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The prevalence of neurodevelopment disorders (NDDs) among children has

been on the rise. This has a�ected the health and social life of children. This

condition has also imposed a huge economic burden on families and health

care systems. Currently, it is di�cult to perform early diagnosis of NDDs, which

results in delayed intervention. For this reason, patients with NDDs have a

prognosis. In recent years, machine learning (ML) technology, which integrates

artificial intelligence technology and medicine, has been applied in the early

detection and prediction of diseases based on data mining. This paper reviews

the progress made in the application of ML in the diagnosis and treatment of

NDDs in children based on supervised and unsupervised learning tools. The

data reviewed here provide new perspectives on early diagnosis and treatment

of NDDs.
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Introduction

Neurodevelopmental disorders (NDDs) including autism spectrum disorder (ASD),

attention deficit hyperactivity disorder (ADHD), intellectual disability (ID), and learning

disability (LD) are a class of diseases that affect brain development and function.

These disorders occur during early development and affect the cognitive and emotional

development of children (1–3). Evidence shows that burden of NDDs in children

is becoming a global challenge, affecting about 3% of children worldwide (4). The

incidence of NDDs has been on the rise globally. In ASD, the 2020 monitoring

network report by the Centers for Disease Control and Prevention revealed that

the prevalence of ASD among 8-year-old children was 1.68%, representing a 10%

increase compared with 2018 (5). In 2021, a surveillance report showed that the

prevalence of ASD had risen to 2.27% or 1 in every 44 children (6). Moreover, several
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meta-analyses have reported varying global prevalence rates. For

instance, the prevalence of ADHD in children was 7.2% (7), that

of ID was 1–3% (8), whereas that of LD was 3–8% (9, 10). Of

note, NDDs affect the health and social functioning of children,

as well as imposes huge economic burden on families (11, 12).

Studies have shown that NDDs is mainly caused by genetic

and environmental factors. However, the pathogenesis of NDDs,

represented by ASD/ADHD, is unclear and there are no accurate

biomarkers of this disorders (13). Currently, early diagnosis of

NDDs is difficult due to the high heterogeneity of its phenotypes

and etiological factors (14). This results in delayed intervention.

Therefore, there is an urgent need to develop strategies for

improving early detection and prediction of NDDs. In clinical

practice, NDDs are mainly diagnosed based on behavioral

symptoms of children and information provided by caregivers

(2, 15). This calls for development of standardized diagnostic

neuropsychological testing tools for this condition. Moreover,

diagnosis based on behavioral symptoms is not accurate because

it dependents on the pediatricians’ experience and observation

time. Currently, only about 8% of pediatric providers have

the skills to diagnose NDDs (16). There are differences in the

reliability and validity of standardized test tools for NDDs, but

such tools cannot be easily obtained, due to geographical or

cultural reasons (17). Currently, no testing tool or scale can

directly diagnose NDDs. Even the available Autism Diagnostic

Observation Scale and Autism Diagnostic Interview-Revised

guidelines regarded as the “gold standard” for ASD diagnosis

may lead to misdiagnosis (18).

Considering the inability of single scales, tools or indicators

to accurately diagnose or predict NDDs, it has been proposed

that objective index data (e.g., socio demographic information,

EEG, skull imaging) should be combined to improve the

diagnosis or prediction of NDDs. Machine learning (ML)

has been found to offer good predictive performance on

the occurrence of NDDs (19). Several ML methods such as,

supervised, unsupervised, semi-supervised, and reinforcement

learning, have been used in the diagnosis and treatment of

NDDs (20–22). Semi supervised learning and reinforcement

learning are rarely used in the field of NDDs. Semi-supervised

learning and reinforcement learning are rarely used in the field

of NDD with its unique data processing advantages, ML can

facilitate the early identification and early diagnosis of NDD.

Abbreviations: ADHD, Attention deficit hyperactivity disorder; ASD,

Autism spectrum disorder; ANN, Artificial neural network; BP,

Back Propagation; CART, Classification and regression tree; CNN,

Convolutional neural network; DRA, Dopamine receptor antagonist;

ID, Intellectual disability; ID3, Iterative dichotomiser 3; LD, Learning

disability; LSTM, Long and short-term memory model; ML, Machine

learning; MLP, Multilayer perceptron; NDD, Neurodevelopment disorder;

PCA, Principal component analysis; Rs-fMRI, Resting-state functional

Magnetic Resonance Imaging; SVM, Support vector machines; TS,

Tourette syndrome.

Reviewing the progress of ML in the field of NDD is a reflection

of the cross-fertilization of medicine and engineering, which

helps to expand the boundaries of ML applications and deepen

the understanding of NDD among medical professionals.

Therefore, this paper focuses on the application of supervised

and unsupervised learning in NDD to provide a scientific basis

for improving the quality of life of NDD patients.

Supervised learning

Supervised learning can be applied in early detection,

prediction of NDDs, and identification of risk factors.

Regression analysis, decision tree, support vector machine, and

artificial neural network are the commonly used supervised

ML methods.

Regression analysis

Regression analysis is the most basic and widely utilized

MLmodel. Linear regression, logistic regression, and regularized

regression are interpretable and are extensively. For instance,

Wang et al. adopted multivariate binary logistic regression

analysis to identify factors associated with ASD. They found that

gender, living area, age, and education level are contributing

factors contributing to ASD occurrence (23). Tourette syndrome

(TS) is the most common neurodevelopmental movement

disorder (2). Elsewhere, Burd et al. used binary logistic

regression analysis to develop a regression model for evaluating

factors contributing to TS. They found that being male, without

a family history of TS, and high number of comorbidities

influence the occurrence of TS (24). Bertoncelli et al. established

a binary logistic regression analysis model comprising 91

adolescents with cerebral palsy for predicting cerebral palsy in

children and the associated risk factors. The average accuracy,

specificity and sensitivity of the model were 78%. It also

suggested that poor motor skills, epilepsy and cerebral palsy

were related risk factors. This implies that a prediction model

based on binary logistics can effectively identify children with

cerebral palsy (25).

There are a lot of influential factors in NDDs, which

inevitably leads to collinearity problems. If these factors are

not controlled and filtered, they affect the model performance

and even lead to production of misleading results. To address

this problem, regularization technology has been proposed. In

the European multicenter children’s TS study (EMTICS), 187

first-degree relatives of TS children aged between 3 and 10

were followed up for 7 years. Subsequently, a lasso logistic

regression prediction model for Tourette was established. The

interpretation of this method were relatively simple and its

prediction accuracy was good (26), indicating the extensive use

of regression analysis in the field of NDDs.
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Decision tree

The decision tree was first proposed in 1986 (27).

It possesses tree classifier classification properties and can

produce interpretable and accurate results without parameter

assumptions. Iterative dichotomiser 3 (ID3), classification

and regression tree (CART) are the most widely used to

generate medical decision rules for NDDs. Mohamma et

al. used features such as, child behavior, neuropsychology,

and electrophysiological markers to build models. They then

constructed an early childhood predictive model for ADHD

using the classic ID3 algorithm. They reported that the decision

tree model yielded excellent classification accuracy (100%).

Also, subtypes of ADHD can be distinguished by key nodes

in decision-making rules such as behavioral, neuropsychiatric

and electrophysiological parameters (28). New algorithms based

on classical decision tree algorithms, including the ones using

alternate decision trees, multi-class alternate decision trees,

have been used to construct models based on genomic and

magnetic resonance data. It has been found that the decision

tree outperforms other ML models. Consequently, rs878960

in GABRB3 (gamma-aminobutyric acid A receptor, beta 3)

has been selected by all tree-based models (29). In practical

application, the decision tree is prone to overfitting. Effective

sampling methods and pruning methods should be developed

to solve the problem of overfitting. CART, which is extensively

used, utilizes a cost complexity pruning algorithm. Previously,

the predictive significance of birth weight, term infants, and

Apgar score in ADHD was explored. A total of 132 boys

diagnosed with ADHD and 146 typical developmental boys in

the control group. The decision tree model constructed using

the CART algorithm revealed that the Apgar score used to reflect

the degree of neonatal asphyxia had the highest predictive value,

whereas a low Apgar score was among the most critical risk

factors in the perinatal period of ADHD children, suggesting

that perinatal asphyxia may be related to later occurrence of

NDDs symptoms. Therefore, application of complexity pruning

algorithm for post pruning improves the prediction accuracy of

the decision tree (30).

Support vector machines

Previously, Cortes et al. proposed a linear classifier model

which had the largest spacing in feature space and a support

vector machine (SVM). The model can solve a separation

hyperplane that correctly divides the training dataset with the

largest geometric intervals (31). SVM has good performance on

small sample implementations. Notably, linear kernel functions,

polynomial kernel functions, sigmoid, radial basis function

kernels are frequently utilized kernel functions. For instance,

Conti et al. used retrospective cohort data from 68 children

aged 34–74 months from the head of MRI to construct an early

differential diagnostic model of ASD and Childhood Apraxia of

Speech (CAS) of linear nuclear function SVM. It was found that

the linear kernel function SVM model effectively achieved early

differential diagnosis and individualized intervention of ASD

and CAS (32). Similarly, Agastinose Ronicko et al. used Gaussian

kernel SVM, random forest, and convolutional neural network

to construct a predictivemodel based on Resting-state functional

Magnetic Resonance Imaging (Rs-fMRI) data for early diagnosis

and treatment of ASD. They found that compared with other

machine learning mentioned above, Gaussian kernel SVM has

stronger performance in early diagnosis and treatment of ASD

(33). To improve the performance of individual SVM classifiers,

Bi et al. constructed an ensemble SVMmodel by integrating Rs-

fMRI data from 46 normal children and 61 children with ASD.

The proposed ensemble SVM model showed good classification

performance based on all features, implying that the ensemble

SVM method can be used as an auxiliary diagnosis of ASD

(34). Objective imaging data obtained by Rs-fMRI technology

is more effective for the diagnosis of ASD compared with

behavioral observation. SVM has excellent performance in the

above imaging data and small samples.

Artificial neural network

An artificial neural network (ANN) is a complex network

structure formed by interconnection of numerous processing

units. It is a form of abstraction, simplification, and simulation

of the structure and operation mechanism of the human

brain. ANN can perform simulations, image recognition, and

prediction functions. In an investigation aimed at evaluating

the relationship between athletic capacity and other clinical

features of ASD, Fulceri et al. performed exploratory analysis

via ANN. Poor motor performance is a common clinical feature

in preschoolers with ASD, associated with repetitive stereotyped

behaviors and weak language skills (35). Single-layer neural

networks cannot solve the XOR problem in the context of

artificial neural networks. In contrast, two-layer neural networks

can resolve this problem. At the same time, it demonstrates a

strong non-linear classification effect. Rumelhar et al. proposed

the Back Propagation (BP) algorithm in 1986 (36). BP solves the

complex computational quantity problem required by two-layer

neural networks and the computational problem of multilayer

perceptron (MLP). The concept of implicit layer was introduced

to act as a kernel function of an SVM that maps sample spaces to

high-dimensional linear separable spaces. Moreover, Hossain et

al. analyzed demographic data, clinical indicators, and imaging

data to identify ASD features and construct the MLP classifier

model to improve the accuracy of automated diagnosis of

children with ASD. It was observed that the MLP outperformed

all other benchmark classification models, achieving a 100%

accuracy with the lowest number of attributes in the toddler,

child, adolescent, and adult datasets (37).
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With the development of computer technology, the number

of layers of neural network is increasing, and the problem of

local optimal solution is becoming more and more prominent.

The “convolutional kernel” is an intermediary, model which

ensures that the original position relationship is preserved after

an image is convoluted, thereby limiting the risk of falling into a

locally optimal solution. Therefore, several convolutional neural

networks (CNNs) have been proposed. Thomas et al. trained

3D-CNNs on an open ASD dataset to distinguish ASD using

Rs-fMRI images and constructed a CNN-based ASD recognition

model. Results showed that 3D-CNN had better distinguishing

effect. Moreover, its performance exceeded that of the SVM

model. However, valuable information cannot be extracted

from time series in 3D-CNNs (38). Scientists have developed

a long and short-term memory model (LSTM) to solve the

disappearance of gradients in time. This model fulfills the time

memory function by switching the gate and preventing the

gradient from disappearing. Vikas et al. developed CNN, LSTM,

and MLP (based on DSM-V) models for accurate diagnosis and

assessment of severity of individuals with ASD. Comparative

analysis revealed that LSTM functions better in the diagnosis of

ASD unlike other neural network algorithms (e.g., CNN, MLP).

This suggests that AI algorithms can improve the diagnosis of

ASD (39). DSM-V is the most widely used diagnostic criteria for

NDDs worldwide. The combination of DSM-V andML not only

enriches the connotation of DSM-V, but also proves that ML is

suitable for the diagnosis and treatment of NDDs.

Ensemble learning

Ensemble learning accomplishes learning tasks by

constructing and integrating multiple weak learners. Common

ensemble learning methods include boosting, bagging, and

stacking (40–42). AdaBoost is an efficient boosting algorithm

that allows weak learning algorithms with approximate random

accuracy to be strong learning algorithms (43). PU Putra et al.

explored responses and gaze performance of children during

Go/No-Go missions. Based on the AdaBoost algorithm, the eye

tracker was used to track the gaze data of children and construct

a distinguishing model for ASD. As a result, the accuracy rate

of AdaBoost’s algorithm predicting ASD reached 88.60%, which

has an application value (44). The collected the gaze data was

huge and complex, and it was difficult to analyze such data

with traditional statistical methods, and can only be processed

by ML.

Of note, the Bagging algorithm is a parallel integration

strategy that differs from Boosting. Bagging insights are applied

to decision trees to obtain random forest models, further

improving the predictive performance of the decision treemodel

(45). Feczko E et al. utilized Rs-fMRI brain connection data from

47 children with ASD and 58 healthy children to construct a

random forest model to distinguish ASD. The findings showed

a prediction accuracy of the random forest model of 72.71%, a

specificity of 80.74%, and a sensitivity of 63.15%. Besides, unique

behavioral characteristics of 3 ASD and 4 subsets of normal

children were simultaneously revealed, showing that the random

forest model performs effectively with extremely high value in

the interpretation of features (46). In an exploratory analysis,

random forests are extensively used for favorable robustness.

Gao et al. sampled feces from 49 tic children and 50 healthy

children for intestinal microbiome analysis to investigate the

intestinal microbial features in tic patients and the effects of

dopamine receptor antagonist (DRA) drugs on the composition

and metabolic function of the intestinal microbiota. A random

forest model was constructed to predict tic. The results showed

that the model had an AUC of 0.884. Moreover, a significant

correlation was noted between the severity of tic symptoms and

abundance of multiple bacteria as well as the metabolic function

of the gut microbiota (47).

Based on boosting and bagging, a stacking technique using

different models for integration has emerged (48), however,

literature related to NDDs is few; therefore, the application value

warrants further investigations.

Unsupervised learning

Unsupervised learning aims to train a model to learn

the data structure, then provide valuable information about

a new sample. The most significant distinction between

unsupervised and supervised learning is whether the data

contains learning labels or not. The most common scenarios for

unsupervised learning include association rules, clustering, and

dimensionality reduction.

Association rule

Association rule use metrics to differentiate between strong

rules existing in a database. The most common algorithm

that uses this rule is the Apriori algorithm (49). Kim et al.

applied the Apriori algorithm to extract ADHD comorbidities

in Korean national health insurance data. Mood/affective

disorders were the most common comorbidities of ADHD.

Based on the outcomes of the association rules, 9 association

rules were generated, providing a reference for subsequent

research on ADHD (50). Many comorbidities are among the

characteristics of NDDs. Such comorbidities can be used in

the differential diagnosis of NDDs. ML provides a new path

for early identification of comorbidities in NDDs, and it can

also help to formulate more comprehensive intervention plans

to improve outcomes in children with NDDs. Tai et al. also

used the Apriori algorithm to evaluate the comorbid network

of children with ADHD. Consequently, the risk of comorbidity

between ADHD and psychosis was significantly higher than that
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with other physical diseases (51). Similarly, association rules

can also be used in diagnostic models. For instance, Ucuz et al.

investigated the effects of temperament and character traits on

ADHD diagnosis. A diagnostic model of ADHD was established

based on the classification-based association rules method. Data

were collected from 36 children with ADHD and 39 healthy

children. The results showed that the diagnostic model based

on association rules had good discrimination performance, and

temperament personality characteristics can be used for the

clinical diagnosis of ADHD (52).

Clustering

Clustering involves dividing a dataset into different classes

or clusters based on a set of criteria, to maximize the similarity

of data objects within a cluster, while minimizing the difference

between data objects that are not in the same cluster. K-

means is the most conventional clustering method; it classifies

points in n-dimensional space based on the degree of Euclidean

distance. Vargason et al. explored ASD complications and the

ASD subtypes in the United States between 2000 and 2015 using

a database with 3,278 insured children with ASD and 279,693

children with ASD. K-means algorithm was used to identify

three subgroups of children with ASD. Meanwhile, there was

a strong association between developmental delay and ASD

in comorbidities, followed by gastrointestinal problems and

immune imbalances. Suggestive clustering results potentially

help in screening children with ASD for comorbidities and

understanding ASD subgroups (53). In practice, the k-means

algorithm has several limitations such as, s specifying the initial

number of class clusters and easy overfitting, without obtaining

the cluster tree. Therefore, researchers often utilize hierarchical

clustering and Gaussian mixed models. For instance, Stevens

et al. used hierarchical clustering and Gaussian mixed models

to cluster the behavioral phenotypes of ASD and therapeutic

outcomes of different phenotypes. This approach provided a

scientific reference for personalized interventions (54).

Dimensionality reduction

Clinical data are complex comprising redundant data, which

improves the accuracy of model recognition by minimizing

dimensionality. At the same time, it also highlights the

important structure of data. Of note, principal component

analysis (PCA) is themost commonly used linear dimensionality

reduction method. The features of origin data points are

preserved while data dimensions are reduced (55). For

example, N Mashal et al. performed principal component

analyses on 37 ASD, 20 LD, and 21 normal children to

address the interrelationships between various tests in each

group. The results revealed no dichotomy between visual

and verbal metaphors in healthy children. Instead, metaphors

were categorized as per their familiarity. In the LD group,

visual metaphors were independently categorized as linguistic

metaphors. The verbal metaphorical understanding of the ASD

group was similar to that of the LD group (56). Additionally,

when processing and analyzing a complex image and audio

data, Ousts et al. applied PCA technology to minimize data

dimensionality, thereby stabilizing the subsequent modeling

(57). This suggests that dimensionality reduction methods

including PCA should be appropriately used to increase the

model stability in processing complex data.

Discussion

In summary, supervised algorithms can be used to develop

models for NDDs diagnosis and prediction. Unsupervised

algorithms can be applied in exploratory research or

optimization of data structures to identify associations between

NDDs or key risk factors of a single disorder. Supervised

algorithms have varied applicability to different NDDs data

structures due to their different algorithm structures. Artificial

intelligence has been shown to have good performance on

imaging data. For large data samples, ensemble learning often

shows fast computing power and performance. In few-shot

training, SVM performs well (Table 1). At present, most of

the NDDs diagnosis and prediction models built based on

ML do not follow the standard The Transparent Reporting

of a multivariable prediction model for Individual Prognosis

Or Diagnosis (TRIPOD) clinical prediction model reporting

specifications (68), such as the lack of processing of missing

values and outliers in the reporting process, and the failure

to report the threshold of the model. This makes the model

difficult to reproduce. For model evaluation, multi-dimensional

evaluation (e.g., discrimination, calibration, clinical usefulness,

etc.) is rarely used, and it is difficult to effectively screen out

a model that is truly suitable for samples only from a single

discrimination dimension. In terms of model verification, most

studies only evaluate the performance of the model on the

current sample from the perspective of internal verification,

and there is a certain risk of overfitting. Most studies lack

the consideration of model generalization ability on external

validation based on external data.

Nowadays, several studies have attempted to develop ML

clinical diagnostic evaluation tools for NDDs. For example, the

ASD diagnosis and assessment tool based on questionnaire data

was recently developed by De novo. This tool was approved

by the Federal Drug Administration for pre-marketing review,

which is the first successful application of ML in the early

diagnosis and early screening of NDDs (69). More companies,

such as ALSOLIFE, are attempting to develop ASD auxiliary

diagnostic tools based on ML from imaging data. However,

in the field of NDDs research, ML models have numerous

Frontiers in Psychiatry 05 frontiersin.org

https://doi.org/10.3389/fpsyt.2022.960672
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


S
o
n
g
e
t
a
l.

1
0
.3
3
8
9
/fp

sy
t.2

0
2
2
.9
6
0
6
7
2

TABLE 1 Advantages and disadvantages of supervised learning and unsupervised learning methods.

Advantages Disadvantages

Supervised learning

Regression analysis

(25, 26, 58–61)

1. Simple modeling and strong interpretability

2. Independent of parameter adjustment, the same model and data can usually calculate the

unique result

1. Sensitive to missing and abnormal values

2. Logistic regression is difficult to deal with nonlinear problems

3. It is difficult to deal with multicollinearity problems

4. There is risk of over fitting

5. Sensitive to unbalanced data

Decision tree (28–30, 62–66) 1. The model is highly interpretable

2. The model can be described graphically

3. Insensitive to continuous and discrete data

4. It can process multi classification data

5. Insensitive to missing and abnormal values

6. It does not depend on background knowledge and can be modeled directly

1. The decision tree without pruning has the risk of over fitting

2. Sensitive to unbalanced data

3. The performance of the model is generally weaker than that of

ensemble learning and regression analysis

SVM (31) 1. It has complete theoretical support, especially suitable for small sample research

2. The computational complexity depends on the support vector, which avoids the disaster of

dimensionality to a certain extent

3. A few support vectors determine the final result, reducing the impact of miscellaneous samples on

the model

4. Insensitive to outliers

1. It is difficult to train on big data samples

2. It is difficult to solve the multi classification problem

3. The model depends on parameter selection

ANN (38, 39, 67) 1. Strong nonlinear mapping ability

2. Have the ability to associate input information, self-learning and adaptive ability

3. Have a strong ability to distinguish training samples

4. Convolution algorithm can recognize imaging data well

1. The model has the risk of over fitting

2. Large amount of model calculation

3. Complex imaging data analysis

Ensemble learning

(40–42, 44, 48)

1. The performance of the model is improved to a certain extent compared with the weak classifier

2. Insensitive to outliers

3. High performance on large samples

4. It can deal with nonlinear problems

5. Random forest is not sensitive to unbalanced data

6. Little possibility of over fitting

1. The model is difficult to explain, and there is a black box problem

2. Normalization is required

3. Some models are sensitive to missing values

Unsupervised learning

Association rule (49, 50) 1. The algorithm principle is simple and easy to implement

2. It is not restricted by dependent variables, and the association between data can be found in big data

1. There are many output rules and a lot of useless information

Clustering (53, 54, 61) 1. The principle is relatively simple, the implementation is also very easy, and the convergence speed

is fast

2. Be able to handle big data problems

3. Strong interpretability

1. The model is sensitive to outliers

2. The model is sensitive to unbalanced data

3. Local optimal solutions are often obtained

Dimensionality reduction

(55, 56)

The model is fast, simple and effective Poor interpretability of the model

F
ro
n
tie

rs
in

P
sy
c
h
ia
try

0
6

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/fpsyt.2022.960672
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Song et al. 10.3389/fpsyt.2022.960672

limitations. For example, the heterogeneity of ASD in phenotype

and pathological mechanism leads to inconsistent performance

and result interpretation of ML models on different training

samples (14), and it is impossible to obtain a ML model suitable

for the entire ASD population. In addition, the training of

supervisedMLmodels relies on existing samples, and for NDDs,

there is no database of existing samples. Currently, numerous

diagnostic models based on clinical imaging data (32, 33, 38),

have been reported such as Rs-fMRI and EEG. However, the

cost of obtaining these data is high and this imposes a huge

economic burden on the patient’s family. Even if the ML model

has excellent performance on these data, its application in the

diagnosis of NDDs is challenging.

There are several limitations of this review article. First of

all, this paper focuses on the applicability of ML in the diagnosis

and treatment of NDDs, so the subject content of the cited

literature is reviewed. Some literature did not present the data

in full, so it was impossible to strictly checked the data quality

of the cited literature. Second, NDDs are a class of diseases, and

the pathogenesis, clinical manifestations, treatment options and

prognosis of each disease in NDDs are different. At the same

time, the obtained data also have various degrees of difference,

and the analysis of different diseases still needs to be combined

with the characteristics of the disease data. Currently, there is

no single ML method or model that works for all data types.

At present, the application of ML in a certain NDDs has been

reviewed, and this kind of research is also very meaningful.

Finally, since NDDs are a current research hotspot, some of the

views in this paper may become incomplete as ML applications

in the field further increase.

In conclusion, the benefits of ML in the diagnosis and

intervention of NDDs are taking shape with its excellent

performance and interpretability. Integration ofmedical big data

and ML may be an effective strategy to guide the diagnosis,

intervention, and prognosis of NDDs. Collecting clinical big

data of NDDs and constructing models scientifically are the

work that can be set out now.
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