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A B S T R A C T

Background: Pulmonary tuberculosis (TB) is one of the most deadly pathogens on earth. However, the major-
ity of people have resistance to active disease. Further, some individuals, termed resisters (RSTRs), do not
develop traditional latent tuberculosis (LTBI). The RSTR phenotype is important for understanding pathogen-
esis and preventing TB. The host genetic underpinnings of RSTR are largely understudied.
Methods: In a cohort of 908 Ugandan subjects with genome-wide data on single nucleotide polymorphisms,
we assessed the heritability of the RSTR phenotype and other TB phenotypes using restricted maximum like-
lihood estimation (REML). We then used a subset of 263 RSTR and LTBI subjects with high quality phenotyp-
ing and long-term follow-up to identify DNA variants genome-wide associated with the RSTR phenotype
relative to LTBI subjects in a case-control GWAS design and annotated and enriched these variants to better
understand their role in TB pathogenesis.
Results: The heritability of the TB outcomes was very high, at 55% for TB vs. LTBI and 50.4% for RSTR vs. LTBI
among HIV- subjects, controlling for age and sex. We identified 27 loci associated with the RSTR phenotype
(P<5e-05) and our annotation and enrichment analyses suggest an important regulatory role for many
of them.
Interpretation: The heritability results show that the genetic contribution to variation in TB outcomes is very
high and our GWAS results highlight variants that may play an important role in resistance to infection as
well as TB pathogenesis as a whole.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/)
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1. Introduction

Pulmonary tuberculosis (TB) is a major public health problem, as
it causes more deaths than any other single infectious agent prior to
the COVID-19 pandemic [1]. It is also the leading cause of death
among people infected with human immunodeficiency virus (HIV)
[2]. The bacterium, Mycobacterium tuberculosis (MTB) that causes
most TB is transmitted via airborne droplets from coughing and
sneezing by people with active disease. However, most people
exposed to MTB do not develop active disease. In 2017, only 10 mil-
lion people developed active disease and 1.6 million people died
despite there being »1.7 billion latently infected people in 2014 [1,3].
These numbers are of interest because they demonstrate that the
vast majority of people have resistance to active disease.

In addition to resisting active disease, some individuals do not
develop traditional LTBI with a positive TST or IGRA immunologic
response, even in the face of prolonged and persistent exposure to an
infectious TB case [4,5]. These individuals, who may resist or clear
MTB infection, or acquire infection with a non-IFNg�centric T-cell
response, have been termed resisters (RSTRs) [6,7]. Estimates of prev-
alence of RSTR varies as a function of follow-up time and method of
diagnostics (i.e., tuberculin skin test (TST) and/or interferon gamma
release assay (IGRA)), with current estimates in high-exposure set-
tings ranging from 7-25% [6,8-12]. This phenotype is important for
understanding pathogenesis and is relevant in designing potential
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Research in context

Evidence before this study

Pulmonary tuberculosis (TB) is an infectious respiratory disease
caused by the bacterium Mycobacterium tuberculosis, one of the
most deadly pathogens on earth. TB primarily affects people liv-
ing in developing countries, and has a particularly high burden
in Southeast Africa. Prior studies suggest that most people have
resistance to developing symptoms and most of those infected
do not show apparent signs of infection (despite harbouring
the bacteria). However, prior research suggests that some indi-
viduals are resistant to becoming infected at all, despite consis-
tent exposure to the bacteria, and these people have been
termed resisters (RSTR). Prior evidence suggests that genetic
variation in the human hosts likely plays a role in this resis-
tance to infection but the extent to which this resistance is
genetically determined, and which variants are most important
is in need of greater study.

Added value of this study

Proper study design and follow-up is very important to charac-
terizing RSTR individuals and prior studies have not always
been performed with adequate follow-up and measurement
and misclassification is of concern in RSTR studies. This study
has used the longest follow-up and the most accurate way of
determining resistance to quantify the genetic contribution to
resistance and identify the DNA variants that may play a role in
conferring it. Understanding why some individuals are resistant
may inform efforts to prevent TB through vaccines and treat TB
through more effective therapies.

Implications of all the available evidence

We have quantified the genetic contribution to (i.e., the herita-
bility of) resistance to infection, in addition to the heritability of
other important TB outcomes. We have also identified specific
DNA variants which may play an important role in the biologi-
cal processes that govern resistance, helping to improve our
understanding of how to prevent and combat TB infection and
thus reduce the large global burden it imposes.
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vaccines and prevention strategies against TB, as it can provide
insight into how individuals respond to prevent infection by MTB, a
critical first step to developing disease [7,13]. The present study can
expand on our current understanding of TB heritability greatly by 1.)
utilizing a more accurate classification of the RSTR phenotype and 2.)
analysing a wider range of TB phenotypes than previous studies.

Several studies have shown that host genetic factors can play a
role in susceptibility/resistance to TB disease, but few have studied
resistance to infection [14]. There does appear to be a genetic compo-
nent to resistance to infection as our previous study of persistently
TST-negative household contacts estimated heritability of this phe-
notype at 21.7% [15]. Also, purified protein derivative (PPD) reactivity
is correlated among siblings, but not among unrelated children who
live in the same household with similar exposures to MTB [16]. Such
data are indicative of a genetic component to the RSTR phenotype. In
addition, linkage analyses, candidate gene studies, and genome-wide
association studies (GWAS) have added to the evidence that genetic
variation associates with MTB infection [14,15,17-25), though very
few have examined RSTR based on long-term follow-up and using
both TST and IGRA for phenotype designation. Genetic influences on
resistance to infection have been studied in two ways [5,6,8,9]. Some
studies have examined LTBI as the trait of interest, using cross-
sectional study design, without any long-term follow-up. Other stud-
ies have conducted longitudinal follow-up to identify individuals
who started as uninfected (TST or IGRA negative), but eventually con-
verted to TST/IGRA positive or LTBI. We have argued that RSTRs can-
not be defined based on a single assessment without long-term
follow-up, as conversion to test positivity can occur later, and the
clinical significance of individuals that are discordant on the TST and
IGRA is not well understood [10].

Previous studies have calculated the heritability for TST positivity
but the heritability estimates for other possible outcomes in the path-
ogenesis of TB have not been established. There are several different
possible outcomes once an individual has been exposed to MTB. Post
exposure to MTB, some people exhibit signs of infection, while others
never become infected [13]. In a small number of people, there may
be early clearance of the bacteria [8,26,27]. If the infection is con-
trolled, the host enters a stage of latent (i.e. asymptomatic) infection.
This contrast between resistance to/clearance of the infection is the
focus of our association analysis. In about 5-10% of those latently
infected, the host progresses to active TB [28,29]. The extent to which
genetic variation affects this transition can be examined by compar-
ing active TB cases to LTBI subjects with a heritability estimate. These
two transitions post-exposure (clearance/resistance relative to infec-
tion and active infection relative to latent) can be understood by dif-
ferent contrasts in heritability estimates to determine the extent to
which each is genetically influenced. Additionally, there is a third
contrast of interest that is not representative of a single step in TB
pathogenesis but is in line with much of the prior literature sur-
rounding genetic association studies of susceptibility to TB. Suscepti-
bility is most often represented as a binary outcome where people
with active TB are compared to those without. Thus, we can represent
this contrast by comparing active TB cases to all others (including
RSTRs, LTBI, and those who cannot be definitively classified as
either).

The purposes of this study are: 1.) to establish the extent to which
different TB phenotypes, including the RSTR phenotype, are influ-
enced by genetic variation (i.e. the genetic heritability) and 2.) to
identify individual variants that are associated with the RSTR pheno-
type relative to LTBI based on the results of a recently published
long-term follow-up study that stringently characterized the LTBI
and RSTR phenotypes.

2. Methods

2.1. Subject ascertainment and characterization of phenotypes

Subjects were ascertained as part of the Kawempe Community
Health Study in Kampala, Uganda; a subset that was limited to RSTR
and LTBI subjects were included in a long-term follow-up study, as
previously described by Stein et al. [30,31]. Subjects were initially
enrolled between 2002-2012, and the follow-up study was con-
ducted from 2014-2017. All TB cases were culture-confirmed based
on isolation of MTB from clinical gastric or sputum samples in the
original study. Six subjects that were RSTR or LTBI in the original
study but had developed symptoms prior to follow-up were not
enrolled in this study. Household contacts of index TB cases were
confirmed to have lived with the index case for at least 7 consecutive
days during the previous 3 months in the original (2002-2012) study
and were followed for at least 12 months as part of the original study.
Latent MTB infection (LTBI) was determined based on a positive TST
during the initial study and positive TST and IGRA during the follow-
up study (and no symptoms of active TB). Resistance to infection (i.e.
the RSTR phenotype) was defined as having consistently negative
TST tests despite confirmed exposure in the original study and
remaining TST/IGRA negative during the follow-up study, an average
of 9 years. Individuals who were TST negative or TST positive during
the original study but not included in the follow-up study (which



Figure 1. Source of Subjects and Genotype Data
Diagram depicting the source of genotype data and number of subjects with each phenotype definition in the heritability and GWAS analyses.
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only included the RSTR and LTBI subjects with follow-up IGRA testing
as well as a determination if the subject ever developed active TB)
are referred to as “no active TB” in this analysis, because they did not
have the IGRA results necessary to confirm their LTBI or RSTR status.
This was done for two reasons. First, discordance between the TST
and IGRA tests has previously been demonstrated [31]. This introdu-
ces the possibility that TST+ subjects might actually be IGRA-nega-
tive. Secondly, persistently TST negative individuals may have
converted to LTBI since their initial negative TST and therefore could
not be accurately classified as RSTRs. Thus, the LTBI and RSTR individ-
uals in this study were all confirmed as such in both the original and
follow-up studies mentioned above. This helps maintain a consistent
and accurate definition of the RSTR phenotype in our study which
minimizes misclassification [10].

In order to address our hypotheses, we used different but overlap-
ping study samples from the same population in our two types of analy-
ses. The first set of analyses aimed to determine the genetic contribution
to various TB phenotypes (i.e. the heritability analyses), including but
not limited to RSTR and LTBI. We chose four different phenotypic com-
parisons because they represent different biological processes in the
pathogenesis of tuberculosis. Figure 1 shows the number of subjects
with each phenotype definition in the heritability estimates, which
included 97 RSTR, 228 LTBI, 350 Active TB, and 233 “No Active TB” sub-
jects. Our first comparison, contrasting the 350 active TB subjects with
all our other phenotypes, is similar to what has been called TB suscepti-
bility in prior genetic studies, i.e. the probability of developing active TB
relative to the rest of the population who do not have active TB. This is
important to estimate as it allows the quantification of the genetic com-
ponent of disease susceptibility that has been the major focus in TB
genetics literature [13]. Our estimate is also unique in that we were able
to confirm similar exposure for all subjects in the study.

Our second comparison, representing the heritability of being
resistant to infection by MTB relative to those who are latently
infected by MTB (but do not have active symptoms), allows us to
quantify the genetic component for those individuals whose immune
systems are not sensitized with positive TST/IGRA responses, the
traditional markers of LTBI with an IFNg dominant response. These
individuals may prevent or clear infection entirely, or perhaps mount
a IFN-g independent response. This was done by contrasting the 97
RSTR subjects with the 228 LTBI subjects. The third contrast we made
compared the 97 RSTR subjects with both the 228 LTBI subjects and
the 350 active TB cases. This contrast groups the LTBI and active TB
cases together as they have both been infected with MTB (and are
thus not RSTR). Most if not all of the active TB cases are presumed to
have gone through a stage of latent infection prior to having active
TB and thus should, in theory, represent a group was not able to resist
initial infection or clear the bacteria early.

Our fourth and final comparison, of active TB relative to LTBI,
allows us to examine the genetic contribution to developing TB
symptoms subsequent to infection relative to those who are infected
but remain asymptomatic. This included our 350 active TB cases rela-
tive to the 228 LTBI subjects. Thus, the interpretation of each estimate
sheds light on a potentially unique biological process and important
step in the pathogenesis of TB. The one comparison that does not mir-
ror one of the transitions in the pathogenesis of TB is the analysis of
active TB cases vs. all other phenotypes. However, this analysis mir-
rors prior studies of TB susceptibility (which represent the majority
of genetic association studies performed in TB), and allows us to pro-
duce a heritability estimates that used the same phenotype as that in
prior literature so we can understand this heritability estimate in the
context of prior literature.

Thus, these analyses included subjects who were enrolled in
the follow-up study described above but also required additional
subjects from the original KC Health study. This analysis included
active TB cases and subjects who were not infected with active
TB but could not be confirmed as RSTR based on the reasons out-
lined above. These analyses also included subjects who were gen-
otyped with a different method (the Illumina Omni5 chip) than
those included in the GWAS analysis, as this was necessary to
obtain more subjects with active TB and those who were unin-
fected. The subjects from each chip included in the particular
analysis are highlighted in Figure 1.
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The second analysis was a GWAS that only included the 74 RSTR
and 189 LTBI individuals who were genotyped on a single chip (the
Illumina Infinium MEGAEX chip) and included in the recently pub-
lished long-term follow-up study; using long-term follow-up signifi-
cantly reduced the chances of misclassification of the phenotype.
This was done as we believe this is the most stringently defined phe-
notype of any GWAS study to date for RSTRs and as such may be best
able to detect variants associated with the phenotype. This analysis
examines the contrast between subjects who had a persistent asymp-
tomatic infection (LTBI) and were concordantly TST+/IGRA+, and
those who either resisted infection initially or were able to clear the
infection entirely (RSTR) who were concordantly TST-/IGRA-. We also
considered the possibility of operationalizing our outcome in the
GWAS study as a case-control design where RSTR subjects are cases
and both active TB subjects and LTBI subjects are considered controls
(i.e. those who are not resistant to infection). However, we observed
that the active TB sample includes subjects that are not concordant
with respect to TST and IGRA. Thus, there is a greater possibility for
misclassification which does not exist when we only examine the
RSTR vs. LTBI with high quality follow-up data. Further, our heritabil-
ity estimates revealed that the heritability of RSTR vs. LTBI is greater
than that of RSTR vs. LTBI and active TB cases. We believe this is due
to the higher potential for misclassification when the active TB cases
are included.
2.2. Genotyping and QC

For the GWAS analysis, DNA samples were typed for the
»2 million markers on the MEGAEX chip. This chip was used for the
RSTR and LTBI subjects included in the follow-up study as well as a
set of active TB cases from the original study. Genotypes were called
using Illumina's Genome Studio, version 2.0. Duplicates and indels
were removed prior to QC. Data cleaning was done to remove sam-
ples with a call rate <0.97 and SNPs were removed if they had a call
rate <0.95, a minor allele frequency < 0.05, or that deviated from
Hardy Weinberg Equilibrium (p<10�6 for deviation from HWE
across all samples). After the QC thresholds described above and prior
to analysis 733,040 markers remained.

Gender was estimated for all subjects by the Genome Studio Soft-
ware. Subjects were excluded if there were irreconcilable differences
between the reported gender and the gender as determined from
genotype analysis. A check was made for subject-identifier mismatch
by means of expected genetic kinship within and between pedigrees
and in some cases helped to resolve gender-mismatch issues.

For our heritability analysis, there were two sets of subjects geno-
typed on different chips. One set was comprised of the RSTR, LTBI,
and active TB subjects genotyped on the MEGAEX chip described
above. However, in order to include the phenotypes we needed to
examine the full range of our TB comparisons representing different
transitions in pathogenesis, we had to combine the genotype data
from the aforementioned subjects with a set of subjects that used a
different genotyping chip into a single large genetic relatedness
matrix (GRM) for use in our heritability estimates. These set of sub-
jects included 201 additional active TB cases, 15 RSTR subjects, 32
LTBI subjects, and 233 “No Active TB” subjects. This second genotyp-
ing chip was the Illumina HumanOmni5 microarray, which comprises
»4.3 million genome wide markers, and offers high coverage of com-
mon genetic variation even for African populations [32]. Genotype
calling and quality control were performed as previously described
[32]. After QC and filtering by minor allele frequency (MAF > 0.05),
genotyping call rate of 98%, and Hardy-Weinberg equilibrium thresh-
old of p<10�6 , a total of 337, 566 SNPs passed QC and overlapped
between the two genotyping chips; QC criteria differed slightly
because of the difference in genotyping chips. These 337, 566 SNPs
were used for the heritability analyses.
2.3. Kinship and PC Generation

Kinship and principal component (PC) generation was performed
separately for the two analyses. For the GRM-based heritability anal-
ysis, we computed principal components but did not include them
based on: 1.) prior studies using the same genotype data showed that
there is not substantial population sub-structure or batch effects
between the two chips [33]; and 2.) the plots of PC1 vs. PC2 that
showed a lack of clustering in our combined genotype data used in
the heritability estimation (Supplemental Figure 1) previous litera-
ture showing that it is not necessary to include kinship estimation in
a genetic related matrix based heritability estimation [34]. Nonethe-
less, we performed sensitivity analyses to show that the inclusion of
these PC’s did not change our final estimates (Supplemental Table 1).
In the GWAS analysis described above, to correct for relatedness
among individuals in our sample due to population and family struc-
ture, we carried out a principal components analysis (PCA) and esti-
mated kinship among the 263 RSTR or LTBI individuals passing QC
during the association analysis (see below). A genome-wide panel of
135,859 common (MAF�0.05) independent (pairwise r2< 0.1) var-
iants passing marker QC from the MEGAEX panel was chosen for the
PC and kinship generation. We calculated PCs using PC-AiR and kin-
ship using PC-Relate in the R, Genesis package [35]. The Genesis pack-
age pipeline for generating PCs and kinship first determines
relatedness via an initial KING estimated kinship matrix. It then
determines the population structure from the unrelated subset of the
sample (determined by a KING-estimated kinship threshold of
0.0221) and projects the loadings onto the subset of related subjects
to obtain PCs that account for population structure with family struc-
ture removed. Genesis then re-calculates kinship using PC-Relate by
adjusting for the PCs generated from PC-AiR to get an estimate of
family structure with population structure removed. The total num-
ber of PCs used in the GWAS was determined by examining the
elbow plot of PCs and selecting the count where the variation
explained by additional PCs was minimal (Supplemental Figure 1).

2.4. Statistics

For our GWAS we employed a score-based association test in a
mixed model framework that allows for the inclusion of a polygenic
random effect (e.g. a genetic relationship matrix). We used the assoc-
TestSingle function in the Genesis package to conduct the genome-
wide association analysis. Because our phenotype is binary (RSTR/
LTBI) Genesis uses the penalized quasi-likelihood (PQL) approxima-
tion to the generalized linear mixed model (GLMM) to fit the speci-
fied model, following the procedure of GMMAT [36]. We controlled
for population structure and family structure in our model including
the first two principal components (see above) as fixed effects and
the genetic relationship matrix (GRM, see above) as a random effect,
respectively. Two PCs were selected based on an elbow plot of the
variation explained as a function of the number of clusters in our
data. Additional covariates included in the model were age and sex.
In order to interrogate the role of variants that did not meet the
traditional GWAS p-value threshold but could nonetheless be truly
associated, we used the p=5 £ 10�5 threshold as “suggestive” of sig-
nificance thereby allowing us to examine variants that may have
important regulatory or biological function, despite not reaching the
typical GWAS threshold of significance (i.e. p=5£ 10�8) [37]. In previ-
ous studies, SNPs below the GWAS threshold in one study have suc-
cessfully replicated when tested again using the same phenotype in
subsequent studies, revealing additional variants that are associated
with the phenotype of interest. Specifically, SNPs that meet the sug-
gestive threshold but not the GWAS threshold in some cases have at
times been shown to be GWAS significant (i.e. p<5 £ 10�8) after fur-
ther study with a larger sample size [38,39]. Thus, it may be useful
and informative to examine the biological role of SNPs that are in this
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range of p values, especially with regard to a potential regulatory role
and keeping in mind that we had a relatively small sample size [37].

For the heritability analyses, a genetic relatedness matrix was
constructed for restricted maximum likelihood estimation (REML)
[40] in GCTA software to estimate the genome-wide heritability of
three different phenotypes: 1.) susceptibility to active tuberculosis
(compared to latent TB and uninfected); 2.) RSTR (compared to LTBI);
and 3.) of progression to active TB (compared to latent TB). GCTA esti-
mates the variance explained by all the SNPs across the whole
genome for a complex trait [40,41]; all references to heritability esti-
mates derived for this paper used this methodology and are simply
referred to as “heritability” hereafter.

In order to account for the impact of age, sex, and HIV status on
these heritability estimates we first ran all heritability estimates
unadjusted. We then computed heritability estimates that were
adjusted for age, sex, and HIV status as covariates. Further, as it is
possible that the inclusion of HIV+ subjects might affect the heritabil-
ity estimates in ways that are not accurately reflected by the inclu-
sion of the three aforementioned covariates, we ran a stratified
analysis that included only HIV- subjects. This allows us to observe
how these covariates affect our estimates and to compute estimates
that are less affected by bias.

2.5. Functional annotation

We prioritized loci based on a scoring scheme that combines vari-
ous forms of evidence regarding putative functionality. This was
done in order to provide semi-quantitative evidence that may indi-
cate a potential functional role for our SNPs that did meet the GWAS
threshold but showed low enough p-values to warrant further inter-
rogation [42]. The scheme assigned 1 point to each locus for each of
the following categories: having>1 SNP below the suggestive thresh-
old at the locus with an extra point for loci with SNPs having a p-
value < 5 £ 10�6; evidence for a regulatory role as shown by Regulo-
meDB; serving as an eQTL based on FUMA; and biological relevance
to TB based on prior literature. Because the majority of our findings
are intergenic and/or fall in noncoding regions, we relied on the
annotation tool FUMA version 1.36 for mapping our variants to genes
based on genomic proximity, eQTL evidence and chromatin interac-
tion evidence [43]. Default settings in FUMAwere used, except for tis-
sue specificity. FUMA does not distinguish between cis and trans-
eQTL’s in their annotations. However, we considered any locus within
1 Mb of the gene being regulated (and on the same chromosome) as a
cis-eQTL, a definition based on prior literature surrounding eQTL
function [44,45]. We hypothesized that gene expression and regula-
tion would be most relevant in lung, immune cells and blood and
thus, focused on eQTL and chromatin interaction evidence in these
target tissues. FUMA and RegulomeDB v2 were used for eQTL identifi-
cation and to further examine chromatin state evidence and specify
enhancer or transcription evidence within lung, immune cells, and
blood. GeneCards was used to elucidate gene function and evidence
from the literature was used to elucidate a potential biological role
for genes in the context of resistance to TB [46].

To further enrich our results and yield greater biological insight,
we utilized FUMA GWAS’ GENE2FUNC feature for the genes repre-
sented in our GWAS summary statistics. This feature maps GWAS
summary statistics to genes, and then provides gene set or pathway
enrichments based on gene sets from MsigDB, KEGG, WikiPathways,
and the GWAS Catalog. This function tests our mapped genes for
enrichment using pre-established databases of gene sets from prior
gene set enrichment analysis (GSEA) analyses using hypergeometric
mean pathway analysis and adjusts the p-values for significance
based on the Benjamini-Hochberg method (i.e. FDR) using the num-
ber of data sources of tested gene sets. FUMA reports gene sets with
adjusted P-value �0.05 and the number of genes that overlap with
the gene set >1 [43].
Additionally, STRING network analyses were used to assess if
there were protein-protein interactions between the downstream
products of the genes identified in our analyses. This allows us to
look for common networks or interactions that provide further bio-
logical insight into our results. STRING can determine if there is a
greater degree of relatedness than expected among our results and
use this to determine overall protein-protein interaction enrichment
as well as enrichment for specific networks, gene ontologies, and pre-
viously published works [47].

2.6. Sample size estimation

There was no power calculation or sample size calculation done
prior to the onset of this study. The sample was determined by which
study participants had sufficient DNA and clinical data available for
the planned analyses, using the entire sample from the follow-up
study [31].

2.7. Ethics

The study was approved by the National AIDS Research Commit-
tee, The Uganda National Council on Science and Technology (IRB
number ARC 014), and the institutional review board at University
Hospitals Cleveland Medical Center (IRB number 10-01-25). Written
informed consent was obtained from all individuals in the study. The
Ugandan IRB has restricted availability of these data; investigators
interested in obtaining these data must contact Dr. Sudha Iyengar,
ski@case.edu, chair of the Data Access Committee for this study.

2.8. Role of the Funding source

The funding source had no role in the study design, statistical
analysis, or interpretation of data.

3. Results

3.1. Study Population

We examined 908 people in the final combined sample (Table 1),
including 263 RSTR and LTBI individuals (74 RSTR and 189 LTBI) with
high quality genotyping data and follow-up clinical information (and
thus used in the GWAS analysis), who were all HIV-negative and
were similar with respect to age and sex (Table 2) [31]. 350 active TB
cases and 233 “No active TB” subjects were in the heritability analy-
sis, but not included in the association (GWAS) analysis. The RSTR
and LTBI categories for our heritability estimation included a larger
number of subjects (97 and 228, respectively) than the GWAS analy-
sis. The differences are due to the inclusion of HIV+ subjects and sub-
jects who were genotyped using a different chip (i.e. the Omni5 chip)
in the heritability analysis.

3.2. Heritability Analysis

For our analysis of active TB relative to all other phenotypes (i.e.
LTBI, RSTR and no infection), the heritability (i.e. the percentage of
variation in the outcome explained by all variants present on the
GWAS chip) without adjustment was 28.7% (Table 3). The heritability
was 50.9% for RSTR vs. LTBI, 45.2% for RSTR vs. LTBI and active TB, and
56.0% for active TB vs. LTBI. Adjusting for age, sex, and HIV status
increased the estimated heritability to 37.1% for active TB relative to
LTBI or “no active TB” (compared to 28.7% in unadjusted analysis)
and lowered the heritability for RSTR vs. LTBI slightly to 48.3% (com-
pared to 50.9% in unadjusted analysis). The adjustments had no effect
on the heritability for RSTR vs. LTBI and active TB (45.2% unadjusted
vs. 45.2% adjusted), and of active TB vs. LTBI (56.4% adjusted vs 56.0%
unadjusted). This analysis shows that stricter phenotypic



Table 1
Cohort Characteristics for Heritability

RSTR N=97 LTBI N=228 Active TB N=350 No Active TB N=233

Age 23.6 (11.0) 24.4 (9.7) 27.5 (10.3) 16.2 (13.7)
Females 45 (46.4%) 88 (49.2%) 192 (54.9%) 123 (52.7%)
Males 52 (53.6%) 91 (50.8%) 158 (45.1%) 110 (47.2%)
HIV+ 13 (13.4%) 6 (3.4%) 61 (17.5%) 15 (6.5%)
HIV- 84 (86.6%) 173 (96.6%) 288 (82.5%) 214 (91.8%)

"No active TB" refers to subjects who did not have long-term follow up data including
IGRA. This includes subjects who were TST+ or TST- during the original study, but
could not be categorized without IGRA and long-term data.

Table 2
Cohort Characteristics for GWAS

Variable Total RSTR LTBI p*

Sample Size 263 74 189 -
Female 125 (47.5%) 38 (51.4%) 87 (46.0%) 0.52
Age, years 23.58 § 8.9 22.5 § 8.8 24.0 § 8.9 0.06
Age range, years 2-55 14-66 14-66 -

Values are shown as N (%) or as mean § SD.
* Comparisons between RSTR and LTBI were made using Pearson’s x2

test and for continuous variables using the non-parametric Wilcoxon
rank sum test.

Table 3
Heritability Estimates.

Phenotype Definition Unadjusted Adjusted⁑ HIV-Onlyǂ

Active TB vs. LTBI and “no active TB”* 28.7% 37.1% 38.7%
TB vs. LTBI 56.0% 56.4% 55.2%
RSTR vs. LTBI 50.9% 48.3% 50.4%
RSTR vs. LTBI and Active TB 45.2% 45.2% 45.8%

* “no active TB” refers to both RSTRs and subjects who did not have long-term fol-
low up data including IGRA. This includes subjects who were TST+ or TST- during the
original study, but could not be categorized without IGRA and long-term data and are
referred to as “no active TB” earlier in the document.

⁑ “adjusted” refers to estimates that were adjusted for age, sex, and HIV status. For
the RSTR vs. LTBI, the age at which they were distinguished as RSTR or LTBI in a sub-
study was used. For the other estimates, the age at first presentation was used.

ǂ These estimates only included the HIV- subjects and were adjusted for age and
sex
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comparisons yielded higher heritability estimates, demonstrating the
importance of clear phenotype definition.

To examine whether the inclusion of HIV+ subjects had an effect
on the estimates, we estimated heritability among the HIV- persons
only. Our analysis stratified by HIV status (and adjusted for age and
sex) showed that the heritability estimates were only slightly differ-
ent when HIV+ subjects are removed but the effect was not large. For
the HIV- subjects, the estimates were 38.7% for TB vs. all other pheno-
types, 50.4% for RSTR vs. LTBI, 45.8% for RSTR vs. LTBI and active TB,
and 56% for active TB vs. LTBI. Thus, our stratified analysis showed
that the inclusion of HIV+ subjects in the heritability estimates did
not change our outcome drastically compared to our adjusted esti-
mates, implying that these estimates are not particularly sensitive to
HIV status.

3.3. Association Analysis

There were 40 SNPs spanning 27 loci with a suggestive association
with RSTR vs LTBI (p< 5� 10�5) (Figure 2, Supplemental Table 2).
Supplemental Table 2 shows one line for each locus with at least one
SNP showing a p-value below 5x10-5; the rsID and position is for the
SNP with the lowest p-value within each locus. The plurality of asso-
ciated SNPs were intronic (48%) or intergenic (38%). Sixty percent of
these suggestive loci overlapped regions showing strong evidence for
transcription and/or enhancer activity in lung, immune cell or blood
tissues (as determined by RegulomeDB) and 30% harbored eQTLs in
these relevant tissues (Supplemental Table 3). Using our scoring
scheme for prioritizing SNPs, there was one locus with 4 points and
five loci with 3 points (Supplemental Table 2). We have described
these 6 loci (Table 4, Figure 3) in greater detail below.

The locus with the highest score in our scheme was a region on
chromosome 3, including the ABHD6 gene (Figure 3a). The top SNP in
the region, rs9848072 (OR=4.8, score test p=2 £ 10�5), falls in the last
intron of ABHD6 and the locus is a cis-eQTL for this gene. The region
also harbours eQTLs for several other genes, RPP14, ABHD6, PXK, DNA-
SE1L, FLNB and PDHB, in lung, immune cell and blood tissues. Analy-
sing the 6 genes in a STRING network shows 2 edges and enrichment
for endonuclease activity, actin binding, and hydrolase activity, acting
on ester bonds (Supplemental Figure 2). The adjusted P-value for PPI
enrichment, i.e. the statistical test showing that there are more pro-
tein-protein interactions than would be expected by chance alone,
was p=4.2 £ 10�5. It is possible that these genes are co-expressed as
part of a gene network, which is why one SNP shows an association
with all 6, despite mapping to only 1 of them (i.e. being a cis-eQTL for
ABHD6).

The first locus with 3 points mapped to the THRB gene on chromo-
some 3, and encodes a thyroid hormone receptor [46] (Figure 3b).
This locus showed strong evidence for regulation of transcription in
the lung and contains an enhancer for THRB in lung tissue, according
to RegulomeDB [48]. The second locus with 3 points was located on
chromosome 5 and mapped to LINC01861, a long intergenic non-cod-
ing RNA gene (Figure 3c). This locus contains an cis-eQTL that is
located within 0.1 Mb of and on the same chromosome asMFAP3 and
FAM114A2, two genes that previously showed evidence for co-
expression in a micro-array analysis [49]. It is also an enhancer in
immune cells [48]. The third locus with 3 points was located on chro-
mosome 20 and is flanked by ZHX3 and LPIN3 (Figure 3d). It shows
evidence of strong transcription in the lung and is a cis-eQTL for
CHD6, a gene within 0.1 Mb on the same chromosome that encodes a
DNA-dependent ATPase and is active in chromatin remodelling in
response to oxidative stress [46]. The fourth locus was on chromo-
some 6 and maps to KIF6 (Figure 3e). It also includes a cis-eQTL
for KIF6 that encodes a protein in the kinesins family. This family of
proteins is responsible for intracellular transport of protein com-
plexes [46].

A 5th locus with 3 points was on chromosome 5 and mapped to
FAF2 (Figure 3f). The top SNP in the region, rs2963672, falls in the
UTR3 within FAF2 (OR=3.1, score test p=4 £ 10�5) and is a cis-eQTL
for FAF2. The region also harbours eQTLs for several other genes,
ARL10, NOP16, HIGD2A, RNF44, CDHR2 and GPRIN1 in blood(48). This
region shows strong evidence for regulation of transcription of FAF2
in lung, blood and immune tissue in RegulomeDB. A STRING network
analysis showed a number of edges and similar to our top SNP, this
may represent a network of genes with associated expression (PPI
enrichment p=2.6 £ 10�7) [47] (Supplemental Figure 3).

We also examined regions that have been previously associated
with TST reactivity or LTBI in previous genome-wide and candidate
gene studies (Supplemental Table 4). While we were unable to
strictly replicate association within specific candidate genes because
we did not type the same SNPs, we did observe association with the
RSTR phenotype in chromosomes 2 and 5 originally identified by a
genome-wide linkage study in Ugandans (score test p=1 £ 10�4, both
regions), the TST2 locus originally linked to TST reactivity (score test
p=1.66 £ 10�4), and the IL9 region associated with TST reactivity in
an HIV+ cohort (score test p=6.99 £ 10�4).

In our gene enrichment analysis of SNPs that were P<1x10-5 for
association, our SNPs showed enrichment for only one biological
pathway, the anti-citrullinated protein antibody positive rheumatoid
arthritis (ACPA positive RA) pathway from the GWAS catalog, with a
p-value of 9.36 £ 10�6 (FDR-adjusted p=1.70 £ 10�2) as determined
by GENE2FUNC. This was based on four genes that showed



Figure 2. Manhattan Plot of P-Values for association between SNPs and RSTR phenotype (relative to LTBI)
The GWAS utilized a score-based association test in a mixed model framework that incorporated a genetic relationship matrix. Model covariates included were age, sex and first

two PCs. Sample size was 263, with 74 RSTRs and 189 LTBI subjects.

Table 4
GWAS results for featured loci*.

Chr:Pos Top SNP Associated Gene MAF OR 95% CI for OR Score Stat Score Test P Effect Allele
3:58272639 rs9848072 ABHD6 0.07 4.81 [2.34, 9.92] 4.26 2.06 £ 10�5 G
3:24304291 rs78813564 THRB 0.057 8.12 [3.35, 19.51] 4.65 3.39 £ 10�6 G
5:153271156 rs919222 LINC01861 0.388 0.385 [0.26, 0.58] -4.65 3.38 £ 10�6 A
20:39968188 rs6072343 ZHX3;LPIN3 0.0856 5.02 [2.43, 10.26] 4.38 1.19 £ 10�5 A
6:39530428 rs10484824 KIF6 0.0875 4.57 [2.28, 9.18] 4.27 1.93 £ 10�5 G
5:175935316 rs2963672 FAF2 0.19 3.06 [1.79, 5.23] 4.09 4.22 £ 10�5 G

* Featured loci all had P-values < 5 £ 10�5 and were selected based on biological relevance to RSTR phenotype
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association with the RSTR phenotype and are also found in the ACPA
positive RA pathway: CD40, DNASE1L3, RPP14, PXK (Figure 4).

4. Discussion

Overall, our results show that the RSTR phenotype has a higher
heritability than previously reported and that specific variants associ-
ated with RSTR likely serve regulatory roles in lung and immune cells.
We posit that the higher heritability estimate seen in this study com-
pared to previous studies is due to a purer phenotypic definition,
with less misclassification. Further, we were able to confirm exposure
to MTB infection, greatly reducing false negatives in our data. We
previously found that the prevalence of the RSTR phenotype varies as
a function of follow-up time and use of TST as compared to IGRA
[6,8,9,50]. Importantly, studies without a long duration of follow-up
will likely misclassify subjects due to subjects converting to TST posi-
tivity after the follow-up has concluded. In addition, subjects can
revert from positive to negative with TST/IGRA tests which can lead
to misclassification. As the RSTRs included in this study had an aver-
age of 9 years follow-up after initial TB exposure and both TST and
IGRA were utilized in the clinical definition we were able to assign
the RSTR status with little or no ambiguity. This is the first genetic
analysis to utilize this strict definition of resistance to infection. The
importance of strict definition for heritability estimation was also
seen in our TB heritability estimates. When including subjects with-
out long-term follow-up and/or without confirmed RSTR status, the
heritability estimate was lower. Our strict TB vs. LTBI contrast yielded
a higher heritability estimate, likely reflecting strong genetic influ-
ence on progression; because MTB exposure is documented, the
influence of misclassification by lack of exposure on heritability can
be minimized.

While our GWAS results did not identify any single variant that is
significant at the traditional “GWAS threshold,” our results are con-
sistent with a number of putatively associating variants with regula-
tory roles consistent with the RSTR phenotype. The SNPs that were
significant at a p<1 £ 10�5 level are mostly in regions that have evi-
dence of a regulatory function in RegulomeDB. Many of these SNPs
were eQTLs and some exhibit biological relevance as judged by tissue
specific effects.

ABHD6, our top locus using the scoring scheme we developed,
produces a lipase that can degrade bis monoacylglycerol phosphate
(BMP) and constitutes the major enzyme for BMP catabolism. BMP is
expressed in the late endosomes and lysosomes of phagocytosing
macrophages [12]. In most mammalian cells, BMP levels are low,
comprising only about 1�2% of total phospholipids. However, BMP
constitutes 16% of the total phospholipids in lung alveolar macro-
phages [13]. Additionally, the gene DNASE1L3, a gene for which the
ABHD6 SNP is a cis-eQTL, codes for a protein that plays a key role in
degrading neutrophil extracellular traps (NETs). NETs are mainly
composed of DNA fibres and are released by neutrophils to bind
pathogens during inflammation. NETs may play a key role in the
pathway responsible for non-specific inflammation and tissue
destruction in pulmonary TB [14]. Therefore, the SNP in ABHD6 is
potentially relevant to TB development through two distinct biologi-
cal processes.

FAF2, one of our second highest scoring loci, is part of the innate
immune system and regulates endoplasmic reticulum-associated
degradation (ERAD), a system for ubiquitin-dependent degradation
of misfolded proteins [46]. FAF2 controls the steady-state expression
of the IGF1R receptor, thus indirectly regulates the insulin-like
growth factor receptor signalling pathway [51]. IGF-I has been shown
to contribute to the maintenance ofMycobacterium leprae persistence
in the host, reinforcing a key role for IGF-I in leprosy pathogenesis
[52]. It has been found that blocking IGF-I signalling rescues antimi-
crobial activity in M. leprae (ML)-infected macrophages and further-
more, knockdown of IGF-1R rescues antimicrobial activity in ML-
infected human macrophages [23]. These cytokines and processes
are similar between the M. leprae response and the response to MTB
infection and adds plausibility that these genes could play important
roles in the RSTR phenotype.



Figure 3. Locus Zoom plots for featured loci
Locus Zoom plots for featured, significant loci. Region shown is the gene for which the top variant falls in, plus 200kb flanking. LD shown is for 1000 Genomes, November 2014,

African population. a) ABHD region with top SNP rs9848072 (3:58272639). b) THRB region with top SNP rs78813564 (3:24304291). c) LINC01861 region with top SNP rs919222
(5:153271156). d) ZHX3/LPIN3 region with top SNP rs6072343 (20:39968188). e) KIF6 region with top SNP rs10484824 (6:39530428). f) FAF2 region with top SNP rs2963672
(5:175935316).
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Four of our loci mapped to genes that show enrichment for the
rheumatoid arthritis (RA) pathway based on the GWAS catalogue.
The component genes of the RA pathway as well as the pathway itself
are known to be important in susceptibility to infectious disease. RA
is an inflammatory disease characterized by increased levels of pro-
inflammatory cytokines (particularly TNF-a) that are important to
host immune response in TB [53]. Many RA drugs are anti-TNF bio-
logics, and depression of normally important cytokines among RA
patients receiving treatment leads to a susceptibility to developing
active TB or a re-activation among LTBI patients [54]. Previous



Figure 4. Gene Set Enrichment for GWAS Summary Statistics
Gene set enrichment done using FUMA GWAS’ GENE2FUNC feature for the mapped genes represented in our GWAS summary statistics. Gene sets considered were from

MsigDB, KEGG, WikiPathways, and the GWAS Catalog. Depicted is the significant result (FDR p<0.05) from the GWAS Catalog.
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immunological studies have shown the importance of TNF (and the
other Th1 cytokines) in the TB response [55]. A previous meta-analy-
sis of hundreds of TB susceptibility studies showed enrichment for
the RA pathway when the meta-analytic summary statistics were
analysed for pathway enrichment [24]. Further, the RA pathway has
been shown to be an important part of the alveolar inflammation
response to infection; alveolar macrophages are the first target of
infection for MTB, and they have previously been discussed as a pos-
sible mediator of the RSTR phenotype [56,57]. Thus, the results pre-
sented in this study in conjunction with previous literature are
consistent with genetic variants in the pro-inflammatory Th1 cyto-
kine response, which are also grouped together in the RA pathway,
being associated with the RSTR phenotype and resistance to MTB
infection.

This study was not without limitations. We were not able to
detect any variants that were associated with the RSTR phenotype at
the GWAS threshold of p<5 £ 10�8 but this may be due to small sam-
ple size and the inability to replicate findings due to the lack of an
additional cohort with a similarly strict phenotype definition. Fur-
ther, while family-based association testing may have a lower power
to detect an association, we were able to control for exposure
between RSTR and LTBI individuals whereas typical case-control
studies do not. Despite these limitations, our results identified eQTLs,
enhancers, and other regulatory functions that are biologically plausi-
ble in the context of resistance to infection by MTB. Additionally, we
were able to utilize a larger sample size for our heritability estimates
and we were able to demonstrate that the RSTR phenotype has a
high heritability despite a lack of individually associating SNPs at the
GWAS level. This may imply that the RSTR phenotype is influenced
by a variety of genes and variants rather than individual SNPs or
genes. Lastly, while the proportion of HIV-infected individuals in this
sample is small, it is possible that low CD4 counts could affect suscep-
tibility to TB disease or acquisition of MTB infection. Unfortunately,
most of these HIV-infected individuals were enrolled in the study
prior to the availability of anti-retrovirals in Uganda, so CD4 count
and viral load assays were not routinely conducted, so we are unable
to assess the impact of these relevant covariates on our outcomes in
this cohort.

Overall, these findings demonstrate how a purer clinical pheno-
type can yield higher, and probably more accurate, heritability esti-
mates and identify potential new candidate genes for resistance to
MTB infection. Our observation that many of these associated SNPs
have regulatory functions add to our existing understanding of how
genetic variants, including those from previous studies of the RSTR
phenotype, influence resistance to MTB infection and build on our
previous knowledge of TB pathogenesis. Genetic studies like this pro-
vide additional insight into alternate immune responses seen
between RSTRs and LTBI [7].
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