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Abstract: Mental health is as crucial as physical health, but it is underappreciated by mainstream
biomedical research and the public. Compared to the use of AI or robots in physical healthcare,
the use of AI or robots in mental healthcare is much more limited in number and scope. To date,
psychological resilience—the ability to cope with a crisis and quickly return to the pre-crisis state—
has been identified as an important predictor of psychological well-being but has not been commonly
considered by AI systems (e.g., smart wearable devices) or social robots to personalize services such as
emotion coaching. To address the dearth of investigations, the present study explores the possibility
of estimating personal resilience using physiological and speech signals measured during human–
robot conversations. Specifically, the physiological and speech signals of 32 research participants were
recorded while the participants answered a humanoid social robot’s questions about their positive
and negative memories about three periods of their lives. The results from machine learning models
showed that heart rate variability and paralinguistic features were the overall best predictors of
personal resilience. Such predictability of personal resilience can be leveraged by AI and social robots
to improve user understanding and has great potential for various mental healthcare applications in
the future.

Keywords: automatic personality recognition; human–robot interaction; personal resilience; physiological
signals; speech signals

1. Introduction
1.1. Background and Motivation

People often take good care of their physical health while ignoring their mental health.
Correspondingly, while many AI and robot applications for physical healthcare have been
developed over the years, those used for mental healthcare applications are limited in
number and scope. However, people neglect a crucial fact: like physical illness, mental
illness can lead to death [1,2].

Individuals with better protective factors are less likely to suffer from mental health
problems, especially when facing traumatic or stressful life events. One of these protective
factors is trait resilience [3], which is a positive personality characteristic indicative of one’s
adaptability in the face of adversity. For instance, trauma and adversity in childhood may
negatively impact stress response systems [4] and contribute to mental disorders such as
post-traumatic stress disorder (PTSD) and depression [5,6]. Nevertheless, resilient children
can cope well with loss or trauma, not suffer from mental illnesses, and even thrive under
such adverse life experiences [7,8].

While an increasing number of psychological studies on resilience indicates a growing
interest among researchers in this important topic, there are discrepancies as to how to
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define and conceptualize personal resilience. In the relevant literature, personal resilience
can be discussed as a trait-like capacity, an adaptive process of overcoming adversity, or an
outcome of (un)successful adaptation [9]. These different characterizations of personal
resilience have led to incongruent resilience measures [10] and hence the difficulty of
integrating divergent findings across studies [11]. Among the three characterizations of
personal resilience, the trait-like capacity is the only one that precedes adversities from
environments [12] and thus can be utilized for early identification and proactive protection
of vulnerable populations. Here, the adversities can vary in severity and range from daily
hassles to major life events [11], including ostensibly positive and yet stressful life events
(e.g., job promotion or marriage) [9].

Despite the values of trait resilience, research on personality computing has mainly
focused on estimating the Big Five personality traits [13,14]. For example, many studies
have investigated the associations between the Big Five personality traits and physiologi-
cal [15,16] or linguistic features [17–20]. By contrast, only a handful of studies have sought
biomarkers or behavioral markers of resilience. Moreover, these identified markers are
either invasive measures (e.g., neurochemical or immune ones [21]) or linguistic patterns in
written narratives (e.g., [22,23]), which are not easily accessible in daily scenarios. To add to
the literature on personality computing, the present study set out to investigate whether the
psychological resilience of a person can be accurately estimated using simple, cost-effective,
and non-invasive procedures.

Specifically, we measured physiological and speech signals to be used as predictors
in our resilience-estimating models. These physiological signals can be acquired by wear-
able devices (e.g., smartwatches or smart bands), and speech signals can be captured
during human–human or human–robot conversations. In our resilience-predictive models,
the physiology-based predictors included galvanic skin response (GSR), electrocardiograms
(ECG), and heart rate variability (HRV); the speech-based predictors encompassed audio
and linguistic features. While these physiological signals have been found to correlate with
psychological resilience [21], speech markers of resilience, if any, are not yet identified.
Therefore, the present study aimed to explore the use of speech signals for predicting
personal resilience and compare the predictive powers of these two data sources.

1.2. Theoretical Basis
1.2.1. Physiological Signals

GSR, also known as skin conductance or electrodermal activity (EDA), is a biosignal
indicating the change in skin conductance resulting from the autonomic activation of sweat
glands. Controlled by the sympathetic nervous system, active sweat glands are driven
by high-arousal events. When sweat glands are triggered and secrete fluid, the electrical
current flow changes. This change leads to a variation in the skin conductance, as often
measured by the electrical potential difference between a pair of electrodes placed in the
hands or on the feet.

ECG signals are frequently utilized to reveal cardiac conditions. The heart rhythm is
influenced by the autonomic nervous system (ANS), which consists of the sympathetic
nervous system (SNS) and the parasympathetic nervous system (PNS). While the SNS
influences the acceleration and excitation of the heart rate, the influence from the PNS is
slow and inhibitory. The average heart rate results from a balance between the SNS and
PNS, and the ratio of low- to high-frequency components of the ECG (i.e., LF/HF) indicates
such a balance [24].

The ECG signal comprises a sequence of positive and negative waves. The first wave,
the P wave, is generated by the depolarization of the atria. The following QRS complex
represents the depolarization of both ventricles. The last T wave represents ventricle
repolarization. As illustrated in Figure 1, the amplitudes of these ECG waves were used in
our analyses.
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Besides the ECG amplitudes, heart rate variability (HRV) is often computed from
ECG signals because it is a strong indicator of one’s cardiac or general health condition.
Different indices can be derived from HRV. Time-domain features are extracted based on
the variation in the time interval between consecutive heartbeats, such as normal-to-normal
(NN) intervals and intervals between adjacent QRS complexes. Frequency-domain features,
such as spectrograms, are also frequently examined.

Although few studies have discussed the direct relationship between resilience and
physiological signals in healthy individuals, such a relationship may be inferred from
the known associations between PTSD and ECG. When faced with traumatic events,
less resilient individuals are more likely to suffer from PTSD [25], the ECG characteristics
of which include a higher heart rate, lower HF, and higher LF/HF [26,27]. Note, however,
that although PTSD is often conceptualized as a category of mental disorder, it can be
viewed as a spectrum disorder in terms of symptom severity, the nature of the stressor,
and responses to trauma [28]. Under such a dimensional conceptualization of PTSD,
less resilient individuals that are not diagnosed with full PTSD may, to some extent,
also show the aforementioned ECG characteristics, which suggest an elevated sympathetic
activity and/or an attenuated parasympathetic activity.

1.2.2. Speech Signals

Speech conveys information through verbal and nonverbal channels. A speaker
can communicate meaning not only by verbal contents per se but also by vocal tech-
niques, such as modification of volume, prosody, and intonation (for a review, see [29]).
More importantly, while a speaker expresses meaning consciously through these two
communication channels, paralinguistic and linguistic features unconsciously expressed
during a conversation may reveal the psychological traits or states of the speaker, such as
personality or emotional states [30]. Therefore, the current study leveraged paralinguistic
and linguistic features extracted from speech signals to estimate psychological resilience.

Paralinguistic features can be further divided into physical and perceptual features [31].
The former is calculated directly from sound waves, including energy function/spectrum
and cepstral coefficients; the latter is related to the human perception of the sound, such as
loudness, pitch, and rhythm.

As for linguistic features, Linguistic Inquiry and Word Count (LIWC) [32] is a comput-
erized language analysis program widely used to count linguistically or psychologically
meaningful words in texts. These words are either content words (e.g., words related to
positive emotion or social activities) or function words (e.g., articles, pronouns, and prepo-
sitions). While content words deliver semantic meaning, function words partly form
linguistic styles [33]. As an example of differences in linguistic style, written texts, relative
to spoken texts, are shorter in general but use longer words, more attributive adjectives,
and a more varied vocabulary [34]. Therefore, it is unclear how well the linguistic features
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of resilience found in written texts (e.g., [22,23]) can be used by social robots to estimate
personal resilience from speech.

2. Materials and Methods

This section presents the materials and methods employed in the study. Section 2.1
describes the study procedure, including the resilience questionnaire, signal recording
method, social robot, and task instructions. Section 2.2 introduces the features extracted
from physiological and speech signals. Section 2.3 details the feature selection method.
Section 2.4 then presents the results from various resilience-estimating models.

2.1. Procedure

The whole study took approximately 1.5 h to complete, and each participant was
paid $240 New Taiwan Dollars as compensation for research participation. After giving
written informed consent of being video- and sensor-recorded, each participant completed
a questionnaire that measures personal resilience. Then, the participant was invited by
a social robot to recall autobiographical memory with her/his video and physiological
signals simultaneously recorded.

2.1.1. Participants

Thirty-five students from National Taiwan University volunteered to participate in
the study, but three were excluded from further analysis because they did not follow
the instructions. The final sample size was 32 participants (18 females, age range 20–29,
M = 22.91, SD = 2.41).

2.1.2. Questionnaires

While there is no “ gold standard” among different measures of resilience, three
resilience scales—the Brief Resilience Scale (BRS) [35], the Connor-Davidson Resilience
Scale (CD-RISC) [36], and the Resilience Scale for Adults (RSA) [37]—have been found
to be psychometrically better than the others [38]. In the present study, we favored the
RSA over the other two because the 5-dimensional RSA is a more elaborated measure of
resilience than the 1-dimensional BRS and was developed more generally for the healthy
population than the more clinically oriented CD-RSIC.

The current study employed the Mandarin Chinese version of the 33-item RSA, which
was constructed using a back-translation procedure by the author of this article (S.-H.C.).
An exploratory factor analysis of the Mandarin Chinese version partially recovered the
five-factor structure of RSA from 29 items: personal strength (6 items), family cohesion
(7 items), social resources (8 items), social competence (4 items), and structured style
(4 items). The Cronbach’s alphas of the five factors were 0.92, 0.83, 0.87, 0.85, and 0.85,
respectively. The overall test-retest correlation of the Mandarin Chinese RSA was 0.89 for
an interval of 3–4 weeks.

2.1.3. Signal Recording

We recorded both physiological signals and speech during each human–robot in-
teraction session. Two types of physiological signals—electrocardiography (ECG) and
galvanic skin response (GSR)—were measured with a NeXus-10 system (Mind Media
BV, Roermond-Herten, Netherlands), which was controlled by the BioTrace+ Software.
The ECG signal was measured with an ExG sensor. Following the ECG wrist placement
tutorial of the BioTrace+ Software, the ECG electrodes were placed on every participant’s
arms. One was placed on the left arm as a reference, one was placed on the lower part of
the left arm as the positive channel, and one was attached to the lower part of the right arm
as the negative channel. For GSR recording, two electrodes of a GSR sensor were attached
separately to the index and ring finger on each participant’s right hand. These signals were
monitored on NeXus-10 at a rate of 2048 samples per second. The speech was recorded
using Digital Video Recorder H.264 DVR.



Sensors 2021, 21, 5844 5 of 19

2.1.4. Human–Robot Interaction

We used a humanoid social robot—RoBoHoN (Sharp Co., Ltd., Sakai, Japan)—as the
conversational agent in the present study. RoBoHoN is a programmable robot with built-in
speech-to-text and text-to-speech engines. Nevertheless, at times it misrecognizes spoken
words in Mandarin Chinese and speech pauses/endpoints, thereby making inappropriate
responses. Because such machine errors might induce negative emotions in the participants
and hence become confounding factors, we followed the convention of human–robot
studies to adopt a Wizard-of-Oz approach for precisely controlling, via wireless internet,
when and what the social robot spoke. Specifically, the social robot functioned as a client
who received Remote Procedure Calls (RPCs) of text-based speech commands from a
remote computer server. The server offered a web interface for human operators to quickly
select predefined sentences (e.g., memory retrieval instructions detailed in the next section)
or manually enter on-the-fly texts to be spoken by the social robot. While a participant
interacted with the social robot in a well-lit experimental room, the experimenters stayed
in a separate room, remotely monitoring the participant’s responses via a real-time video
camera and operating the social robot via the web-based control panel. According to
our post-study inquiry, all the participants thought the social robot to be under active
development and completely autonomous.

2.1.5. Memory Retrieval

To set up the experiment like a casual conversation during a human–robot interaction
in healthcare settings, our social robot expressed interest in learning a participant’s personal
history and asked each participant to recall memories from his or her life. Six types of
memories about social interaction experiences were queried: a positive or a negative
memory from either childhood (7–12 years old), adolescence (13–18 years old), or early
adulthood (19–24 years old) period. The order of these six queries was randomized for
each participant.

The social robot delivered all the memory retrieval instructions, which were adapted
from an emotional memory study [39]: “Please describe a memory that related to a positive
[negative] experience in a social interaction context during your childhood [adolescence,
early adulthood]. The memory should be associated with strong feelings and be something
you have thought about many times.” Moreover, each participant was required to recall
in steps to separate different cognitive processes, which may be associated with different
physiological and/or linguistic features. These steps were (1) memory selection (selecting
a specific memory for one minute), (2) memory immersion (immersing oneself in the
memory for two minutes), and (3) memory description (describing the memory to the
robot without time limit). For the purpose of the current study, only data from the third
step were analyzed.

2.2. Feature Extraction
2.2.1. Physiological Signals

We applied the first version of the Python package NeuroKit [40] to process ECG
signals, including HRV calculation and wave locating. Specifically, ECG signals were first
filtered with a Butterworth high-pass filter and transformed into z scores. Then, six HRV
features were extracted and directly adopted.

We calculated five ECG amplitudes on our own to be used as resilience-predicting
features because NeuroKit could locate R-, T-, P-, Q-, and S-wave peaks but did not
provide the corresponding amplitude values relative to baselines (Figure 2a). Specifically,
the baseline voltage preceding a P- or T-wave was averaged from samples 97.65 to 195.31 ms
preceding each P or T peak and then subtracted from the corresponding peak voltage to
obtain the amplitude of each P- or T-wave. Similarly, the baseline voltage preceding an R-
wave was averaged from samples 350 to 300 ms preceding each R peak and then subtracted
from the corresponding peak voltage to obtain the amplitude of each R-wave. The QR
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amplitude is the absolute difference between the Q- and R-peaks; the RS amplitude is the
absolute difference between the R- and S-peaks.

Moreover, we used the Python package PySiology [41] to automatically extract five
GSR features, as shown in Figure 2b. The rise time is the time during which a GSR rises,
from start to apex; the decay time is the time during which a GSR decays to 50% of the
amplitude. The GSR amplitude is the value difference between the apex and the start of a
GSR. The GSR width is the time interval from 50% amplitude on the increasing side to 50%
amplitude on the declining side.
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by PySiology.

The aforementioned features, together with their standard deviations, then became
the final outputs of our feature extraction process. In total, there were five HRV features,
ten ECG features, and ten GSR features for later model training and testing, as summarized
in Table 1.

Table 1. HRV, ECG, and GSR features.

HRV Features ECG Features GSR Features

Features Meaning Features Features

meanNN The mean of normal-to-normal (NN) intervals
P mean & std
R mean & std
T mean & std

QR mean & std
RS mean & std

Rise Time mean & std
Amplitude mean & std

Apex mean & std
Decay Time mean & std

Width mean & std

SDNN The standard deviation of the NN intervals
RMSSD The root mean square of the RR intervals

LF Power in the low-frequency range (0.04–0.15 Hz)
HF Power in the high-frequency range (0.15–0.40 Hz)

LF/HF The ratio of LF to HF

2.2.2. Speech Signals

To analyze paralinguistic features in speech, we extracted the Computational Paralin-
guistics Challenge 2013 (ComParE2013) feature set [42] using the OpenSMILE toolkit [43].
This set contains 6373 acoustic features comprising 65 low-level descriptors (LLDs) and
their functionals, as well as five temporal statistics. The LLDs include energy (intensity),
spectral, cepstral (MFCC), voice quality (e.g., jitter), shimmer, harmonics-to-noise ratio
(HNR), spectral harmonicity, and psychoacoustic spectral sharpness. We have also tested
our prediction models with the eGeMAPS feature set [44], which comprises only 88 acoustic
features but is not as predictive of resilience as the ComParE2013 features.

To analyze linguistic features in speech, we manually prepared verbatim transcripts of
the memories described by the participants and applied CkipTagger [45] to word-segment
these Mandarin Chinese transcripts. Then, we adopted the Linguistic Inquiry and Word
Count Dictionary for Traditional Chinese (TC-LIWC 2007) to calculate the proportion or
relative frequency of 72 psychologically or linguistically meaningful word categories in
these transcripts.
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2.3. Feature Selection

Although mutually correlating features pose the problem of multicollinearity, these
mutual correlations do not, in general, affect prediction performances [46]. For example,
for an underlying data relationship Y = X1 + X2 where X1 = X2 (i.e., a perfect correlation
between X1 and X2), the estimates of β1 and β2 in the regression model Y = β1X1 + β2X2 are
unreliable for interpreting the relative importance of X1 and X2 in predicting Y. However,
an infinite number of such regression models can make equally perfect predictions as
long as β1 + β2 = 2. In the current study, when building resilience-predicting models,
we were more concerned with the predictive power than the relative importance of features
within each modality. Therefore, before model-building, we did not use any dimensionality
reduction methods or exclude any features to address the multicollinearity problem.

When constructing multivariate predictive models, we used Pearson’s correlation as a
relevance index for univariate feature selection. Specifically, we computed the Pearson’s
correlation coefficients between the RSA resilience scores and the features of each modality
(i.e., GSR, HRV, ECG, paralinguistic, and linguistic features) and sorted the features ac-
cording to the absolute values of these coefficients. To achieve the best possible prediction
outcome, we treated the number of features for each modality as a model hyperparameter,
which was then tuned during the model optimization stage, as detailed in the following
section. Finally, each feature was standardized before model training or testing.

2.4. Model Training and Testing

For each single-modal resilience-predicting model, the number of selected features was
explored with a cap of 6, 10, 10, 100, and 72 features for the HRV, ECG, GSR, paralinguistic,
and linguistic modality, respectively. For example, because there were six HRV features
before feature selection, six possible sets of HRV features could be constructed after the
feature sorting—top six features, top five features, top four features, etc.—and only results
from the best-performing HRV feature set were reported.

Two multi-modal feature sets were defined based on their availability in real-life
scenarios. The physiological superset combined the best-performing GSR, HRV, and ECG
feature sets, as they can be captured by wearable devices; the speech superset combined
the best-performing paralinguistic and linguistic feature sets, as they can be obtained from
verbal conversations.

For each research participant and each designated feature set, one feature vector could
be extracted to characterize each of the participant’s six memory recall episodes (3 life
periods × 2 emotional valences). Therefore, there were six feature vectors associated with
each participant. To find common patterns in these feature vectors from different memory
episodes, all the resilience-predicting models in the current study treated these feature
vectors equally as different data samples of the same participant. Moreover, these feature
vectors of the same person were grouped to appear only during training or testing but not
both for person-level cross-validation.

As for the level of personal resilience, we adopted a classification rather than regression
approach when building our resilience-predicting models because of our relatively small
number of participants (N = 32). To generate the classification labels, we dichotomized
each of the five RSA subscale scores into high vs. low groups based on the median, and the
median scores were removed from further analysis.

Four types of machine-learning classifiers were then optimized for comparison:
K-Nearest Neighbor (KNN), Logistic Regression (LR), Support Vector Machine (SVM),
and Random Forest (RF). These models were trained and tested using 10-fold cross-
validation. The hyperparameters of each model were tuned via a grid search to obtain the
best average F1-score. For the linear SVM, the best parameter C was determined over [1,11].
The best number of neighbors for KNN was chosen over [1,10]. The best parameter C for
logistic regression was chosen among 0.001, 0.01, 0.1, 1, 10, and 100. For the random forest,
the number of trees was chosen among 10, 15, 20, 25, and 30. The minimum number of
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samples required to split an internal node was determined over [3,7], and the minimum
number of samples required to be at a leaf node was explored from 1 to 3.

3. Results

Here we present the descriptive statistics of the RSA scores in Section 3.1, the correla-
tions between the RSA scores and personality dimensions as well as physiological/speech
features in Section 3.2, and the classification accuracies of the resilience-predicting models
in Section 3.3.

Paired sets of results will be presented. The first set corresponds to analyses of data
collected during the three recalls of negative memories, whereas the second set corresponds
to analyses of all the six recalls of positive and negative memories. The second sets of
results are of both theoretical and applied interest. Theoretically, they are verifications of
the hypothesis that ostensibly positive events can also be relevant in defining resilience [9].
For applications, it will be convenient to estimate one’s resilience level regardless of
narrative contexts.

3.1. Personal Resilience

As mentioned in Section 2.4, for each resilience dimension, the 32 participants were
divided into high- and low-score groups. The total, median, mean, and standard deviation
of the RSA scores are summarized in Table 2 for both the high- and low-score groups.

Table 2. Summary statistics of the RSA scores (N = 32).

Resilience PS (M ± SD) FC (M ± SD) SR (M ± SD) SC (M ± SD) SS (M ± SD)

Median/Total 30/42 35.5/49 44/56 17.5/28 20/28
High Group 34.00 ± 3.20 39.56 ± 3.12 48.44 ± 3.33 22.88 ± 2.25 23.25 ± 2.86
Low Group 21.40 ± 5.26 28.44 ± 4.82 36.93 ± 3.91 14.06 ± 2.29 14.58 ± 2.50

Note. PS = Personal Strength, FC = Family Cohesion, SR = Social Resources, SC = Social Competence, SS = Structured Style.

3.2. Correlational Analysis

The Pearson correlation coefficients between each RSA score and each resilience-
predicting feature are summarized in Figures 3–6. These correlation matrices were sorted
based on the results of hierarchical clustering so that more correlated variables were ar-
ranged closer to each other in the matrices. Such matrix sorting helps to reveal the structures
of correlations between RSA scores and their potential predictors in this explorative study.

3.2.1. Big-Five Personality

The correlations between RSA and personality scores are summarized in Figure 3.
These results are consistent with the previous finding that RSA directly measures a well-
adjusted personality profile [47]. For example, social competence was positively correlated
with extraversion and openness, structured style was positively correlated with conscien-
tiousness, and personal strength was negatively correlated with neuroticism. In other words,
a person high in RSA scores is likely to be an emotionally stable extravert who is also
conscientious and open to new experiences.

Note also from Figure 3 that the five RSA dimensions were not independent of
each other. Specifically, dimensions related to personal characteristics—social competence,
structured style, and personal strength—were mutually associated as a group, whereas
dimensions related to environmental factors—family cohesion and social resources—were
covaried as another group. This correlation structure reflects the fact that RSA was designed
to measure protective factors of resilience along both intrapersonal and interpersonal
dimensions [37].
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3.2.2. Physiological Features

As shown in Figure 4a,b, among all the physiological features, two HRV features—
the low-frequency component (i.e., LF) and the standard deviation of the NN intervals
(i.e., SDNN)—are most associated with all the five resilience dimensions, especially social
resources. Here, the higher LF and SDNN in less resilient individuals might indicate a
higher sympathetic and/or low parasympathetic nervous activity, as suggested by previous
studies [26,27,48] under the dimensional conceptualization of PTSD.

Among all the ECG features, the mean amplitude of the T-wave (i.e., T mean) appears
to be most indicative of resilience, particularly social resources. The negative correlation
between T mean and resilience is in line with the finding that the T-wave amplitude is
positively associated with psychological stress [49], which is, however, less experienced by
more resilient individuals [9].

Among all the GSR features, the variability of rise time, apex, and amplitude (i.e., RT std,
AP std, and AM std) are most indictive of resilience, particularly personal strength and
structured style. These findings are consistent with a body of literature showing GSR
to reflect one’s emotionality. For example, emotionally evocative pictures can induce
larger and more prolonged GSRs in more neurotic individuals [50]. It is likely that less
resilient individuals may also show such GSR characteristics and their associated signatures
in variability. Specifically, we found resilience to positively correlate with RT std but
negatively correlate with the AP/AM std.
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physiological feature (positive and negative memories). Physiological features that were not significantly
correlated with any RSA dimensions (i.e., p > 0.05) are excluded from the plot.
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3.2.3. Paralinguistic Features

Among all the 6373 acoustic features, only the ones that were most correlated with
RSA scores are reported in Figure 5a,b. Overall, the most resilience-relevant features are
spectral features, including ones related to the fundamental frequency (F0*), auditory
spectrum coefficients (audspec*), Mel Frequency Cepstral Coefficients (mfcc*), spectral
slope (pcm_fftMag_spectralSlope*), spectral flux (pcm_fftMag_spectralFlux*), and spectral
harmonicity (pcm_fftMag_spectralHarmonicity*). The correlations between these spectral
features with RSA scores may have to do with individuals’ emotional styles unconsciously
expressed through speech. In the literature of affective computing, it has been found that
F0 and spectral distribution are important cues of affective states [51], and MFCC and
spectral flux are particularly informative of emotional valence [44]. Given that emotions
are regulated by resilience [9,52], resilience dimensions can then be linked with these
spectral features.
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Figure 5. (a). The correlations between each RSA score and each ComParE2013 paralinguis-
tic feature (only negative memories). Because there were many statistically significant correlations
(p < 0.05), only paralinguistic features with at least one |r| > 0.46 were included in this plot.
#3910 = F0final_sma_de_quartile3; #3912 = F0final_sma_de_iqr2−3; #5367 = mfcc_sma[9]_linregc2;
#5120 = pcm_fftMag_spectralSlope_sma_centroid; #5166 = pcm_fftMag_spectralHarmonicity_sma_
centroid; #4154 = audspec_lengthL1norm_sma_centroid; #4200 = pcm_RMSenergy_sma_centroid;
#4982 = pcm_fftMag_spectralFlux_sma_centroid; #5966 = pcm_fftMag_fband1000−4000_sma_de_
stddevRisingSlope; #6042 = pcm_fftMag_spectralFlux_sma_de_meanFallingSlope. (b). The correla-
tions between each RSA score and each ComParE2013 paralinguistic feature (positive & negative memories).
Because there were many statistically significant correlations (p < 0.05), only paralinguistic features
with at least one |r| > 0.46 were included in this plot. #1241 = pcm_fftMag_spectralFlux_sma_range;
#4965 = pcm_fftMag_spectralFlux_sma_peakRangeAbs; #4967 = pcm_fftMag_spectralFlux_sma_
peakMeanAbs; #4968 = pcm_fftMag_spectralFlux_sma_peakMeanMeanDis; #5532 = pcm_RMSenergy
_sma_de_meanFallingSlope; #6042 = pcm_fftMag_spectralFlux_sma_de_meanFallingSlope; #1496 = pcm_
fftMag_spectralHarmonicity_sma_iqr2−3; #1494 = pcm_fftMag_spectralHarmonicity_sma_quartile3;
#1497 = pcm_fftMag_spectralHarmonicity_sma_iqr1−3; #1433 = pcm_fftMag_spectralSlope_sma_
iqr1−2; #1435 = pcm_fftMag_spectralSlope_sma_iqr1−3; #6150 = pcm_fftMag_spectralHarmonicity_
sma_de_posamean; #3206 = pcm_fftMag_spectralHarmonicity_sma_de_stddev; #6151 = pcm_fftMag_
spectralHarmonicity_sma_de_rqmean; #1430 = pcm_fftMag_spectralSlope_sma_quartile1.

3.2.4. Linguistic Features

Among all the 72 TC-LIWC categories, only word categories most correlated with
RSA scores are reported in Figure 6a,b. The detailed descriptions and exemplars of each
category can be found elsewhere [53]. Note first from the figures that hierarchically
organized TC-LIWC categories are not independent of each other, and the correlations
among TC-LIWC categories partially reflect their overlapping vocabularies (e.g., sad and
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negative emotion, we and social, auxiliary verbs and discrepancy words, etc.) and partially
reflect the structures among their corresponding psychological dimensions. Secondly,
while only a few physiological features were correlated with resilience, several linguistic
features covaried with different dimensions of resilience. These results echo the findings
that LIWC is generally sensitive to detect individual differences in terms of attentional
focus, thinking styles, emotionality, and social relationships [54].

While some of the RSA-LIWC correlations are sensible (e.g., Family Cohesion and
family words, Social Competence/Resources and social words, etc.), negative emotion words
(e.g., sad) are unexpectedly used more by highly resilient individuals in the present study.
Although past studies have often shown that resilient people thrive through positive
emotions [52,55], resilient people do respond to negative events initially with negative
affect [52]. Empirical evidence further suggests that trait resilience is not well character-
ized by unconditional positive emotions but by the ability to flexibly switch emotional
responses to match the environmental demands [56]. Other studies that analyzed writ-
ten texts (e.g., diaries in [22]) might observe more frequent use of positive emotions by
highly resilient individuals as a result of their positive appraisal of events [9]. By con-
trast, our memory immersion procedure might vividly reactivate negative memories of
the participants and thereby accentuate the characteristics of their emotional reactivity
rather than cognitive appraisal. Future studies can further investigate such a possibility of
procedural/contextual influences on linguistic features in association with resilience.
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AuxVerb = auxiliary verbs; MultiFun = multifunction words; NegEmo = negative emotion; WordNum = number of words.

3.3. Classification Results

Tables 3 and 4 present the mean F1-scores of resilience predictions using different
modalities with different types of classifiers. Overall, different classifiers led to similar
prediction performances, whereas a relatively large variability in performance was ob-
served across different combinations of a resilience dimension and its predicting modality.
For example, the physiological features (i.e., ECG, HRV, and GSR) were poor predictors
of social competence but strong predictors of social resources during the recall of negative
memories. By contrast, speech features (i.e., paralinguistic and linguistic features) were
also poor predictors of social competence but strong predictors of structured style during the
recall of negative memories.
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Table 3. Results of Resilience Estimation (only negative memories).

Resilience
Dimension Model

Single Modality Multiple Modalities

GSR ECG HRV Acoustic LIWC Physiology Speech

Personal Strength

KNN 0.61 0.70 0.75 0.69 0.60 0.65 0.65
LR 0.59 0.68 0.76 0.71 0.66 0.68 0.71

SVC 0.66 0.72 0.72 0.69 0.63 0.70 0.67
RF 0.66 0.72 0.72 0.67 0.63 0.70 0.64

Family Cohesion

KNN 0.63 0.64 0.70 0.75 0.69 0.68 0.74
LR 0.42 0.68 0.69 0.71 0.68 0.57 0.69

SVC 0.60 0.63 0.69 0.72 0.70 0.55 0.68
RF 0.60 0.63 0.69 0.66 0.68 0.63 0.60

Social Resources

KNN 0.69 0.76 0.86 0.64 0.69 0.82 0.68
LR 0.60 0.71 0.82 0.65 0.64 0.78 0.53

SVC 0.73 0.73 0.84 0.67 0.65 0.79 0.63
RF 0.73 0.73 0.84 0.65 0.73 0.81 0.62

Social Competence

KNN 0.42 0.54 0.51 0.65 0.66 0.45 0.66
LR 0.49 0.46 0.48 0.58 0.67 0.49 0.66

SVC 0.46 0.50 0.49 0.60 0.70 0.47 0.63
RF 0.49 0.46 0.48 0.62 0.68 0.50 0.63

Structured Style

KNN 0.75 0.78 0.68 0.77 0.72 0.77 0.75
LR 0.76 0.80 0.81 0.79 0.73 0.74 0.76

SVC 0.72 0.74 0.69 0.81 0.72 0.77 0.79
RF 0.72 0.74 0.69 0.79 0.76 0.79 0.78

Note. For each resilience dimension, the best F1-scores for each modality are highlighted in italics, and the best F1-scores across modalities
are further highlighted in bold.

Among the single modalities, the HRV and acoustic features are overall the best
predictors of resilience across narrative contexts and resilience dimensions. This finding
has been hinted at by the relatively large correlations between the HRV/acoustic features
and the RSA scores (Figures 4a,b and 5a,b). Note also that predictions that leverage features
from multiple modalities were not necessarily better than those using HRV/acoustic
features. In the case of physiological signals, adding the poorly performing ECG and
GSR features into the augmented feature set might actually decrease the signal-to-noise
ratio in the data. In the case of speech signals, the 6373 acoustic features outnumbered
the 72 TC-LIWC features in the augmented feature set and might shadow the additional
information brought by TC-LIWC features.
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Table 4. Results of Resilience Estimation (positive and negative memories).

Resilience
Dimension Model

Single Modality Multiple Modalities

GSR ECG HRV Acoustic LIWC Physiology Speech

Personal Strength

KNN 0.57 0.63 0.77 0.62 0.64 0.48 0.64
LR 0.54 0.63 0.76 0.70 0.66 0.47 0.70

SVC 0.56 0.63 0.74 0.54 0.64 0.45 0.63
RF 0.56 0.63 0.74 0.64 0.66 0.44 0.67

Family Cohesion

KNN 0.56 0.63 0.65 0.56 0.58 0.50 0.56
LR 0.43 0.68 0.68 0.68 0.55 0.43 0.66

SVC 0.52 0.63 0.67 0.59 0.54 0.38 0.56
RF 0.52 0.63 0.67 0.58 0.52 0.63 0.53

Social Resources

KNN 0.60 0.72 0.85 0.64 0.63 0.51 0.66
LR 0.53 0.66 0.80 0.67 0.65 0.47 0.68

SVC 0.58 0.73 0.84 0.62 0.68 0.45 0.50
RF 0.58 0.73 0.84 0.63 0.62 0.54 0.60

Social Competence

KNN 0.37 0.43 0.57 0.69 0.58 0.41 0.71
LR 0.48 0.46 0.53 0.69 0.57 0.30 0.71

SVC 0.37 0.43 0.55 0.69 0.58 0.28 0.65
RF 0.48 0.46 0.53 0.65 0.58 0.36 0.64

Structured Style

KNN 0.72 0.68 0.69 0.81 0.73 0.67 0.79
LR 0.72 0.79 0.82 0.86 0.74 0.58 0.86

SVC 0.74 0.69 0.69 0.81 0.72 0.69 0.75
RF 0.74 0.69 0.69 0.78 0.73 0.71 0.76

Note. For each resilience dimension, the best F1-scores for each modality are highlighted in italics, and the best F1-scores across modalities
are further highlighted in bold.

4. Discussion & Conclusions

The present study confirms the possibility of estimating personal resilience from
speech and physiological signals. Our binary classification of personal resilience success-
fully achieved F1-scores as high as 0.86 in the cases of predicting social resources by the
HRV features during the recall of negative memories and predicting structured style by the
paralinguistic features during the recall of positive and negative memories. Our results
suggest that the HRV and paralinguistic features are the best predictors of resilience.

For healthcare applications, the HRV data can be conveniently collected from wearable
devices, and the paralinguistic features can be collected by a social robot during human–
human or human–robot conversations to estimate personal resilience. Compared to the
extraction of linguistic features, extraction of paralinguistic features does not require
automatic speech recognition (ASR), which can be erroneous at times. Therefore, resilience
estimation is expected to be more accurate and robust by using the paralinguistic than the
linguistic features.

Note that the HRV and paralinguistic features led to comparable prediction per-
formances across positive and negative contexts. It is an important discovery that trait
resilience can be well-estimated regardless of narrative contexts. Theoretically, this find-
ing confirms the hypothesis that ostensibly positive events are also relevant in defining
resilience [9], which extends the scope of personal resilience. Practically, it is then not
required for resilience estimation to actively set up or passively wait for a negative context
in which an individual can manifest her/his resilience or lack thereof.

In summary, our research adds to the literature on psychological resilience and per-
sonality computing by showing the predictability of personal resilience across differ-
ent contexts. Automatic assessment of resilience can assist healthcare providers and AI
systems/robots in identifying and planning interventions for less resilient individuals.
For example, medical practitioners or social robots can be informed to avoid putting too
much pressure on individuals low in resilience during interactions, and this vulnerable
population can be taught suitable coping strategies for reducing chronic stress.



Sensors 2021, 21, 5844 17 of 19

To conclude, we hope that this explorative study will arouse the interest of personality-
computing and social robotics researchers to further advance the automatic recognition
of personal resilience. During the COVID-19 pandemic, social distancing prevents people
from making social connections, causing loneliness and social isolation. Quarantine may
have negative impacts on both physical and mental health and lead to severe consequences,
such as a higher rate of suicide. Previous research suggests that resilience can reduce suici-
dality risk and play a critical role in suicide prevention [57]. Therefore, the predictability of
personal resilience can be leveraged to improve one’s psychological well-being and has
great potential for various mental healthcare applications in the future.
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