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Predicting human performance in perceptual
categorization tasks in which category membership is
determined by similarity has been historically difficult.
This article proposes a novel biologically motivated
difficulty measure that can be generalized across
stimulus types and category structures. The new
measure is compared to 12 previously proposed
measures on four extensive data sets that each included
multiple conditions that varied in difficulty. The studies
were highly diverse and included experiments with both
continuous- and binary-valued stimulus dimensions, a
variety of different stimulus types, and both linearly and
nonlinearly separable categories. Across these four
applications, the new measure was the most successful
at predicting the observed rank ordering of conditions by
difficulty, and it was also the most accurate at predicting
the numerical values of the mean error rates in each
condition.

Introduction

Humans are incredibly accurate at categorization.
Whether deciding if your dog is hungry or whether a
wine is a cabernet sauvignon or a merlot, humans are
continually categorizing objects and events in their
environment, often without conscious awareness. For
the most part we perform incredibly well at this task,
but when we fail—for example, when a tumor is
categorized as normal tissue—the consequences can be
dire.

As machine-learning and artificial-intelligence
methods progress, it is becoming ever more common to
augment human performance in an effort to reduce
categorization errors. Self-driving cars, parking assist,
and autocorrect all exist to minimize human error, and
this trend is likely to continue in the future. If the goal
is to increase human categorization performance, it is
essential that we start explicitly looking for situations
in which humans are likely to fail. There are a variety of
factors that affect the difficulty of category learning,

ranging from subjective factors such as fatigue or
motivation to paradigm and environmental factors
such as distractions or pressure (McCoy, Hutchinson,
Hawthorne, Cosley, & Ell, 2014). But perhaps an even
more fundamental factor is the difficulty of the task
itself. Some category structures are fundamentally
easier for humans to learn than others, but what is it
that makes this learning easier? Intuitively, we know it
must be something to do with the structure of the
categories, but what aspects of category structure affect
difficulty, and why?

One reason that these are still open questions is that
the answers depend on the nature of the category-
learning task. Rule-based category-learning tasks are
those in which the category structures can be learned
via some explicit reasoning process. In this case,
categorization difficulty depends primarily on the
complexity of the rule that must be learned (e.g.,
Feldman, 2000). Some prior studies have examined this
issue (e.g., Salatas & Bourne, 1974). For example, rules
based on two stimulus dimensions are more difficult to
learn than rules based on one dimension, and among
two-dimensional rules, disjunctions are more difficult
than conjunctions. In prototype-distortion tasks, the
category exemplars are created by randomly distorting
a single category prototype, and difficulty increases
with the amount of distortion (Posner & Keele, 1968).
In an unstructured category-learning task, the stimuli
are visually distinct and are assigned to each contrast-
ing category randomly, and thus there is no rule- or
similarity-based strategy for determining category
membership. In this case, difficulty increases with the
number of exemplars in each category.

On the other hand, predicting categorization diffi-
culty is more problematic in information-integration
(II) tasks, in which accuracy is maximized only if
information from two or more stimulus components
(or dimensions) is integrated at some predecisional
stage. In II tasks, perceptual similarity determines
category membership, and the optimal strategy is
difficult or impossible to describe verbally. Explicit-rule
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strategies can be applied in II tasks, but they generally
lead to suboptimal levels of accuracy because they
make separate decisions about each stimulus compo-
nent rather than integrating this information.

Some previous work has tried to identify properties
of II tasks that make learning difficult (Alfonso-Reese,
Ashby, & Brainard, 2002), but the measures that were
investigated were not derived from any theory of
human category learning, and they were tested only on
some very limited category structures. This prompts the
goal of the current project: to develop a difficulty
measure for II category learning based on the best
current theories of human learning.

In the next section, we present a difficulty measure
based on the most successful neurobiologically detailed
model of II category learning—namely the procedural-
learning component of COVIS (Ashby, Alfonso-Reese,
Turken, & Waldron, 1998; Ashby & Waldron, 1999;
Cantwell, Crossley, & Ashby, 2015). This model assigns
a key role to the striatum, and as a result, we refer to
the new difficulty measure as the Striatal Difficulty
Measure (SDM). The COVIS procedural-learning
model contains the most popular cognitive model of
categorization—that is, the exemplar model—as a
special case (Ashby & Rosedahl, 2017). Thus, the SDM
is compatible with both models.

Methods

This section describes the SDM, overviews the other
measures that the SDM is compared against, and

describes the data sets that were used to compare all
these measures.

Derivation of the SDM

The procedural-learning model of COVIS mimics
the architecture of the direct pathway through the basal
ganglia, which is illustrated in Figure 1. The compu-
tational version of this model is often called the striatal
pattern classifier (SPC). The simplest version is a two-
layer feed-forward neural network that includes a large
array of sensory cortical units in the input layer and a
small set of striatal medium spiny neurons (MSNs) in
the output layer—specifically, one MSN for each
response alternative. Downstream units in the internal
segment of the globus pallidus, the thalamus, and the
premotor cortex are often omitted from the model,
since nothing that happens in these units can change
the category response.

Initially, the sensory cortical and striatal layers are
fully interconnected, with each unit in sensory cortex
projecting to a unique synapse (on a spine) on each
MSN. The strengths of these synapses are modified
based on whether the feedback is positive or negative
according to a biologically realistic form of reinforce-
ment learning. On each trial, the most active MSN
controls the response.

All versions of the SPC share similar properties. In
particular, responding depends strongly on the summed
similarity of the presented stimulus to the previously
seen exemplars in each contrasting category. These
similarity effects occur for several reasons. First, units
in visual cortex respond maximally to some ideal
stimulus and at a lower rate to stimuli similar to the
ideal stimulus. This is modeled via Gaussian tuning
curves (mathematically identical to radial basis func-
tions). Thus, if we let xiK denote the ith exemplar in
category CK, then on trials when xiK is presented,
activation in sensory unit j equals

AðxiK; sjÞ ¼ exp �d2ðxiK; sjÞ=c
� �

; ð1Þ
where sj is the stimulus that maximally excites sensory
unit j, dðxiK; sjÞ is the Euclidean distance between the
perceptual representations of objects xiK and sj, and c
captures how tightly sensory units are tuned. Thus,
AðxiK; sjÞ increases with the similarity of the presented
stimulus to sj.

Second, because of the nature of reinforcement
learning, similarity effects in the SPC are consolidated
at cortical-striatal synapses. In fact, we have shown
(Ashby & Rosedahl, 2017) that under certain simpli-
fying assumptions, the synaptic strength between
sensory unit j and striatal unit K is proportional to the
summed similarities of object sj to all previously seen
exemplars from category K. Since synaptic strength

Figure 1. Architecture of the procedural-learning model of

COVIS, which mimics the direct pathway through the basal

ganglia. MSN ¼medium spiny neuron; GPi ¼ internal segment

of the globus pallidus.
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drives striatal activation, the probability of responding
K on a trial when stimulus sj is presented therefore
increases with this sum.

We have also shown (Ashby & Rosedahl, 2017) that
these summed similarities are mathematically identical
to the summed similarities that are the basis of
exemplar models of categorization (Nosofsky, 1986).
So the exact same difficulty measure could be derived
from exemplar theory. Although the two approaches
are mathematically equivalent, they make very different
cognitive assumptions. Exemplar theory assumes that
each sum is computed from scratch on every trial. For
example, to compute the summed similarity of the
presented stimulus to the exemplars of category K,
exemplar theory assumes that the subject activates the
memory representation of every previously seen exem-
plar from category K, computes the similarity of the
presented stimulus to each of these memory represen-
tations, and then sums all these similarities. Thus,
exemplar theory predicts that as a subject gains
experience at a specific classification task, more and
more computation is required on each trial (because
there are more terms in the sum). In contrast, the SPC
assumes that the sums are encoded in the cortical-
striatal synaptic strengths as a result of a reinforce-
ment-learning process. Thus, the SPC assumes that no
memory representations are retrieved during the
categorization process.

On every classification trial, the SPC striatal units
enter a winner-take-all competition to select the
response. Therefore, the weaker the activation of the
striatal unit corresponding to the correct category and
the stronger the activation of the striatal units
corresponding to incorrect categories, the more difficult
the judgment. Activation is proportional to similarity,
which suggests that task difficulty should increase with
the simple ratio

D ¼ SB

SW
; ð2Þ

where SB is between-categories similarity and SW is
within-category similarity.

The SPC suggests specific forms for SB and SW. In
particular, SB should equal the similarity of every
category exemplar to all exemplars in every contrasting
category:

SB ¼
XR
K¼1

XR
L6¼K

XnK
i¼1

XnL
j¼1

AðxiK;xjLÞ; ð3Þ

where R is the number of contrasting categories, nK is
the number of exemplars in category K, nL is the
number of exemplars in each contrasting category L,
and as in Equation 1, A(xiK, xjL) is activation in the
sensory unit that is maximally excited by stimulus xjL.
Similarly, SW should equal the similarity of every

exemplar to all exemplars in the same category:

SW ¼
XR
K¼1

XnK
i¼1

XnK
j 6¼i

AðxiK;xjKÞ: ð4Þ

Putting all this together produces the Striatal
Difficulty Measure:

SDM ¼

PR
K¼1

PR
L6¼K

PnK
i¼1

PnL
j¼1

exp �d2ðxiK;xjLÞ=c
� �

PR
K¼1

PnK
i¼1

PnK
j 6¼i

exp �d2ðxiK;xjKÞ=c
� � : ð5Þ

For completely overlapping categories this measure
equals 1 because within-category similarity is equal to
between-categories similarity. For infinitely separated
categories (where the between-categories similarity goes
to 0), the measure equals 0.

Note that the only free parameter in Equation 5 is c,
which is a measure of how tightly tuned the subject’s
sensory system is to changes in the stimulus. Techni-
cally, c could differ across stimulus dimensions, but in
practice such differences would have to be extreme for
the SDM to change its predicted ordering of tasks by
difficulty. Thus, a single value of c will suffice in almost
all applications. Furthermore, the numerical value of c
could be estimated from separate sensory discrimina-
tion data. As we will see, however, the ordinal
predictions of the SDM as to which of two (or more)
conditions is most difficult typically do not change
when c changes. So the actual numerical value of c
chosen does not appear to be critical. In the empirical
applications considered in this article, we compute
SDM by averaging across a wide range of c values.

The SDM is closely related to a number of
previously proposed difficulty measures. First, many
machine-learning measures are based on an inverse of
the Equation 2 ratio:

D ¼ DW

DB
; ð6Þ

where DW and DB are some measures of the within-
category and between-categories dissimilarities, re-
spectively (e.g., Fukunaga, 2013). Most commonly,
dissimilarity is defined as some increasing function of
distance. Of these measures, perhaps the most similar
to the SDM is the ratio of intra- to extraclass nearest-
neighbor measure, often referred to as the N2 measure
(Lorena, Garcia, Lehmann, Souto, & Ho, 2018). The
N2 difficulty measure takes the form of Equation 6 with

DW ¼
XR
K¼1

XnK
i¼1

min
j 6¼i

dðxiK; xjKÞ: ð7Þ

Note that, as it should, this sum increases with the
distance between category exemplars, so when incor-
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porated into Equation 6, the N2 difficulty measure
predicts that categories in which the exemplars are
more widely distributed are more difficult to learn than
categories in which they are tightly clustered. Analo-
gously, the N2 measure defines between-categories
separation as

DB ¼
XR
K¼1

XnK
i¼1

min
j

L 6¼K

dðxiK;xjLÞ: ð8Þ

Note that this sum increases with the distance
between the category exemplars that are in contrasting
categories, and thus, when incorporated in Equation 6,
the N2 measure predicts that classification difficulty
decreases with between-categories separation.

The SDM differs from the N2 difficulty measure in
two important ways. First, the SDM depends on all
category exemplars, whereas N2 assumes that only the
nearest neighbors affect difficulty. Leading theories of
human category learning assume that classification
decisions depend on all previously seen category
exemplars—not just the nearest neighbors (e.g., Estes,
1986; Medin & Schaffer, 1978; Nosofsky, 1986).

Second, N2 depends on distance, whereas the SDM
depends on a nonlinear transformation of distance—
namely, similarity. Considerable independent evidence
suggests that human classification and generalization
are determined primarily by similarity, rather than by
distance (e.g., Shepard, 1987). This difference between
the SDM and N2 changes the impact that stimulus
spacing has on predicted difficulty. The Gaussian
similarity function described in Equation 1 has an
inflection point at an intermediate distance. The SDM
therefore predicts that increasing distances for inter-
mediately spaced stimuli will have a greater impact on
difficulty than increasing the separation for either
nearby or distant stimuli by the same amount. In
contrast, defining difficulty in terms of distance rather
than similarity (e.g., as in the N2 measure) predicts that
all changes of a fixed distance should have equal effects
on classification difficulty.

Previous measures

To our knowledge, only one previous study has tried
to predict human learning difficulty in II tasks.
Alfonso-Reese et al. (2002) compared the ability of
several different measures to predict the difficulty of
five different category structures (shown in Figure 2).
Included in this list were a measure of covariance
complexity, a measure of class separation, and the error
rate of an ideal observer. In contrast, many alternative
difficulty measures have been proposed within the
machine-learning literature—some that have the form
of Equation 6 and some that do not. Many of these

were reviewed by Lorena et al. (2018), who divided
them into six groups: feature-overlapping measures,
linearity measures, neighborhood measures (which
include N2), network measures, dimensionality mea-
sures, and class-balance measures.

The remainder of this article compares the SDM to
the measures examined by Alfonso-Reese et al. (2002)
and to a variety of the machine-learning measures
described by Lorena et al. (2018). All of these measures
are compared in their ability to predict difficulty across
a variety of different category structures. The structures
are highly diverse, and include both continuous- and
binary-valued stimulus dimensions, linearly and non-
linearly separable categories, and a variety of different
stimulus types. As we will see, of all these measures, the
SDM most accurately predicts human learning diffi-
culty across all these very different conditions.

We will now provide a brief description of the
difficulty measures used in this article. The equations
are included for the more straightforward measures,
whereas a qualitative description is provided for the
others. More detailed descriptions of these latter
measures are given by Lorena et al. (2018).

Measures considered by Alfonso-Reese et al. (2002)

The following measures were used by Alfonso-Reese
et al. (2002) in their attempt to quantify procedural
categorization difficulty.
Covariance complexity: Alfonso-Reese et al. (2002) used
a covariance-complexity (CC) measure proposed by
Bozdogan (1990):

CC ¼ 1

2
rankðRÞ ln

traceðRÞ
rankðRÞ

� �
� 1

2
ln jRj; ð9Þ

where R is the common within-category variance-
covariance matrix. Note that this measure is undefined
if the contrasting categories are characterized by
different within-category variance-covariance matrices.
Class separation: Following Fukunaga (2013), Alfonso-
Reese et al. (2002) defined class separation (Csep) as

Csep ¼ trace R�1S
� �

; ð10Þ
where R is the common variance-covariance matrix.
The matrix S for a two-category condition with
categories A and B is defined as

S ¼ 1

2
ðl

A
� lÞðl

A
� lÞ0

þ 1

2
ðl

B
� lÞðl

B
� lÞ0; ð11Þ

where l is a vector which is the mean of l
A
and l

B
. In

the case where the two categories are characterized by
different variance-covariance matrices RA and RB (e.g.,
as in the experiments by Ashby & Maddox, 1992), we
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have

R ¼ 1

2
RA þ

1

2
RB: ð12Þ

Error rate of the ideal observer (eIO): This is the error
rate that results from applying the optimal classifica-
tion strategy.

Machine-learning measures

The following measures were designed for machine-
learning algorithms. More details on all the measures
are given by Lorena et al. (2018).

Volume of overlapping regions: The volume of over-
lapping regions (VOR) is a measure of feature overlap
that depends on the amount of overlap of the category
distributions on each stimulus dimension. Specifically,
VOR is computed by finding the range of values on
each dimension that are shared by both categories,

multiplying these ranges together, and then normaliz-
ing.
Collective feature efficiency: Collective feature efficiency
(CFE) is another measure of feature overlap that is
based on the percentage of stimuli that can be correctly
classified using bounds perpendicular to each stimulus
dimension.
Error rate of nearest neighbor classifier: The error rate
of nearest neighbor classifier (eNN) is the error rate of
a classifier that assigns the stimulus to the category of
its nearest neighbor among all other stimuli in the two
categories.
Fraction of borderline points: The fraction of borderline
points (FBP) is a function of the number of stimuli that
are connected to a stimulus belonging to the contrast-
ing category in the minimum spanning tree constructed
from the data.
Fraction of hyperspheres covering data: The fraction of
hyperspheres covering data (T1; called T1 by Lorena et
al., 2018) is constructed by first centering a hypersphere
on each stimulus and setting the radius equal to the

Figure 2. Category structures from Alfonso-Reese, Ashby, and Brainard (2002).
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distance between that stimulus and the nearest stimulus
from the contrasting category. All hyperspheres that
are completely contained in another hypersphere are
then removed, and the measure is simply the fraction of
hyperspheres that remain.
Average density of the network: Several machine-
learning difficulty measures are derived from the
representation of the categories as a graph. Each
category exemplar is represented as a node or vertex in
the graph, and nodes are connected if their corre-
sponding distance in stimulus space is less than some
criterion value. Finally, edges that connect exemplars
from contrasting categories are pruned.

The average density of the network (density) is the
number of edges in the graph divided by the maximum
possible number of edges in a graph with the same
number of nodes. Thus, if the graph has N edges and n
nodes, then

density ¼ N

nðn� 1Þ=2 : ð13Þ

Clustering coefficient: The clustering coefficient
(ClsCoef) is a measure of network average local
density. First, for each node, define its neighborhood as
the set of all nodes that are directly connected. The
ClsCoef is the mean density of each of these
neighborhoods.

Note that the ClsCoef is smaller for less dense
networks or for structures where the categories overlap
(leading to many nonconnected stimuli from opposing
classes within the neighborhood of any given stimulus).
Hub score: The hub score (Hubs) is a network measure
equal to the number of connections a node has,
weighted by the number of connections of each of its
neighbors.

This leads to large scores for stimuli that are
connected to many other stimuli that are also highly
connected. Less dense categories and a higher degree of
overlap between categories will both cause this measure
to predict higher difficulty.

Data analysis

We compared the efficacy of the SDM to all of the
other measures described in the previous section at
predicting human categorization performance in four
different published studies. The studies all used
different stimulus types and included categorization
conditions that differed in difficulty. The data sets from
these four studies included five category structures from
Alfonso-Reese et al. (2002), six classic structures from
Shepard, Hovland, and Jenkins (1961), three structures
from Ashby and Maddox (1992), and three from Ell
and Ashby (2006). Each of these studies used different
stimulus types. Shepard et al. used binary-valued

stimulus dimensions, whereas the other studies used
continuous-valued dimensions. Alfonso-Reese et al.
and Shepard et al. used stimuli that varied on three
dimensions, whereas the stimuli used by Ashby and
Maddox and by Ell and Ashby varied on two stimulus
dimensions. Alfonso-Reese et al. and Ell and Ashby
used linearly separable categories, Ashby and Maddox
used nonlinearly separable categories, and Shepard et
al. included both linearly and nonlinearly separable
categories.

Our primary analysis focused on the ability of each
difficulty measure to correctly rank order the observed
classification error rates from each condition of these
four studies. Some of the measures increase with
predicted classification difficulty (e.g., CC, eIO, VOR),
whereas the others decrease with predicted difficulty
(e.g., Csep, density, ClsCoef). For measures in this latter
group, we generated a predicted rank ordering by
inverting the order of the measure. So for example, the
condition with the smallest Csep was ranked as most
difficult, and that with the largest Csep, least difficult.

For each category structure, the SDM was calculated
by randomly selecting 300 stimuli from the category
distributions and averaging across 10 such sets to
determine the SDM value for a single c. This process
was repeated for all values of c ranging from 5 to 50 in
five-step intervals (i.e., 5, 10, 15, . . ., 45, 50), and the
final difficulty score was the average of the scores for all
values of c. In practice, the value of c can be found by
fitting previous results using the same stimuli, but here
we are interested in a priori difficulty predictions of the
SDM, rather than its ability to account for difficulty
post hoc by adjusting the value of c. The machine-
learning measures were computed using the R package
provided by Lorena et al. (2018).

Results

Alfonso-Reese et al. (2002)

Alfonso-Reese et al. (2002) compared the ability of
the CC, eIO, and Csep difficulty measures to rank order
human performance on the five different classification
tasks described in Figure 2. A fourth measure was also
included (orientation of the optimal bound), but
because it failed to make any differential predictions for
the majority of the category structures Alfonso-Reese
et al. analyzed, it was excluded from comparison here.
In all tasks, the stimuli were bar graphs that displayed
the numerical values of blood pressure, white-blood-
cell count, and serum potassium level of a hypothetical
patient. The subject’s task was to use these three values
to diagnose the patient with either disease A or disease
B.
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Table 1 shows the observed rank ordering of the
tasks according to the mean percent errors of subjects
during the last block of training, along with the
predicted rank ordering according to the SDM, the
eight measures selected from Lorena et al. (2018), and
the three measures from Alfonso-Reese et al. (2002).
Also shown (in the rightmost column) is the Spear-
man’s rank correlation for each model, measuring the
ordinal agreement between the predicted and observed
orderings. Note that the SDM, N2, T1, and density
measures performed best and that the first three of
those measures all made identical ordinal predictions—
mispredicting only one pair of conditions (Conditions 3
and 5).

It should be noted that due to the similar error rates
between Conditions 3, 4, and 5 (32.1%, 29.6%, and
30.0%, respectively), it is unclear whether there is any
real difficulty difference among these conditions.

A natural question is whether the good performance
of the SDM depends on the specific numerical value
chosen for c. To investigate this question, we examined
how the ordinal predictions of the SDM change as a
function of c. The results are shown in Figure 3, which
shows the predicted value of the SDM in each
condition across a wide range of different c values. The
rank ordering in Table 1 was computed from the mean
SDM from each of these curves. Note that none of the
curves cross, which means that the ordinal predictions

of the SDM are invariant across different values of c.
We performed similar analyses for each of the other
empirical applications considered in the following, and
in every case, none of the curves crossed. Thus, at least
for the empirical applications considered in this article,
the ordinal predictions of the SDM do not depend on
the specific numerical value chosen for c.

Shepard et al. (1961)

Shepard et al. (1961) compared categorization
performance for six category structures created from
stimuli that varied across trials on three binary-valued
dimensions. Each stimulus was a geometric object that
varied in shape (triangle vs. square), size (small vs.
large), and color (black vs. white). The category
structures are described abstractly in Figure 4.

These six tasks have been replicated many times with
a variety of different stimulus types, and are perhaps
the most widely used category structures for testing
new theories of categorization. For example, ALCOVE
(Kruschke, 1992; Nosofsky, Gluck, Palmeri, McKinley,
& Glauthier, 1994), the context model (Nosofsky,
1984), the generalized context model (Nosofsky, 1986),
COVIS (Ashby et al., 1998; Edmunds & Wills, 2016),
and SUSTAIN (Love & Medin, 1998) have all been
shown to account for the consensus difficulty ordering
of VI . III ¼ IV ¼ V . II . I (e.g., Nosofsky et al.,
1994; Smith, Minda, & Washburn, 2004). These
demonstrations all required estimating a large number

Measure Difficulty r

ClsCoef C5 . C1 . C2 . C4 . C3 �0.40
Csep C5 . C1 . C2 . C3 ¼ C4 �0.31
eIO C5 � C1 . C2 . C3 ¼ C4 �0.31
VOR C2 . C3 . C4 . C5 . C1 0.30

CC C3 ¼ C4 . C2 . C1 ¼ C5 0.47

CFE C2 . C3 . C5 . C4 . C1 0.40

eNN C5 . C3 . C4 . C1 . C2 0.80

FBP C5 . C3 . C4 . C1 . C2 0.80

Hubs C3 . C4 . C5 . C1 . C2 0.80

Density C3 . C4 . C5 . C2 . C1 0.90

T1 C5 . C3 . C4 . C2 . C1 0.90

N2 C5 . C3 . C4 . C2 . C1 0.90

SDM C5 . C3 . C4 . C2 . C1 0.90

Observed ordering C3 . C5 . C4 . C2 . C1

Percent errors 32.1 . 30.0 . 29.6 . 18.3 . 13.5

Table 1. Predicted and observed difficulties for the category
structures from Alfonso-Reese, Ashby, and Brainard (2002).
Notes: ClsCoef ¼ clustering coefficient; Csep ¼ class separation;
eIO ¼ error rate of the ideal observer; VOR ¼ volume of
overlapping regions; CC ¼ covariance complexity; CFE ¼
collective feature efficiency; eNN ¼ error rate of nearest
neighbor classifier; FBP¼ fraction of borderline points; Hubs¼
hub score; Density ¼ average density of the network; T1 ¼
fraction of hyperspheres covering data; N2 ¼ ratio of intra- to
extraclass nearest-neighbor measure; SDM ¼ Striatal Difficulty
Measure.

Figure 3. Predicted difficulty in the conditions of Alfonso-Reese,

Ashby, and Brainard (2002) as a function of the c parameter of

the Striatal Difficulty Measure.
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of free parameters, however, and for this reason we did
not include any of these models in our analyses. For
example, Nosofsky (1984) estimated 18 free parameters
in showing that the context model was consistent with
the Shepard et al. difficulty order. On the other hand, it
is important to note that after this parameter-estima-
tion process, the resulting models also provide good fits
to the learning curves—an ability that is beyond the
scope of the SDM. The SDM is not proposed as a
model of categorization or category learning. Rather,
we propose it as a measure that makes a priori
predictions of categorization difficulty.

Class separation is undefined with some of these
categories because the within-category variance-co-
variance matrix is singular. As a result, we compared all
other measures to the consensus ordering from the six
conditions. Values of 0 and 100 were used for each
binary-valued dimension to approximately equate the
range of stimulus values to those used in the other
experiments. Results are shown in Table 2. Note that
the SDM performs better than all the previous top
performers—correctly ordering the difficulty of all
conditions except type II. Three measures that per-
formed poorly on the Alfonso-Reese et al. (2002) data
outperform the SDM here: VOR, CFE, and FBP.
However, note that two of these measures (VOR and
CFE) predict no difference between category structure
VI and structures III, IV, and V. In contrast to this
prediction, many studies have shown that the type VI
categories are, by far, the most difficult for people to
learn (Nosofsky et al., 1994; Smith et al., 2004).

The reduced performance of the SDM on these data
relative to the data of Alfonso-Reese et al. (2002) is
driven by two factors: the better-than-predicted human
performance on the type II category structure and the
failure of the SDM to predict exactly equal perfor-
mance on category types III, IV, and V. Note that for
the type II categories, perfect performance is possible
with the (explicit) disjunction rule of the type: Respond
A to a large square or small triangle; otherwise respond
B. Thus, one possibility is that category types I and II
are best described as rule-based tasks, in which case the
SDM should not be expected to apply. Also, of course,
the decision to set the observed difficulties of types III,
IV, and V equal in Table 2 is because previous studies
have generally not agreed on the ordering of these
types, and any differences that have been reported were
small. The SDM could be generalized to predict equal
difficulties by requiring, for example, that the predicted
difficulties of two tasks exceed some criterion before a
strict ordering is predicted.

Ashby and Maddox (1992)

Ashby and Maddox (1992) trained participants on
the three category structures described in Figure 5.
Each category was created by drawing 800 random

Figure 4. Category structures from Shepard, Hovland, and

Jenkins (1961). Black dots represent stimulus coordinates of

category A exemplars, and blue dots represent stimulus

coordinates of category B exemplars.

Measure Difficulty r

ClsCoef IV . I . III . V . II . VI �0.39
Hubs II . V . IV . III . I . VI �0.33
T1 I ¼ II ¼ III ¼ V ¼ VI . IV �0.14
eNN I ¼ II ¼ III ¼ IV ¼ V ¼ VI 0.0

eIO I ¼ II ¼ III ¼ IV ¼ V ¼ VI 0.0

N2 I ¼ II ¼ III ¼ IV ¼ V ¼ VI 0.0

CC V . III . IV . I ¼ II ¼ VI 0.29

Density VI . V . II . I ¼ III . IV 0.31

SDM VI . II . V . III . IV . I 0.58

CFE II ¼ III ¼ IV ¼ V ¼ VI . I 0.70

VOR III ¼ IV ¼ V ¼ VI . I ¼ II 0.88

FBP VI . V . III ¼ IV . II . I 0.95

Observed ordering VI . V ¼ IV ¼ III . II . I

Percent error 14.3 . 7.5 ¼ 6.5 ¼ 6.1 . 3.2 . 1.0

Table 2. Predicted and observed difficulties for the category
structures from Shepard, Hovland, and Jenkins (1961). Notes:
The difficulty ordering for the covariance complexity measure
was computed by Alfonso-Reese, Ashby, and Brainard (2002).
The error rates used here are from Nosofsky, Gluck, Palmeri,
McKinley, & Glauthier (1994). ClsCoef ¼ clustering coefficient;
Hubs¼ hub score; T1¼ fraction of hyperspheres covering data;
eNN¼ error rate of nearest neighbor classifier; eIO¼ error rate
of the ideal observer; N2¼ ratio of intra- to extraclass nearest-
neighbor measure; CC ¼ covariance complexity; Density ¼
average density of the network; SDM ¼ Striatal Difficulty
Measure; CFE ¼ collective feature efficiency; VOR ¼ volume of
overlapping regions; FBP ¼ fraction of borderline points.
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samples from a bivariate normal distribution. In all
experiments, the two category distributions had dif-
ferent variance-covariance matrices, so in each case the
optimal decision boundary was nonlinear (i.e., qua-

dratic). The three experiments included separate
conditions (with separate subjects) that used the
coordinate values of the random samples shown in
Figure 5 to create two different stimulus types:
rectangles that varied across trials in height and width,
and circles with a radial line that varied across trials in
circle size and line orientation.1 The results are shown
in Table 3. The observed accuracies and difficulties
were based on performance during the last 300 trials.
Note that accuracy was highest in experiment 3, second
highest in experiment 1, and lowest in experiment 2, so
the observed difficulty ordering was E2 . E1 . E3.
This same ordering held for both stimulus types, so in
these experiments at least, difficulty depended on
category structure but not on the type of stimuli that
were used.

The SDM was one of four measures to correctly
rank order the three experiments by difficulty, joined by
Csep, density, and Hubs. The three measures that
outperformed the SDM for the Shepard et al. (1961)
categories (VOR, CFE, and FBP) and two of the three
measures that performed as well as the SDM on the
Alfonso-Reese et al. (2002) categories (T1 and N2) all
failed to properly rank order the experiments.

Ell and Ashby (2006)

Ell and Ashby (2006) studied the effects of category
separation on categorization performance by training
participants on category structures that varied on the
distance between category means but were identical in
all other aspects. The categorization stimuli were
Gabor disks that varied across trials on spatial
frequency and orientation. The category structures are
described in Figure 6. As in the Ashby and Maddox
(1992) experiments, the stimuli comprising each cate-
gory were random samples from a bivariate normal
distribution. However, in these experiments, both
category distributions had identical variance-covari-
ance matrices, so in each case the optimal boundary
was linear (as in the conditions in Alfonso-Reese et al.,
2002). Therefore, the different conditions varied only in
category separation.

As expected, performance improved substantially
with category separation. Thus, any measure sensitive
to separation will correctly order these conditions by
difficulty. The results, based on the last block of
performance, are shown in Table 4. Note that all
measures (including the SDM) correctly rank order the
conditions by difficulty, except for CC, which predicts
equal performance in the three conditions. This is
because CC is sensitive only to the complexity of the
variance-covariance matrices that describe the con-
trasting categories. Because the categories in the Ell
and Ashby experiments all had identical variance-

Figure 5. Ashby and Maddox (1992) category structures. In each

case, the categories were created by random sampling from a

bivariate normal distribution. In each experiment, the distribu-

tions had different variance-covariance matrices.

Journal of Vision (2019) 19(6):20, 1–15 Rosedahl & Ashby 9



Figure 6. Ell and Ashby (2006) category structures. In each case,

categories were created by random sampling from a bivariate

normal distribution. All distributions had identical variance-

covariance matrices. The three conditions varied the intermean

distance to create high, medium, and low class separation.

Measure Difficulty r

ClsCoef E3 . E2 . E1 �0.50
CFE E1 . E2 . E3 0.50

CC E1 . E2 . E3 0.50

eNN E2 . E3 . E1 0.50

FBP E2 . E3 . E1 0.50

T1 E2 . E3 . E1 0.50

N2 E2 . E3 . E1 0.50

VOR E1 . E2 . E3 0.50

eIO E2 . E1 ¼ E3 0.87

Csep E2 . E1 . E3 1.0

Density E2 . E1 . E3 1.0

Hubs E2 . E1 . E3 1.0

SDM E2 . E1 . E3 1.0

Observed ordering E2 . E1 . E3

Percent errors 35 . 25 . 14

Table 3. Predicted and observed difficulties for the Ashby and
Maddox (1992) category structures. Notes: ClsCoef¼ clustering
coefficient; CFE¼ collective feature efficiency; CC¼ covariance
complexity; eNN¼ error rate of nearest neighbor classifier; FBP
¼ fraction of borderline points; T1 ¼ fraction of hyperspheres
covering data; N2¼ ratio of intra- to extraclass nearest-neighbor
measure; VOR¼ volume of overlapping regions; eIO¼error rate
of the ideal observer; Csep¼ class separation; Density¼ average
density of the network; Hubs ¼ hub score; SDM ¼ Striatal
Difficulty Measure.

Measure Difficulty r

CC L ¼ M ¼ H 0.0

Csep L . M . H 1.0

ClsCoef L . M . H 1.0

CFE L . M . H 1.0

Density L . M . H 1.0

eNN L . M . H 1.0

FBP L . M . H 1.0

Hubs L . M . H 1.0

T1 L . M . H 1.0

eIO L . M . H 1.0

N2 L . M . H 1.0

VOR L . M . H 1.0

SDM L . M . H 1.0

Observed ordering L . M . H

Percent errors 47 . 21 . 1

Table 4. Predicted and observed difficulties for the Ell and Ashby
(2006) category structures. Notes: CC ¼ covariance complexity;
Csep ¼ class separation; CFE ¼ collective feature efficiency;
Density ¼ average density of the network; eNN ¼ error rate of
nearest neighbor classifier; FBP¼ fraction of borderline points;
Hubs¼ hub score; T1¼ fraction of hyperspheres covering data;
eIO ¼ error rate of the ideal observer; N2 ¼ ratio of intra- to
extraclass nearest-neighbor measure; VOR ¼ volume of
overlapping regions; SDM ¼ Striatal Difficulty Measure.
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covariance matrices, the CC measure incorrectly
predicts equal performance in the three conditions.

Comparing across all experiments

The SDM performed best across all the data sets
examined so far. Even so, these results must be
interpreted with caution because of the small number of
category structures examined in each application.
Because of these small numbers, the Spearman’s rank
correlations reported in Tables 1–4 are based on small
sample sizes. This section attempts to alleviate this
concern by comparing performance across all the data
sets.

First, we summarized the rank-order performance of
each measure by computing its mean Spearman’s r in
all four applications already described (i.e., across
Tables 1–4). Results are shown in Table 5. Note that
overall, the SDM performed best, followed by FBP and
density and then distantly by VOR.

The rank orderings considered so far only examine
ordinal predictions of the difficulty measures. However,
each measure makes a quantitative prediction about the
difficulty of any particular category structure. And in
all applications considered, we have an empirical
quantitative estimate of difficulty—namely, the average
error rate of the human learners. So a more ambitious
question is to ask how well the various measures
predict the observed error rates.

Before proceeding, however, there are several
complications to consider. First, the quantitative value

of difficulty predicted by each measure is not average
error rate, but rather some other statistic. For example,
in the case of the SDM, the statistic is described by
Equation 5. Suppose we call the numerical value of
difficulty predicted by a measure D and the observed
average error rate of human learners E. Then the
various measures all predict that

E ¼ fðDÞ; ð14Þ
where f is some strictly increasing (and therefore order-
preserving) function. However, none of the measures
specify the form of f. This is why we focused on
predicted rank orderings (because the predicted rank
ordering is the same for any increasing function f). We
will use the same strategy here, but in addition we will
compare the ability of the most successful measures to
predict the observed value of average error rate in all
conditions and experiments, under the assumption that
f is linear. However, it is important to note that in
general, there is no reason to expect f to be linear.

A second complication is that the four applications
considered each included different amounts of training
and different instructions to the subjects. The measures
do not consider these factors; thus, they predict the
same quantitative value of difficulty regardless of
whether subjects received 100 or 1,000 trials of training.
Obviously, we expect average error rates to be lower in
the latter case, so a mispredicted average error rate by a
measure in a specific experiment does not necessarily
mean that the measure is flawed. For this reason, the
results in this section should be interpreted with
caution. Despite these misgivings, however, we believe
that comparing the quantitative predictions of the
measures across all experiments is a useful exercise.
First, there is no reason to expect these issues to plague
one measure any more than the others. Thus, even if all
the predictions are inaccurate, it could still prove useful
to compare the accuracy of different measures. Second,
the most likely effect of these complications should be
to reduce the accuracy of prediction. Thus, whereas it
might be problematic to interpret results if all measures
make inaccurate predictions, the opposite scenario is
less troubling. In particular, accurate predictions by a
measure are most likely to occur because that measure
is a valid predictor of classification difficulty rather
than because of either complication. With those caveats
in mind, we can proceed to the analysis.

For each category structure in the four data sets, we
computed the numerical value of difficulty predicted by
each of the measures (excluding category separation,
since it is not defined for the Shepard et al., 1961, data
set) and then compared these to the observed mean
(across subjects) error rates. We evaluated the accuracy
of these predictions in two ways—by computing the
Spearman’s rank correlation and the Pearson’s squared

Measure Average Spearman’s r

ClsCoef �0.07
CC 0.32

eIO 0.39

Csep 0.56

T1 0.57

eNN 0.58

N2 0.60

Hubs 0.62

CFE 0.65

VOR 0.67

Density 0.80

FBP 0.81

SDM 0.87

Table 5. Average Spearman’s r across all category structures.
Notes: ClsCoef ¼ clustering coefficient; CC ¼ covariance
complexity; eIO¼ error rate of the ideal observer; Csep¼ class
separation; T1¼ fraction of hyperspheres covering data; eNN¼
error rate of nearest neighbor classifier; N2 ¼ ratio of intra- to
extraclass nearest-neighbor measure; Hubs ¼ hub score; CFE ¼
collective feature efficiency; VOR¼ volume of overlapping
regions; Density ¼ average density of the network; FBP ¼
fraction of borderline points; SDM¼ Striatal Difficulty Measure.
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correlation between predicted difficulty and the ob-
served error rates. The results are shown in Table 6.

Note that the SDM performs best according to both
measures, with a Spearman’s r of 0.93 and a Pearson’s
r2 of 0.87. The nearest neighbor classifier (eNN) is
second best, followed by the hyperspheres (T1), N2, and
density. Thus, despite the complications already
described, the SDM accounts for an impressive 87% of
the variance in the mean error rates across these
studies.

Figure 7 plots mean error rate in each study along
with predicted difficulty for the six best-performing
measures. Also shown are the best-fitting regression
lines and the squared Pearson correlation. Note that
the high r2 for the SDM suggests that the function f
from Equation 14 is fairly linear in these applications.

The performance of the SDM can be even further
improved by selecting the single best-performing value
of c¼ 10. In this case the measure accounts for 91% of
the variance. This could presumably be increased even
further by using values of c tailored to each stimulus
type (because each stimulus has a different visual
representation, the neural tuning curves will differ
across stimulus types, and therefore c should also
differ). Even so, there are two different reasons that we
chose to base the r2 in Table 6 on the mean SDM value
across a wide range of c values. First, none of the other
measures includes a free parameter, so to keep the
comparisons fair, neither should the SDM. Second, the
goal of this article is to develop a difficulty measure
that makes accurate a priori predictions of difficulty.

General discussion

Across a wide range of category-learning data sets,
the SDM outperformed several difficulty measures that
have been used previously on human data (CC, eIO,
and Csep), as well as eight previously used measures
from the machine-learning literature (VOR, CFE, FBP,
eNN, T1, density, ClsCoef, and Hubs). All of these
measures were compared on four extensive data sets
that each included multiple conditions that varied in
difficulty. The studies were highly diverse and included
experiments with both continuous- and binary-valued
stimulus dimensions, a variety of different stimulus
types, and both linearly and nonlinearly separable
categories. Across these four applications, the SDM
was the most successful measure at predicting the
observed rank ordering of conditions by difficulty, with
an average Spearman’s r of 0.87, and it was also the
most accurate measure of the six tested at predicting
the numerical values of the mean error rates in each
condition (accounting for 87% of the variance in error
rates across all conditions).

The only real failure in the ordinal predictions of the
SDM is that the Shepard et al. (1961) type II categories
turn out to be easier for humans to learn than the SDM
predicts. However, as noted earlier, the optimal
strategy for the type II categories has a straightforward
verbal description (i.e., as a logical disjunction). This is
also true for the type I categories. Therefore, types I
and II are best characterized as rule-based tasks,
whereas types III, IV, V, and VI seem more like
information-integration tasks. Multiple systems theo-
ries of human category learning (e.g., COVIS; Ashby &
Valentin, 2017) predict that rule-based and informa-
tion-integration tasks are learned in qualitatively
different ways, and it for this reason that the SDM was
developed specifically to predict difficulty only in
information-integration tasks.

Another possibility, however, is that none of the
Shepard et al. (1961) categories are learned procedur-
ally because the stimuli vary on only three binary-
valued dimensions. For example, Feldman (2000, 2004)
showed that the difficulty of the Shepard et al.
conditions is perfectly predicted by the Boolean
complexity of the rule that describes category mem-
bership. If so, then the SDM should not be expected to
accurately predict the difficulty of any Shepard et al.
conditions. Whether or not any of these conditions are
learned procedurally is an open question. Even so,
there is evidence that categories in which the stimuli
vary on four binary-valued dimensions are learned
procedurally when Boolean complexity is high (Wal-
dron & Ashby, 2001). Also, of course, in almost all
real-world information-integration categories, objects
vary on continuous- rather than binary-valued per-
ceptual dimensions.2 Thus, the Shepard et al. condi-

Measure Spearman’s r Pearson’s r
2

CFE 0.05 0.18

FBP 0.12 0.09

Hubs 0.18 0.02

VOR 0.25 0.02

CC 0.39 0.13

ClsCoef 0.54 0.31

eIO 0.78 0.73

Density 0.82 0.76

N2 0.83 0.76

T1 0.83 0.83

eNN 0.87 0.83

SDM 0.93 0.87

Table 6. Spearman’s rank correlation and Pearson’s squared
correlation between predicted difficulty and mean observed
error rate across all category structures considered in this
article. Notes: CFE¼ collective feature efficiency; FBP¼ fraction
of borderline points; Hubs ¼ hub score; VOR ¼ volume of
overlapping regions; CC ¼ covariance complexity; ClsCoef ¼
clustering coefficient; eIO ¼ error rate of the ideal observer;
Density¼ average density of the network; N2¼ ratio of intra- to
extraclass nearest-neighbor measure; T1 ¼ fraction of hyper-
spheres covering data; eNN¼ error rate of nearest neighbor
classifier; SDM ¼ Striatal Difficulty Measure.
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tions are not representative of real-world categorization
tasks. More research on how people learn the Shepard
et al. categories is clearly needed. In any case, our
hypothesis is that the SDM will accurately predict the
difficulty of any categories learned procedurally.

One difference between the SDM and all other
measures considered in this article is that the SDM has
a free parameter (i.e., c), whereas the other measures do
not. This is because the SDM was constructed to
predict difficulty for human learners, whereas all other
measures are meant to predict difficulty of an optimal
classifier (i.e., an ideal observer). The optimal classifier
operates noise free, whereas even the best human
learner must deal with perceptual noise. The c
parameter measures that noise (e.g., note from Figure 3
that difficulty increases with c).

In the current applications, SDM-predicted difficulty
did not depend much on c (e.g., see Figure 3). Even so,
the inclusion of c in the measure allows the SDM to
make some unique predictions relative to the other
measures. For example, adding a noise mask to the
stimulus display should increase the number of visual

neurons that respond and therefore increase c. Thus,
the SDM predicts that adding a noise mask increases
difficulty. Similarly, the SDM predicts that uniformly
contracting the entire stimulus space will also increase
difficulty. In contrast, none of the other measures
predict that either of these manipulations will have any
effect on difficulty, because adding a mask or uniformly
contracting the space should not affect the performance
of the optimal classifier.

A future research project that might be worth
pursuing would be to add a noise-sensitive parameter
to some or all of the other measures considered here.
This might improve their ability to predict human
difficulty, although Figure 3 suggests that this im-
provement might have little effect on their ordinal
predictions. Such a project is well outside the scope of
the current article, however, because the computational
implementation of a noise-sensitive parameter would
likely be unique to each measure. For example, none of
the other measures depend on radial basis functions or
tuning curves, so they include no structure that would
allow a parameter identical to c to be added.

Figure 7. Scatterplots of predicted difficulty for six different measures against mean observed error rate for all category structures

from the four applications considered in this article. Also shown are the best-fitting regression line and resulting Pearson r
2. Note that

in the case of density, the ordinate is predicted ease of classification.
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The success of the SDM in the applications
considered in this article, relative to all other measures,
suggests that it might be used to improve computer-
assisted classification. With access to the SDM, a
computer would be in the best possible position to
determine when humans would be most in need of
computer assistance.

Conclusions

Overall, the SDM has the potential to be a valuable
tool in both experimental design and human perfor-
mance enhancement. A future research goal should be
to generalize the SDM to account for many other
factors that are known to affect human category
learning, including fatigue (Maddox et al., 2009), stress
(Ell, Cosley, & McCoy, 2011), and the retinal location
of the stimulus during training versus testing (Rose-
dahl, Eckstein, & Ashby, 2018). The SDM can then be
used to improve human–computer partnerships for
important categorization tasks such as radiologists
scanning X-rays for tumors, TSA agents examining bag
scans for banned items, and more.

Keywords: categorization, classification, visual
category learning, difficulty, information integration
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Footnotes

1 Experiments 1 and 2 included a third condition in
which the stimuli were two connected line segments
that varied across trials in length. However, Ashby and
Maddox (1992) did not include those stimuli in their
experiment 3, and so those conditions are not
considered here. Even so, the difficulty ordering for the
excluded conditions was the same as for the other
conditions, so the only effect of including the line-

segment data would be to slightly change the percent
correct listed for experiment 1 in Table 3.

2 One commonly cited counterexample is that
animals either have wings or they do not. However, this
binary categorization is the result of a decision.
Perceptually, there is enormous variability in the
structures that might be labeled wings. For example,
consider the differences among eagles, penguins, and
seahorses.
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