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A number of studies have showed that recently created genes differ from the genes created in deep evolutionary past in
many aspects. Here, we determined the age of emergence and propensity for gene loss (PGL) of all human protein–
coding genes and compared disease genes with non-disease genes in terms of their evolutionary rate, strength of
purifying selection, mRNA expression, and genetic redundancy. The older and the less prone to loss, non-disease genes
have been evolving 1.5- to 3-fold slower between humans and chimps than young non-disease genes, whereas Mendelian
disease genes have been evolving very slowly regardless of their ages and PGL. Complex disease genes showed an
intermediate pattern. Disease genes also have higher mRNA expression heterogeneity across multiple tissues than non-
disease genes regardless of age and PGL. Young and middle-aged disease genes have fewer similar paralogs as non-
disease genes of the same age. We reasoned that genes were more likely to be involved in human disease if they were
under a strong functional constraint, expressed heterogeneously across tissues, and lacked genetic redundancy. Young
human genes that have been evolving under strong constraint between humans and chimps might also be enriched for
genes that encode important primate or even human-specific functions.

Introduction

Mapping and identification of disease-causing genes
in humans has a long history, predating even the discovery
of DNA as the genetic molecule and the determination of
the number of human chromosomes in 1950s (Haines and
Pericak-Vance 1998). Today, classical map-based gene dis-
covery has been augmented by the sequence-based gene
discovery, given that the human genome project has pro-
duced high-precision tools for disease gene mapping and
identification (Haines and Pericak-Vance 1998; Botstein
and Risch 2003; Dean 2003; International Human
Genome Sequencing Consortium 2004; Giallourakis
et al. 2005). So far, the characterization of genetic defects
has been successfully accomplished in more than 1,600 hu-
man Mendelian (i.e., monogenic) diseases, where one ma-
jor gene has a high impact and environment or lifestyle has
very little effect on the clinical outcome of patients. Map-
ping common and genetically complex human disease traits
has proved more difficult but even in these more complex
cases, a number of mutations associated with human com-
plex diseases have been identified.

Studying the evolution of the hereditary basis of hu-
man disease can shed light onto the origins of human dis-
orders and the factors that cause disease-causing mutations
to be retained in human populations. Understanding what
kind of genes are most likely to harbor disease-causing mu-
tations, when the disease-causing alleles originated, why
these disease-causing mutants segregate in human popula-
tion, and how natural selection shaped the distribution of
disease-causing mutations in the human genome is of great
interest. Understanding the evolution of genes implicated in
human inherited disorders has become one of the primary
goals of evolutionary genetics.

One way to investigate the genes that harbor disease-
causing mutations (which we term ‘‘disease genes’’) is to

evaluate the way natural selection shapes their protein-
coding portions. A number of studies have measured the
strength of purifying selection acting on disease genes rel-
ative to non-disease genes. However, the results have been
contradictory. An early study found that human disease
genes have 24% higher level of Ka/Ks (the ratio of nonsy-
nonymous substitution rate to synonymous substitution
rate) than non-disease genes (Smith and Eyre-Walker
2003), suggesting that disease genes are subject to weaker
purifying selection. However, later studies reported either
that there was no difference in Ka/Ks between disease genes
and non-disease genes (Huang et al. 2004; Thomas and
Kejariwal 2004; Winter et al. 2004) or that disease genes
exhibited lower Ka/Ks values (Kondrashov et al. 2004;
Bustamante et al. 2005; Blekhman et al. 2008; Hsiao
and Vitkup 2008). The discrepancy has been attributed
to the small number of genes sampled in the early study
(i.e., Smith and Eyre-Walker 2003) and possibly to the var-
iation in the types of genes investigated in different studies
(such as variable proportions of Mendelian and complex
disease genes or genes involved in metabolic and immune
diseases; Huang et al. 2004). This lack of consistency in the
estimates of the rate of protein evolution in disease genes is
not fully understood.

Recently, it has been shown that disease genes tend to
be ‘‘old’’ (Domazet-Loso and Tautz 2008). Here, gene age
was measured using the phylogenetic breadth of the distri-
bution of homologous genes among different lineages. For
humans, old genes are those that are present in more dis-
tantly related species like yeast and Ciona, whereas young
genes are those that are present only in the closely related
species like chimpanzee and macaque. It is known that
younger genes tend to show accelerated evolutionary rates
with respect to older genes (Alba and Castresana 2005;
Toll-Riera et al. 2009). If most disease genes are old, then
they should evolve more slowly due to their age.

Here, we readdress the question of whether disease
genes are under stronger purifying selection than non-
disease genes by analyzing rates of protein evolution and
the strength of purifying selection of disease genes in the
context of gene age. We confirmed that Mendelian disease
genes tend to be older than non-disease genes and showed
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that complex disease genes tended to be middle aged. The
rate of protein evolution (measured as Ka or Ka/Ks) of
young disease genes is substantially (1.5- to 3-fold) lower
than that of young non-disease genes, whereas the rates of
protein evolution of older disease and non-disease gene are
indistinguishable. We also investigated gene expression
patterns and genetic redundancy (as measured by the se-
quence identity between a gene and its closest human ho-
molog) between disease genes and non-disease genes. We
found that disease genes are expressed more heteroge-
neously across tissues, but the overall expression level of
disease genes is not higher than that of non-disease genes.
Disease genes are also less likely to have highly similar pa-
ralogs than nondiseases genes. Putting these observations
together, we argue that disease genes are under strong pu-
rifying selection independently of their age because they
need to be sufficiently functionally important for disruptive
mutations to show sufficiently severe phenotype diagnosed
as disease. At the same time, such genes cannot be ubiqui-
tously expressed because in such cases disruptive mutations
would tend to cause embryonic lethality.

Materials and Methods
Gene Sets

Two sets of human Mendelian disease genes were
used in this study. First, we obtained a list of genes reported
to have disease-causing mutations from the Online
Mendelian Inheritance in Man (OMIM) database (Hamosh
et al. 2000). We filtered out genes annotated as ‘‘disease’’
but not as ‘‘susceptibility’’ or as ‘‘nondisease’’ in the OMIM
Morbid Map. This set includes 2,011 genes (4006 MIM
entries). Second, we considered the data set consisting of
952 manually curated Mendelian disease genes (namely
hOMIM) from the study by Blekhman et al. (2008).

To investigate complex disease genes, we obtained
1,656 genes associated with complex diseases from the Ge-
netic Association Database (GAD), an archive of human

genetic association studies of complex diseases and disor-
ders (Becker et al. 2004). Each of these genes has been re-
ported at least in one genetic association study. We used the
comprehensive collection of 21,528 human protein–coding
genes from the Ensembl build 50 (Flicek et al. 2008) as
a representative set of all well-characterized human genes.
We removed from this set 4,801 pseudogenes documented
in pseudogenes.org (Karro et al. 2007), leaving a total of
16,727 genes. The intersection between the all-gene set
and the OMIM Morbid set contained 1,637 genes, the in-
tersection between the all-gene set and the hOMIM set con-
tained 803 genes, and the intersection between the all-gene
set and the GAD set contained 1,347 genes. Non-disease
genes are those in the all-gene sets that are not included
in any of the Mendelian and complex disease gene sets.

Age of Genes

We estimated the age of each human gene based on
its phylogenetic profile obtained from Phylopat database
(Hulsen et al. 2006, 2009). Phylopat algorithm used the
ortholog of each protein predicted by Ensembl compara da-
tabase to construct a phylogenetic profile for each protein
based on the presence/absence pattern of its ortholog across
other proteomes. Here, we considered human lineage and
17 other lineages containing 38 species (ranging from
Chimpanzee to yeast) available in Phylopat database
v.50 (fig. 1 and supplementary fig. S1, Supplementary
Material online). Note that, given the diverse nature of
the fungal kingdom, yeast may not be an ideal representa-
tive of fungi, but it is the only representative in Ensembl
build 50. Among the 17 lineages, some contained one spe-
cies (e.g., Gallus gallus), whereas others were formed by
multiple species (e.g., Clupeocephala were formed by
Tetraodon nigroviridis, Takifugu rubripes, Oryzias latipes,
Gasterosteus aculeatus, and Danio rerio; see supplemen-
tary fig. S1, Supplementary Material online, for detail).
A phylogenetic profile can be simply conceived as an array

FIG. 1.—Using phylogenetic profile to define the age of genes. The left part illustrated the phylogeny of 18 eukaryotic species (including human) or
lineages. The numbers following the species names are the order of 39 species given by PhyloPat (the higher the order, the closer is this species to
human). Multiple species, which appeared after their common ancestor separated from the human lineage, were collapsed into one lineage (bolded). The
expanded phylogeny of all 39 species is given in supplementary fig. S1 (Supplementary Material online). The right panel illustrates the phylogenetic
profiles for 16,727 human genes used in this study. The panel contains 16727 � 18 cells. Each cell indicates the presence (in black) or absence (in
yellow) of ortholog of the gene in the species/lineage. Here, for illustrative purpose, genes are sorted by the alphabetic order of their string
representations of phylogenetic profile. Vertical red lines split genes into nine equally populated bins.
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with 18 characters (one for each lineage in the data set), in
which only ‘‘0’’ and ‘‘1’’ characters are allowed. A 0 means
no ortholog of the protein is found in the corresponding pro-
teome and a 1 indicates that an ortholog was found in the
corresponding proteome. The phylogenetic profiles for all
16,727 genes were represented by a 16727 � 18 matrix of
0 and 1. Figure 1 shows the matrix panel, where 1 is in black
and 0 is in yellow.

We adopted the Dollo parsimony (Le Quesne 1974;
Farris 1977) to determine the age of a gene. The origin
of a gene was determined by retrieving its ortholog back
to the species that is most distantly related to human. To
do so, we sorted the order of species/lineages by their
evolutionary distance to human. Human was at the most
left, and yeast, the most distant species, was at the right.
Then, the age of a gene can be simply determined by the
position of the last 1 in the 18 characters of the phyloge-
netic profile. For example, the age of the gene with phylo-
genetic profile ‘111111110101110000’ is ranked as 14,
and ‘111110000000000000’ is ranked as 5.

To facilitate data analysis, we added a random vari-
able, e ; norm(0, 0.001), to the age of all genes, making
the gene age a continuous variable. The value of ewas small
such as to not change the original rank of the age of the gene
substantially, but by adding an e to its age, each gene ob-
tained a distinct rank. Using different sets of e values (by
applying different seeds to initialize the random number
generator) did not seem to affect the results.

Next, to analyze the relationships between the age of
genes and other parameters, we grouped all genes into nine
bins according to their age. We used two different binning
methods: To generate ‘‘equally populated bins,’’ we adjusted
the widths of nine bins so that the same number of genes
would fall into each one. To generate ‘‘equally spaced bins,’’
we defined nine bins of equal age span. The two binning
methods produced qualitatively similar results.

To increase the statistical power of our analysis, we
also grouped all genes into three groups, namely, (I)
young-, (II) middle-, and (III) old-aged genes and repeated
each analysis using these groups. Young genes included
those that originated after the lineage of Laurasiatheria
(including dog and cow), middle-aged genes included those
that originated between Clupeocephala (including bony
fishes) and Dasypus novemcinctus, and old genes included
those that originated between S. cerevisiae and Ciona or
before (fig. 1).

Wealsoextracted theageofgenesdefinedin thestudyof
Domazet-Loso and Tautz (2008). Their approach for deter-
mining the age of genes was based on the same parsimony
principle as ours. The difference is that they used BlastP al-
gorithm (E value cutoff 0.001) to search human proteins
against the National Center for Biotechnology Information
non-redundant (NR) database to determine the presence/
absence of homologs, whereas we directly adopted the
orthologous relationship predicted in Ensembl compara
database. Ensembl homologs (orthologs and paralogs) are
deduced from the protein trees using the longest transcript
of each gene. The detailed description of the prediction
method can be found in the reference Vilella et al. (2009).
Despite the technical difference, the two age estimations
produced qualitatively similar results in all analyses.

In addition to estimating the age of each human gene as
described above, we also estimated the tendency of a gene to
be lost in evolution. This augments our age estimation, con-
sidering not only the deepest node in which the gene was
present but also the information captured in the patchiness
of the presence/absence patterns. Specifically, we calculated
the propensity for gene loss (PGL) measure, introduced by
Krylov et al. (2003). PGL is computed based on the pattern
of presence/absence of genes across multiple genomes, the
phylogenetic tree relating the different species, and the
branch lengths. Dollo parsimony is used again to construct
ancestral presence/absence states in each internal node of the
tree. The PGL value of each gene is then defined as the ratio
between the total length of branches in which the gene was
lost and the total length of branches in which the gene could
have been lost. We also calculated an alternative maximum
likelihood-based measure of gene loss, the gene loss rate
(GLR), introduced by Borenstein et al. (2007). The results
obtained with GLR were qualitatively similar to those ob-
tained with PGL and are not presented here.

Rates of Gene Divergence

Ka and Ks for human–chimpanzee orthologous pairs
were obtained from BioMart database (Smedley et al.
2009). The values of Ka and Ks in BioMart were calculated
for coding sequence alignments by using the maximum
likelihood method implemented in PAML (Yang 1997).
We also obtained the values of Ka and Ks for human–
macaque orthologous pairs from the study of Blekhman
et al. (2008). Major results remained qualitatively un-
changed when either human–chimpanzee data or human–
macaque data were used. We only reported the results
derived from the human–chimpanzee comparison.

Mode of Inheritance and Gene Function

To study the influence of the mode of inheritance on
selection, we divided autosomal Mendelian disease genes
into genes in which mutations cause recessive disorders
and genes in which mutations cause dominant disorders.
This division was based on the annotation of the hOMIM
data set. Forty genes were found to be both recessive and
dominant and therefore excluded from our analysis.

To identify significantly over- or underrepresented gene
ontology (GO) terms in a set of disease genes with respect to
the set of non-isease genes, we extracted the GO terms for all
the genes in our data sets using FatiGO (Al-Shahrour et al.
2004). Adjusted P values were calculated using the false-
discovery rate (FDR) method of Benjamini and Yekutieli
(2001) implemented in FatiGO. We used the adjusted
P , 0.001 to determine significance.

mRNA Expression Data

mRNA expression data were obtained from Gene Ex-
pression Atlas (http://wombat.gnf.org; Su et al. 2004). We
included normal adult samples in 54 NR tissue types in the
analysis. The expression level of each probe set in a given
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tissue was calculated as the mean of log (base 2) signal in-
tensities of all samples after GC-RMA normalization (Wu
et al. 2004). When multiple probes were mapped onto the
same gene, the probe with the highest expression level was
used as the report probe for this gene. The mean expression
level of a gene (aveExp) was defined as the mean across all
tissues, whereas the peak expression level (maxExp) was
defined as the maximum among all tissues. The heteroge-
neity of expression level across all tissues (hetExp) was cal-
culated according to (Yanai et al. 2005; Liu et al. 2008) as

Pn
j5 1ð1 �

logSj
logSmax

Þ
n � 1

;

where n 5 54 is the number of human tissues included in
our analysis, Sj is the expression level in each tissue, and
Smax is the highest expression level of the probe set across
all tissues.

Duplicate Sequence Homology

To understand the role of gene duplicates in robustness
against deleterious human mutations, we searched for ho-
mologs of all human genes using all-against-all BlastP com-
parisons, following the study of Hsiao and Vitkup (2008).
Sequence homologs were identified as nonself hits with E
value �0.001 that could be aligned over more than 80% of
both the query length and the length of identified sequence.
For each query sequence, its closest human paralog was
identified as the nonself hit which can be aligned over more
than 80% of the length of both sequences. Sequence hits
with an E value .0.001 were excluded. For human genes
with identified paralogs, the distributions of amino acid se-
quence identities of the closest homologs were recorded.

Results

We investigated two sets of human Mendelian disease
genes. First, we used the collection of 1,637 human genes
involved in diseases from the OMIM Morbid Map (http://
www.ncbi.nlm.nih.gov/Omim/getmorbid.cgi). Second, we
investigated 803 genes from the hOMIM data set—a man-
ually curated collection of Mendelian disease genes, ob-
tained from Blekhman et al. (2008). The hOMIM gene
set is less redundant and free of complex phenotypic entries.
The two disease gene sets significantly overlap: 781 genes
are present in both sets. Because the two data sets generated
qualitatively similar results, we only reported here results
derived from the hOMIM data set.

For complex disease genes, we investigated 1,347
genes extracted from GAD database (Becker et al.
2004). The majority of genes collected in GAD are associ-
ated with complex diseases. In the study of Blekhman et al.
(2008), the list of manually curated complex disease genes
(supplementary table S5 of Blekhman et al. [2008]) con-
tains 53 genes; only three of them (namely LTA4H,
PALB2, and BLMH) were missing from the GAD gene set.

Non-disease genes were defined as genes that do not
appear in any of the disease gene sets (including OMIM
Morbid, hOMIM, and the complex disease gene sets). The

non-disease gene set contained 13,864 genes (82.9% of all
genes), indicating that 17.1% of human genes are known to
be associated with either Mendelian or complex diseases.

Distribution of Disease Genes in Age Groups

We estimated the age for all 16,727 genes included in
our analysis and split them into nine bins according to their
ages, where the age group 1 contained the youngest genes
and the age group 9 contained the oldest genes. The age
was estimated using Dollo parsimony (Le Quesne 1974; Far-
ris 1977) by finding the most highly divergent lineage in
which an ortholog (using the Phylopat pipeline; Hulsen
et al. 2006, 2009) or a homolog (using BlastP) of a particular
human gene could be found (see Materials and Methods for
details).

Two binning approaches, equally populated bins and
equally spaced bins, were used (Materials and Methods).
Figure 2 illustrates the results obtained for equally popu-
lated bins (i.e., having the same number of genes in each
of the nine age bins). The bin for age groups 1 contained
only 10 Mendelian disease genes (0.54%); this frequency is
significantly lower than that of any other age group, which
all contained at least 58 disease genes (P , 0.001, v2 test).
Older groups (e.g., group �3) contained more Mendelian
disease genes—3.12–7.10% of them were Mendelian dis-
ease genes. This pattern was also observed when the genes
were grouped using equally spaced bins—the two binning
approaches produced qualitatively similar results.

To simplify the patterns, we pooled all genes into three
(including young-, middle-, and old-aged groups) instead of
nine groups. The probability to contain DNA variants as-
sociated with Mendelian diseases is significantly lower
in the young gene group than in the middle-aged and the
old gene groups (both P , 0.001, v2 test) (fig. 2A). This
pattern is consistent with the finding of Domazet-Loso
and Tautz (2008). We further computed the fractions of
complex disease genes in different age groups (fig. 2B).
The frequency of complex disease genes in younger groups
(groups 1–3) is also significantly smaller than that in
middle- and old-aged groups (P, 0.001, v2 test); however,
unlike Mendelian disease genes, complex disease genes are
more likely to be in the middle-aged than in the old-aged
groups (P , 0.001, v2 test) (fig. 2B).

We also obtained the age of genes from the study of
Domazet-Loso and Tautz (2008). They estimated the age of
genes using genes’ phylostratum (Domazet-Loso et al.
2007), which focuses on homologs and determines the
age of the gene family by strict parsimony assuming that
a gene family can be lost but cannot reevolve independently
in different lineages or be horizontally transferred. The phy-
lostratum estimate for the age of genes match our estimates
of age well (Spearman’s q 5 0.40, P « 0.001). All patterns
obtained with phylostratum age estimate are indeed similar
to those obtained with our age estimate (data not shown).

In addition to these two age estimates using strict par-
simony, the PGL measure is calculated for all genes (see
Materials and Method for detail). PGL captures the patch-
iness of phylogenetic distributions for genes that have the
same age. The steady state model of gene gain and loss,
assuming that genes lost have the same rate distribution
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as genes gained, predicts that different gene age classes
have specific PGLs (Wolf et al. 2009). Indeed, we found
that both our gene age and the phylostratum gene age
are significantly correlated with PGL (Spearman’s q 5
�0.55 and �0.26, respectively, both P « 0.001). We also
examined the relation between the propensity of a gene to
be lost (Materials and Methods for details) and the likeli-
hood of the gene to be involved in Mendelian or complex
diseases. We split genes into small, medium, and large PGL
bins. In these bins (with equal number of genes), 5.7, 5.2,
and 3.1% of genes are Mendelian disease genes and 5.5,
8.0, and 3.7 percent of genes are complex disease genes.
The pattern resembles the one obtained with young-, mid-
dle-, and old-age groups. Next, we test whether disease
genes have higher or lower PGL values than non-disease
genes. Mendelian disease genes are likely to have a lower
PGL values than non-disease genes (median 0.1671 vs.
0.1690 and mean 0.1756 vs. 0.2142, P 5 2.3 � 10�15,
Mann–Whitney–Wilcoxon [MWW] test). Complex disease
genes are also likely to have a lower PGL values than non-
disease genes but the difference is less significant (median
0.1671 vs. 0.1690 and mean 0.1910 vs. 0.2142, P 5 1.1 �
10�4, MWW test).

Selective Pressure on Disease Genes

Mendelian disease genes have significantly lower me-
dianKa andKa/Ks than non-disease genes (table 1). The val-

ues ofKa andKa/Ks of non-disease genes decreases when the
gene age increases (fig. 3A and B). Such a negative correla-
tion between the evolutionary rate (Ka or Ka/Ks) and gene
age has been well established in previous studies (Domazet-
Loso and Tautz 2003; Daubin and Ochman 2004; Alba and
Castresana 2005; Wang et al. 2005; Cai et al. 2006; Kuo and
Kissinger 2008; Cai and Petrov, unpublished data).

However, such an association was not observed in
Mendelian disease genes. Ka and Ka/Ks values for Mende-
lian disease genes do not decrease with gene age (for Ka/Ks,
Spearman’s q5�0.0104, P5 0.783; table 2). In fact, there
was no difference in Ka or Ka/Ks values among age groups
for Mendelian disease genes (P 5 0.045, Kruskal–Wallis
[KW] test)(fig. 3A). These results suggest that Mendelian
disease genes appear to be under strong purifying selection
irrespectively of the gene age.

Given that the number of Mendelian disease genes in
young age bins is very small, it is possible that the lack of
correlation between Ka or Ka/Ks and gene age is due to the
small sample size of disease genes. To confirm that this was
not the case, we randomly sampled subsets of non-disease
genes in each of the nine age bins such that the number of
the genes in the subset was equal to the number of Mende-
lian disease genes in that age bin. We repeated this subsam-
pling process to create 10,000 replicates of non-disease
gene sets and computed the Spearman’s correlation co-
efficients between Ka, Ks, or Ka/Ks and the age of the gene
for these subsets. The distribution of the correlation

FIG. 2.—Frequencies of Mendelian disease genes (A) and complex disease genes (B) as functions of their age. Genes are partitioned into nine
equally populated bins as well as (I) young-, (II) middle-, and (III) old-aged groups (Materials and Methods). The error bars represent the 95% binomial
proportion confidence intervals.
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coefficients obtained for these subsets and the observed
correlation coefficients for disease genes were plotted in
fig. S2. The observed correlation coefficients between Ks
values and the age of the gene fall well within the distribu-
tion of replicate correlation coefficients (fig. S2B). In con-
trast, the observed correlation coefficients between Ka (or
Ka/Ks) and gene age for disease genes fall far from the end
of the upper tail of the resampled distributions (fig. S2A,C)
(P , 10�5), confirming that the difference reported above
between disease and non-disease genes is not merely due to
the small sample size.

This difference seems to be mainly driven by the sig-
nificantly different Ka (or Ka/Ks) values between Mende-
lian disease genes and non-disease genes in the young
genes. In groups 1 to 3, the Ka and Ka/Ks values of Men-
delian disease genes are significantly lower than those in
non-disease genes (both P, 0.001, Kolmogorov–Smirnov
[KS] test) (upper panel of fig. 3A). Similarly, in group I, the
Ka and Ka/Ks values of Mendelian disease genes are almost
3-fold lower than those in non-disease genes (both P ,
0.001, KS test) (lower panel of fig. 3A). In group 4–9
(or groups II and III), we did not observe significant dif-
ference in Ka (or Ka/Ks) values between disease and
non-disease genes (P . 0.05, KS test) (fig. 3A).

Unlike Mendelian disease genes, both the Ka and Ka/
Ks values of complex disease genes are negatively corre-
lated with the age of genes (Spearman’s q 5 �0.120
and �0.123, P , 0.001) in a pattern similar to that of
non-disease genes (Spearman’s q 5 �0.249 and
�0.263, P , 0.001) (fig. 3B). Repeating the subsampling
analysis describe above, we confirmed that the scarcity of
complex disease genes in each age bin was not the reason
that complex disease genes resembled non-disease genes in
these patterns (fig. S3). Finally, we found significant differ-
ences in both Ka and Ka/Ks values between different age
groups for complex disease genes (both P , 0.001, KW
test).

Although, as a function of gene age, the changes of Ka
and Ks/Ks for complex disease genes are similar to those for
non-disease genes, values of Ka and Ka/Ks of young com-
plex disease genes are still significantly lower than those of
young non-disease genes. For genes in groups 1–3, the Ka
and Ka/Ks values of complex disease genes are 1.4- and
1.5-fold lower than those of non-disease genes, respectively
(both P, 0.001, KS test) (upper panel of fig. 3B). In group
I, the Ka and Ka/Ks values of complex disease genes are
1.5- and 1.2-fold lower than those of non-disease genes, re-
spectively; however, the differences are less significant
(P5 0.0046 and 0.0485, respectively, KS test) (lower panel

of fig. 3B), underscoring the relatively weaker purifying
selection acting on complex disease genes compared with
Mendelian disease genes.

We obtained highly consistent results with the PGL as
a complementary measure of gene evolutionary age. For
non-disease genes, values of PGL are positively correlated
with values of Ka and Ka/Ks (Spearman’s q 5 0.155 and
0.167, respectively, P « 0.001 in both cases) but not corre-
lated with values of Ks (Spearman’s q5 0.021, P5 0.026).
This result is consistent with those from previous studies
(Krylov et al. 2003; Wolf et al. 2006; Borenstein et al.
2007). In contrast, for Mendelian disease genes, PGL does
not correlate with any of divergence rate measures (P .
0.001, Spearman correlation between PGL and Ka, Ks,
or Ka/Ks). For complex disease genes, PGL are marginally
significantly positively correlated with Ka and Ka/Ks
(Spearman’s q 5 0.114 and 0.139, P 5 0.002 and 1.28
� 10�4, for Ka and Ka/Ks, respectively) but not correlated
with Ks (P . 0.001). These results suggest that rapidly
evolved genes have a higher propensity to be lost, but
the pattern is only upheld for non-disease genes. The trend
is less significant in complex disease genes and completely
disappears in Mendelian disease genes.

We used an additional measure of selective pressure
based on polymorphism data to confirm the results derived
from Ka/Ks. The measure is the ratio of nonsynonymous-to-
synonymous polymorphisms (Pn/Ps). Recent accumulation
of human genome–wide single nucleotide polymorphism
(SNP) data enables the derivation of Pn/Ps (International
HapMap Consortium 2003, 2007; Bustamante et al.
2005). We found that both Mendelian and complex disease
genes have lower values of Pn/Ps computed from two SNP
data sets—HapMap SNPs (International HapMap Consor-
tium 2003, 2007) and Applera SNPs (Bustamante et al.
2005; data not shown). This is an additional line of evidence
of strong purifying selection in disease genes (see also Liu
et al. 2008). With either divergence or polymorphism infor-
mation, we find that disease genes tend to be under stronger
purifying selection than non-disease genes but only in the
young gene categories.

Effects of Inheritance Mode and Gene Function

We divided Mendelian disease genes into dominant
disease genes (238 hOMIM genes that are known to have
dominant diseases-causing mutations) and recessive dis-
ease genes (389 genes that are known to have recessive dis-
eases-causing mutations) as annotated by Blekhman et al.

Table 1
Comparison of Variables between Mendelian, Complex, and Non-disease Genes

Ka Ks Ka/Ks aveExp maxExp hetExp

Mendelian 0.0034 0.0163 0.237 7.443 10.983 0.256
Complex 0.0036 0.0156 0.260 7.397 11.077 0.250
Non-disease 0.0042 0.0151 0.295 7.643 10.496 0.210
Mendelian versus Non-disease 0.000 0.053 0.000 0.007 0.000 0.000
Complex versus Non-disease 0.013 0.172 5.29 3 1024 0.011 1.89 3 1029 1.49 3 10220

Mendelian versus Complex 0.006 0.171 0.048 0.248 0.092 0.005

NOTE.—The median values of variables: Ka, Ks, Ka/Ks, aveExp, maxExp, and hetExp are given. P values of Kolmogorov–Smirnov pairwise tests are given in the three

bottom rows. Significant values (P , 0.001) appear in bold.
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FIG. 3.—Ka, Ks, and Ka/Ks as functions of the age of genes. Mendelian disease genes (A) and complex disease genes (B) are partitioned into one–
nine equally populated bins as well as (I) young-, (II) middle-, and (III) old-aged groups. Median values and 95% confidence intervals are given for
disease genes (red square) and non-disease genes (blue circle).
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(2008). Dominant genes have significantly lower values of
Ka/Ks than those of recessive genes (median Ka/Ks 0.216
vs. 0.242; P 5 3.673 � 10�4, KS test). This result is con-
sistent with the results reported in two previous studies
(Furney et al. 2006; Blekhman et al. 2008). Neither dom-
inant nor recessive genes show any correlation between Ka/
Ks and gene age (fig. S4). Collectively, dominant disease
genes are younger than recessive disease genes (fig. S5).

We also examined whether the strong purifying selec-
tion acting on young Mendelian disease genes was due to
the enrichment of particular biological functions in these
genes (Materials and Methods). Compared with the non-
disease genes in the same age group, young Mendelian dis-
ease genes were significantly enriched with anatomical
structure development (GO:0048856, adjusted P 5 19 �
10�5 and 8.31 � 10�26 for equally spaced bins and equally
populated bins, respectively) and multicellular organismal
development (GO:0007275, adjusted P5 8.18� 10�5 and
1.57� 10�20 for equally spaced bins and equally populated
bins, respectively) genes. In addition to these two terms,
some GO terms were identified to be significant only when
we used equally populated bins. These terms include circu-
lation (GO:0008015), response to stress (GO:0006950),
cellular component organization and biogenesis
(GO:0016043), response to external stimulus
(GO:0009605), coagulation (GO:0050817), cellular devel-
opmental process (GO:0048869), as well as other terms.
The complete list of enriched terms can be found in supple-
mentary table S1. Among all these GO terms, only one
term, nucleic acid binding (GO:0003676), was enriched
in non-disease genes.

Effects of Gene Expression

Next, we studied the expression patterns of disease and
non-disease genes in relation to gene age. We calculated the
average (aveExp), maximum (maxExp), and heterogeneity
(hetExp) of gene expression across 54 normal tissues for
each human genes (fig. 4A). Mendelian disease genes show
significantly higher hetExp (P 5 0.007) and maxExp (P ,
0.001) values than non-disease genes, whereas their aveExp
(P5 0.699) values are similar (KS test) (table 1). This result
is consistent with the hypothesis that tissue-specific genes
are more likely to be involved in human disease than widely
expressed genes (Winter et al. 2004; Adie et al. 2005).

Furthermore, Mendelian diseases genes show similar
maxExp values across different age groups (P5 0.699, KW
test), whereas maxExp for non-disease genes is positively
correlated with the age of genes (Spearman’s q 5 0.114, P
, 0.001; KW test, P, 0.001)(table 2). Non-disease genes
in different age groups have different hetExp values (P 5

0.000443, KW test), but hetExp values for Mendelian dis-
ease genes of different age groups show no variation (P 5
0.191, KW test). There is no correlation between hetExp
and gene age for both Mendelian and non-disease genes
(P5 0.195 and 0.221, respectively, Spearman test) (table 2
and fig. 4A).

Similar to Mendelian disease genes, complex disease
genes show significantly higher maxExp (P5 1.89� 10�9,
KS test) and hetExp (P5 1.49� 10�20, KS test) values and
similar aveExp values to non-disease genes (table 1). More-
over, complex disease genes show the same patterns of ex-
pression variables versus gene age as Mendelian disease
genes, that is, there is a positive correlation between aveExp
and gene age and there is no significant correlation between
either maxExp or hetExp and gene age (table 2 and fig. 4B).

We conducted a survey of the tissue-specific expres-
sion patterns of disease versus non-disease genes. Distribu-
tion of genes showing peak expression in 54 tissues and
portions of Mendelian and complex disease genes in all
genes showing peak expression in the corresponding tissues
are given in supplementary figure S6 (Supplementary Ma-
terial online). We found that Mendelian disease genes are
more likely to be most highly expressed in liver and kidney
(P « 0.001 in both cases, Fisher’s exact tests with Bonfer-
roni correction) but less likely in testis (P 5 6 � 10�6).
Complex disease genes are more likely to be most highly
expressed in liver (P 5 0.0004).

In addition, disease genes and non-disease genes show
no substantial difference in the correlation between Ka/Ks
and gene expression, even after these genes were assigned
into young-, middle-aged, and old groups (fig. S7–8).

Effects of Presence of Close Duplicates

It has been hypothesized (Lopez-Bigas and Ouzounis
2004) that proteins with similar paralogs should be less of-
ten involved in diseases because the compromised function
of such proteins when mutated could be compensated for by
their functional paralogs (Frenette et al. 1996; Wagner
2000; Gu 2003; Kamath et al. 2003; Dean et al. 2008;
Wagner 2008). Here, we test this hypothesis using our gene
sets. We used two definitions for ‘‘singleton human genes.’’
The first considers the genes that do not have any sequence
homologs, which can be identified by BlastP searches (see
Materials and Methods for criteria used to define homo-
logs). The second considers those that are not included
in any Ensembl protein family (Enright et al. 2002). Using
either of these definitions, Mendelian disease genes were
not found more likely to be singleton human genes than
non-disease genes. This result is consistent with that of
Yue and Moult (2006).

Table 2
Correlations between Various Variables and the Gene Age

Ka Ks Ka/Ks aveExp maxExp hetExp

Mendelian �0.0329 (0.376) �0.0296 (0.433) �0.0104 (0.783) 0.157 (3.81 3 1025) 0.0300 (0.432) �0.0495 (0.195)
Complex 20.120 (0.000) �0.010 (0.585) 20.123 (0.000) 0.127 (0.000) 0.018 (0.346) �0.057 (0.003)
Non-disease 20.249 (0.000) 20.043 (4.00 3 1026) 20.263 (0.000) 0.179 (0.000) 0.114 (0.000) 0.0152 (0.221)

NOTE.—Spearman’s q and P value (in parentheses) are given. Significant values (P , 0.001) appear in bold.
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We next resorted to a different approach for testing the
role and magnitude of duplicate gene contribution to ro-
bustness against deleterious human mutations. We used se-
quence similarity between paralogs or homologs to quantify
the likelihood and magnitude of functional compensation,
following Hsiao and Vitkup (2008). For nonsingleton hu-
man genes (i.e., those with identified paralogs), the distri-
butions of amino acid sequence identities of the closest
homologs are significantly different between disease and
non-disease genes. The average identity of the closest ho-
molog is 47.9% for Mendelian disease genes, 48.2% for
complex disease genes, and 52.3% for non-disease genes
(Mendelian vs. nondisease, P , 0.001; complex vs. non-
disease, P , 0.001; Mendelian vs. complex, P 5 0.00132,
KS test). This difference between disease genes and non-
disease genes seems more substantial and statistically sig-
nificant for middle-age genes (fig. 5). The lack of statistical
significance for young genes may be attributed to the small
number of genes.

Discussion

New genes can be created by many mechanisms, in-
cluding exon shuffling, gene duplication, retroposition, in-
tegration of mobile elements, lateral gene transfer, gene
fusion/fission, as well as de novo origination (for review,
see Long et al. 2003). It is believed that we can detect only
a small fraction of all the events of the formation of novel
genes. What we can identify are those recent enough to be
recognizable, yet old enough to be fixed or present at a high
enough frequency in the population to be found in se-
quenced genomes (Babushok et al. 2007). However, we
can use sequence similarity searches to estimate the time
(in the course of evolution) when an extant gene or a gene
family has appeared in the genomic sequence. Sequence
similarity searches appear to be able to detect gene homo-
logs in distantly related lineages even in cases of fast evolv-
ing genes because almost all protein-coding genes contain
at least pockets of high amino acid conservation (Alba and
Castresana 2007) (but see Elhaik et al. 2006).

A large portion (22%) of human genes can be detected
in the yeast genome, implying that they originated before
the common ancestor of human and yeast, which have di-
verged for more than 1.5 billion years. Other human genes
can be detected only within mammals or even only within

primates (Toll-Riera et al. 2009). The time of origination
(the age) appears to be an important parameter in the study
of molecular evolution. For instance, gene age is negatively
correlated with the rate of gene evolution at the protein
level. Alba and Castresana (2005) found such a negative
correlation for human genes. Cai et al. (2006) found that
the lineage-specific (younger) genes evolve at faster rates
than widely distributed (older) genes in fungi. A similar pat-
tern was observed in rodents (Wang et al. 2005),Drosophila
(Domazet-Loso and Tautz 2003), parasitic protozoa (Kuo
and Kissinger 2008), and bacteria (Daubin and Ochman
2004). In another study, we demonstrated that younger
genes evolve rapidly primarily because they are subject to
relaxed purifying selection (Cai and Petrov, unpublished).

The analysis of gene ages, however, has not been ap-
plied in the study of the evolution of disease genes, even
though evolutionary age of disease genes has been inves-
tigated. For example, almost all human disease genes can be
found in zebra fish genome (Hariharan and Haber 2003).
Similarly, 60–80% of human disease genes can be found
in the Drosophila genome (Fortini et al. 2000; Rubin
et al. 2000; Reiter et al. 2001). Human disease genes are
highly represented among human–rodent ortholog sets
(Huang et al. 2004). Domazet-Loso and Tautz (2008) found
that disease genes are notably absent from the younger phy-
lostrata (i.e., age groups)—only about 0.6% of the disease
genes mapped to the age since the origin of Eutheria or
later—and that there was a significant negative correlation
between the number and frequency of disease genes and
a ranked evolutionary age. The results obtained in our study
for Mendelian disease genes confirm their findings.

We confirm that complex disease genes are also under-
represented in young-aged groups. More interestingly,
complex disease genes are overrepresented in middle-aged
groups—a new finding that may have an important biolog-
ical implication because the middle-aged groups contain
more vertebrate-specific genes than other age groups. Most
complex disease genes are those that originated during the
emergence of vertebrates. The complicated interactions be-
tween functionally associated genes responsible for human
complex diseases can, therefore, be traced back to their not-
so-deep evolutionary past.

We also consider the PGL for genes in different age
groups. For Mendelian disease genes, the portions of dis-
ease genes increase with the gene age and decrease with the

Table 3
Candidate Disease Genes (Ka/Ks �0.30, maxExp �11.75, hetExp �0.32, and duplicate sequence similarity �50%)

Ensembl ID HGNC Name Description

ENSG00000179776 CDH5 Cadherin 5, type 2 (vascular endothelium)
ENSG00000154734 ADAMTS1 ADAM metallopeptidase with thrombospondin type 1 motif
ENSG00000099308 MAST3 Microtubule-associated serine/threonine kinase 3
ENSG00000172232 AZU1 Azurocidin 1
ENSG00000124006 OBSL1 Obscurin-like 1
ENSG00000039560 RAI14 Retinoic acid-induced 14
ENSG00000145555 MYO10 Myosin X
ENSG00000169347 GP2 Glycoprotein 2 (zymogen granule membrane)
ENSG00000176956 LY6H Lymphocyte antigen 6 complex, locus H
ENSG00000169509 CRCT1 Cysteine-rich C-terminal 1

NOTE.—Those genes are not included in the list of hOMIM disease genes (Blekhman et al. 2008).
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values of PGL; for complex disease genes, the portions in
the middle-PGL classes and the middle-age group are the
highest. The results fit the prediction of the steady state
model of gene gain and loss during genome evolution
(Wolf et al. 2009), claiming that genes of different age clas-
ses (genes gained at different time during the evolution of
a lineage) substantially differ in the characteristics that are
correlated with the PGL.

Rate of Evolution and Gene Expression of Disease Genes
as a Function of Gene Age

In this study, we analyzed human disease genes in the
context of gene age and discovered several new patterns.
The key pattern is that Mendelian disease genes evolve
slowly regardless of their age. In contrast, non-disease
genes show a strong relationship between rate of evolution
and gene age, with younger genes evolving much faster
than older genes. As a result, young Mendelian disease pro-
teins evolve almost 3-fold slower than young non-disease
genes. The difference is less dramatic for the young com-
plex disease genes, but it is still highly significant. On the
other hand, the older Mendelian and complex disease genes
evolve at indistinguishably similar and low rates as the old-
er non-disease genes.

The level of gene expression is an essential factor in
determining the selective pressure on genes (Pal et al.

2006). It is well known that highly expressed genes tend
to be under stronger purifying selection (Pal et al. 2001;
Subramanian and Kumar 2004; Drummond et al. 2005;
Wall et al. 2005). Slow rate of evolution of young disease
genes might be due to their high levels of expression across
a large array of tissues. Our observations show that this is
not the case—young disease genes do not have higher me-
dian levels of aveExp than young non-disease genes (P 5
0.2981 for Mendelian disease genes and P 5 0.1559 for
complex disease genes, KS test). However, both Mendelian
and complex disease genes have significantly higher levels
of tissue specificity (measured as the heterogeneity of gene
expression across tissues) and significantly higher levels of
peak expression across tissues than those of non-disease
genes (table 1). Consistent with these findings, a recent
study showed that the more experiments in which a gene
was differentially expressed, the more likely it is to contain
disease-associated variants (Chen et al. 2008).

Evolutionary Properties of Disease Genes

These results suggest that disease genes are a subset of
genes that perform critical NR functions in some but not all
tissues. Because the function of such genes is important,
any disruptive mutation in these genes can lead to severe
and detectable disease phenotype and would not be toler-
ated by purifying selection. At the same time, disruptive
mutations in functionally important but widely expressed

FIG. 5.—Sequence identify of the closest homolog of genes. Mendelian, complex, and non-disease genes are partitioned into (I) young-, (II)
middle-, and (III) old-aged groups. Median values and 95% confidence intervals are plotted. P values of KS tests between groups are given.

 
FIG. 4.—Mean expression level (aveExp), expression heterogeneity (hetExp), and peak expression level (maxExp) as functions of the age of genes.

Mendelian disease genes (A) and complex disease genes (b) are partitioned into one to nine equally populated bins as well as (I) young-, (II) middle-,
and (III) old-aged groups. Median values and 95% confidence intervals are given for disease genes (red square) and non-disease genes (blue circle).
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genes would tend to lead to embryonic lethality instead of
disease. One example that supports our prediction is the
susceptibility loci for Leigh syndrome. The expression lev-
els of candidate genes for this syndrome tend to be elevated
in the primary tissues or cells involved in disease (Mootha
et al. 2003).

Gene duplication is known to provide genetic robust-
ness (Frenette et al. 1996; Wagner 2000, 2008; Gu 2003;
Kamath et al. 2003; Dean et al. 2008). The above reasoning
suggests that disease genes should not have very close du-
plicates or at least no close duplicates expressed in the same
tissues. However, this relationship might be more compli-
cated because such genetic robustness might be limited to
some but not other tissues or times of development and thus
could allow for the expression of disruptive mutations as
disease states. Both Mendelian disease genes and complex
disease genes indeed tend to have more divergent homologs
than non-disease genes.

The fact that very few young genes are disease genes
might suggest that very few young genes perform suffi-
ciently important functions to be disease genes. The fact
that young non-disease genes evolve at a much higher rate
and are subject to much weaker purifying selection supports
this possibility. The sharp differences between young dis-
ease and non-disease genes allow us to make predictions
about which young genes can harbor disease mutations
even if they had not been identified as disease genes yet.
Specifically, we chose genes (table 3) that satisfied the
following criteria: Ka/Ks� 0.30, maxExp� 11.75, hetExp
� 0.32, and duplicate sequence similarity � 50%. This
information might prove helpful in mapping of disease-
causing mutations.

The identification of candidate genes within loci asso-
ciated with human genetic diseases is a difficult task because
the identified genomic region typically contains hundreds of
genes, making experimental methods employed to identify
the specific disease gene arduous and expensive. Gene pri-
oritization is therefore critical for modern genetic medicine,
and many approaches have been developed to predict disease
genes, based on in-depth knowledge of phenotypic similarity
(Freudenberg and Propping 2002), coexpression, genomic
data fusion and protein interaction (George et al. 2006; Koh-
ler et al. 2008), and literature-based discovery (Hristovski
et al. 2005). Integrating information concerning the time
of origin of genes can serve as an important tool to further
improve the accuracy of gene prioritization.

Young humans genes or human genes that have a high
propensity for loss in other lineages but that have been
evolving under strong constrain between humans and
chimps might be of particular interest in general. Such
genes need to have acquired an important function that
makes them evolve slower than would be predicted given
their age or propensity for loss. Thus, they might be
enriched for those genes that encode primate- or even
human-specific functions.
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