotic
transcription factor CHOP [253,254]. Together, Ire1 and PERK promote
cancer cell survival under hypoxic conditions [255,256]. Moreover, ER
stress sensor proteins have been implicated in the development of
diabetes [257,258]. Although the intra-ER localization of the two ER
stress sensor proteins Ire1 and PERK is not known, their sorting and
enrichment could be envisaged as critical for their signaling function
in cancer and diabetes.

The center of the recent attention lies however on the links
between theMAM and human disease, since this smooth ER domain is
the calcium and apoptosis signaling hub of the ER [54,109,259]. Here,
the ER is enriched for numerous disease-associated proteins,
including presenilins (Alzheimer's disease [120]), mitofusin-2 (Char-
cot-Marie-Tooth disease type 2A in knockout models [260]), calnexin
(multiple sclerosis-like symptoms in knockout models, [261]) and the



Table 1
ER subcompartments, their main functions and marker proteins. Summary of the main points presented in this review. References and details are found in the text.

ER subcompartment Main functions Marker proteins Known sorting signals or mechanisms

Rough ER • Secretory and membrane protein
synthesis, folding

RibophorinI/II,
Climp63

Interaction with ribosomes (Sec61), CK2 phosphorylation (Sec63,
calnexin), cytosolic and transmembrane sequences (Ribophorin II),

Nuclear envelope • Delineates nucleus Nesprins Interaction with inner nuclear membrane proteins using KASH domain
Smooth ER • Lipid synthesis Reticulons, Atlastins ?

• Calcium storage
MAM • ER/mitochondria calcium homeostasis ACAT1, FACL4, Erolα Cryptic mitochondria interaction signal (UL37, DGAT2), oxidizing

conditions (Ero1〈), lipid raft association (Sigma-1 receptor),
resting conditions (calnexin, BAP31)

• Apoptotic calcium signaling
• Lipid transfer

ERQC • Export of unfolded proteins to the proteasome Derlin-1, EDEM-1 ER stress (calnexin, BAP31)
Russell bodies • Segregation of protein aggregates Condensed

Immunoglobulins
Sugar structure and unpaired cysteines

ERES • Export of proteins from ER to Golgi Sec16A/B Interaction with COPII coat (positive charges in Sec16), ER export
signal of cargo proteins

PAM • Calcium import from extracellular space
(Store Operated Calcium Exchange—SOCE)

STIM1, ORAI1 Multimerization (STIM1)

• Sterol trafficking to plasma membrane
Pre-peroxisomal
compartment

• Peroxisome formation Pex3 ?

Lipid droplets • Storage of triacylglycerides AAM-B N-terminal hydrophobic sequences (AAM-B)
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promyelocytic leukemia protein (PML), a tumor suppressor [262,263].
The common denominator of these diseases is a misregulation of
apoptosis onset, likely connected to dysfunctional ER-mitochondria
calcium signaling. Since the extent of MAM targeting for these
signaling regulators varies and can depend on ER and cellular
homeostasis, future research will have to elucidate the targeting
mechanisms of these proteins in order to gain more insight into their
role in human disease. Interestingly, since the formation of choles-
terol-dependent rafts is involved in the formation of theMAM and the
targeting to this domain of the smooth ER, one such mechanism may
already have been described: cholesterol-induced cytotoxicity in
macrophages leads to accelerated death of this cell type in advanced
atherosclerotic lesions [264]. Cholesterol overloading may alter the
composition and functioning of the MAM, resulting in the observed
accelerated apoptosis progression.

ER domain formation is also a mechanism that is exploited by
viruses. For example, Coronaviruses utilize EDEMosomes to generate
double membrane vesicles that accommodate viral replication [215].
The human cytomegalovirus UL37 exon 1 protein, also known as viral
mitochondrion-localized inhibitor of apoptosis (vMIA) targets to the
MAM after its synthesis within the ER. From here it is able to
translocate to mitochondria to exert its anti-apoptotic role by
sequestering Bax [265]. Similar to DGAT2, its targeting and role in
apoptosis requires a mitochondrial targeting signal, but not the
association with lipid rafts [266]. Thus, these studies corroborate that
precise intra-ER targeting dictates the functioning of cellular and viral
proteins (Table 1).
8. Conclusions

Research during the past 2 decades has revealed that the ER
resembles a city with multiple functions assigned to designated areas
more than a village that specializes into one function. B cell to plasma
cell development is just one example that shows the dynamic nature
of ER domain formation and targeting. Together, multiple findings
highlight the importance of understanding intra-ER targeting for
human disease. Given that this area of cell biology is in some ways
the final frontier of intracellular sorting, great progress is expected
to occur during the next decade with important insight into the
biogenesis of the ER as a complex assembly of membrane domains
and into the significance of this organelle for human life and death. An
important question for future research will be to elucidate the
connection of vesicular trafficking to ER domain formation, given the
multiple involvements of COP coats, Rab proteins and Arf GTPases in
this cell biological mechanism.
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