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Abstract: In recent years, with the continuous advancement of China’s urbanization process, regional
atmospheric environmental problems have become increasingly prominent. We selected 12 cities as
study areas to explore the spatial and temporal distribution characteristics of atmospheric particulate
matter in the region, and analyzed the impact of socioeconomic and natural factors on local particulate
matter levels. In terms of time variation, the particulate matter in the study area showed an annual
change trend of first rising and then falling, a monthly change trend of “U” shape, and an hourly
change trend of double-peak and double-valley distribution. Spatially, the concentration of particulate
matter in the central and southern cities of the study area is higher, while the pollution in the western
region is lighter. In terms of social economy, PM2.5 showed an “inverted U-shaped” quadratic
polynomial relationship with Second Industry and Population Density, while it showed a U-shaped
relationship with Generating Capacity and Coal Output. The results of correlation analysis showed
that PM2.5 and PM10 were significantly positively correlated with NO2, SO2, CO and air pressure,
and significantly negatively correlated with O3 and air temperature. Wind speed was significantly
negatively correlated with PM2.5, and significantly positively correlated with PM10. In terms of
pollution transmission, the southwest area of Taiyuan City is a high potential pollution source area
of fine particles, and the long-distance transport of PM2.5 in Xinjiang from the northwest also has a
certain contribution to the pollution of fine particles. This study is helpful for us to understand the
characteristics and influencing factors of particulate matter pollution in coal production cities.

Keywords: air pollution; PM2.5; PM10; coal production city; PSCF; socio-economic factors

1. Introduction

In recent years, China’s rapid economic development and substantial growth in energy
consumption have led to serious urban air pollution, especially particulate pollution [1,2].
Particulate matter pollution will affect air quality [3] and visibility [4] within the region,
and endanger human health [5]. Due to the continuous fermentation of haze weather in
China, PM2.5 pollution has attracted widespread attention in academic circles. At present,
particulate matter has become the research focus of many scholars, mainly including
pollution characteristic analysis [6], influencing factor analysis [7], pollution transmis-
sion analysis [8], health assessment [9], source analysis [10], air quality simulation [11]
and so on. Most of these studies focus on economically developed regions such as the
Beijing–Tianjin–Hebei [12], Yangtze River Delta [13] and Pearl River Delta [14], while there
are fewer studies on the central and western regions of China and cities in functional areas.

The process of coal mining will not only significantly increase the prevalence of dis-
eases such as cancer [15] and respiratory diseases [16] among coal workers, but also have
varying degrees of health impact on the general population near coal mining [17–19].
According to Javier Cortes-Ramirez [20] et al., a review of 28 epidemiological studies
found evidence that coal mining is associated with a variety of diseases in the population

Int. J. Environ. Res. Public Health 2022, 19, 3228. https://doi.org/10.3390/ijerph19063228 https://www.mdpi.com/journal/ijerph

https://doi.org/10.3390/ijerph19063228
https://doi.org/10.3390/ijerph19063228
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://doi.org/10.3390/ijerph19063228
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph19063228?type=check_update&version=2


Int. J. Environ. Res. Public Health 2022, 19, 3228 2 of 14

surrounding mining activities, particularly cancer and congenital anomalies. Teklit Zer-
izghi [21] et al. quantified the ecological and human health risks of heavy metal pollution
in the soil around coal mining areas and found that the heavy metal content exceeds the
local background concentration, and Cr is the main ecological and human health risk factor
metal in the region. More studies [22,23] pointed out that children are more susceptible
than adults to the health risks of heavy metals in particulate matter. The use of coal for
household consumption [24,25] also increases human health risks.

In addition, the economy in central China is underdeveloped, mainly in Inner Mon-
golia, Shanxi and Shaanxi, with primary energy mining and deep processing as the main
industry. Coal occupies a dominant position in China’s energy structure, and its mining,
processing and transformation process can easily cause environmental pollution [26] and
ecological degradation. Under the unique economic structure and geographical environ-
ment, the pollution characteristics of these regions are different from other regions.

This study selected 12 cities located in Shanxi Province, Inner Mongolia Autonomous
Region and Shaanxi Province as the research area to explore the spatial and temporal
distribution characteristics of atmospheric particulate matter in this region, and analyzed
the influence of socioeconomic factors and natural factors on the local particulate matter
level. This paper aims to study the temporal and spatial distribution characteristics and
influencing factors of atmospheric particulate matter in the main coal production areas, so
as to have a deeper understanding of the air pollution processes and influencing factors in
this area.

2. Materials and Methods
2.1. Research Area and Data Sources

This study selected 12 coal cities in Shanxi Province, Inner Mongolia Autonomous Region
and Shaanxi Province as the research objects, including ten cities in Shanxi Province (Datong(DT),
Yangquan(YQ), Shuozhou(SZ), Xinzhou(XZ), Linfen(LF), Taiyuan(TY), Jinzhong(JZ), Jincheng(JC),
Lvliang(LL) and Changzhi(CZ)), Ordos (EEDS) in Inner Mongolia Autonomous Region and
Yulin (YL) in Shaanxi Province. In this study, the hourly concentration data of pollutants
from 1 January 2015 to 31 December 2019 of 64 air quality monitoring stations in the study
area and the meteorological monitoring data of Taiyuan meteorological station in 2019
were collected (Figure 1). The data sources are https://www.aqistudy.cn/historydata/
(accessed on 21 September 2021) and http://data.cma.cn (accessed on 25 September 2021),
respectively. The pollutant data includes six pollutants: PM2.5, PM10, Carbon Monoxide
(CO), Sulfur Dioxide (SO2), Ozone (O3) and Nitrogen Dioxide (NO2), and the meteorological
data includes air temperature (T), air pressure (P), wind speed (WS) and wind direction
(WD). According to the “Ambient Air Quality Standard” (GB 3095-2012), the missing values
in the data are processed to improve the accuracy of the monitoring data. In calculating the
average daily concentration, we require at least 20 h of average concentration or sampling
time, otherwise, the average daily concentration is considered invalid. When calculating
the monthly average concentration, we require at least 27 (February: 25) daily average
concentration values, otherwise, the monthly average concentration is considered invalid.
When calculating the annual average concentration, we require at least 324 daily average
concentrations, otherwise, the annual average concentration is considered invalid.

2.2. Analysis of Socioeconomic Factors

The potential impact of socioeconomic indicators on particulate pollution has been
widely discussed. On the basis of existing studies [27], we selected five indicators, in-
cluding gross domestic product(GDP) [28,29], population density(PD), and secondary
industry(SI) [30,31], coal output(CO) and generating capacity(GC). The annual statistics of
GDP, PD, SI, CO and GC come from the statistical yearbooks of each city. Table S1 provides
detailed information on these socioeconomic factors for each city. In order to determine
the association between particulate matter concentrations and socioeconomic factors, the
annual average concentration data of PM2.5 and PM10 were used as dependent variables,
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and socioeconomic factors were used as independent variables. The curve fitting analysis
is carried out in the form of scatter plots and curve graphs to illustrate the relationship
between variables. According to the determination coefficient (R2) and significance test
(p < 0.05), the fitting curve was used to characterize the impact of socioeconomic factors on
particulate pollution.

Figure 1. Air quality monitoring stations and the meteorological station in major coal production areas.

2.3. Trajectory Analysis
2.3.1. Cluster Analysis

In this study, the HYSPLIT [32] model (http://ready.arl.noaa.gov/HYSPLIT.php)( ac-
cessed on 15 December 2021) was used to calculate the 72-h backward trajectory at a height
of 500 m in Taiyuan city from 2015 to 2019. The time interval was 1 h, and 8760 or 8784
trajectories can be obtained every year. Using the Euclidean distance clustering algorithm in
TrajStat software [33], the air mass trajectories arriving in Taiyuan were clustered.

2.3.2. Potential Source Contribution Function (PSCF)

Based on the HYSPLIT [32] model provided by the National Oceanic and Atmospheric
Administration (NOAA) Air Resources Laboratory and the Australian Bureau of Meteorol-
ogy, the grid analysis was carried out on the area where the study area was located, and the
grid spacing was 0.25◦ × 0.25◦. By combining the trajectory of the air mass and the value of
a certain element [34], PSCF gives possible emission source locations, and can preliminarily
determine the impact of long-distance migration of pollutants on the study area. PSCF is
defined as Equation (1).

PSCF =
mij

nij
(1)

Since PSCF [35,36] is developed based on conditional probability functions, the error
of PSCF increases as the distance between the grid and the sampling point increases. For
some grids with fewer trajectories, the calculated PSCF values have large uncertainties. In
order to reduce the uncertainty of PSCF, the weight function Wij [37] needs to be introduced.
The Wij settings determined this time are as follows:

http://ready.arl.noaa.gov/HYSPLIT.php
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Wi =


1.0 ni > 80
0.7 80 ≥ ni > 20
0.42 20 ≥ ni > 10
0.05 10 ≥ ni > 0

(2)

3. Results and Discussion
3.1. Spatial–Temporal Distribution Characteristics of Particulate Matter Concentration

Figure 2 shows the annual change of the mass concentration of particulate matter in
the study area from 2015 to 2019. On the whole, the annual average concentration of PM2.5
and PM10 increased first and then decreased, showing an inverted U-shaped distribution,
reaching the peak in 2017. It can be seen from Figure S1 that EEDS, YL, DT and XZ show a
trend of first decreasing, then increasing and then decreasing. The rest of the cities showed
a trend of first increasing and then decreasing, with the maximum value appearing in 2016
or 2017. Among the 12 cities, the maximum annual PM2.5 concentration was 81.93 µg/m3

occurring in LF in 2017. In the past five years, the average annual PM2.5 concentration of
LF city increased slightly, and of other cities decreased to varying degrees. Among them,
XZ had the most decrease, from 58.67 µg/m3 in 2015 to 42.46 µg/m3 in 2019, dropping
27.6%; however, the annual average PM2.5 concentration in EEDS and YL had little change,
the concentration curve was relatively gentle and the PM2.5 pollution was relatively light.

Figure 2. Temporal variation of PM concentrations in the study area from 2015 to 2019: (a) Annual
variation of PM2.5; (b) annual variation of PM10; (c) five-year time series of PM2.5 and PM10.

As can be seen from Figure 2b, the variation trend of PM10 is similar to PM2.5 [38,39],
with the highest concentration in 2017. As shown in Figure S1, except YQ and CZ, PM10
concentrations in other cities all reached their highest values in 2017 or 2018. The maximum
PM10 concentration was 132.04 µg/m3 occurring in TY in 2018. Different from the pattern
of PM2.5 above, there were five cities in the region where PM10 concentration increased in
2019 compared with 2015, with the highest increase of 14.7% in SZ. PM10 concentration
in other cities had decreased, and YQ had the most obvious decrease, from 113.72 µg/m3

in 2015 to 88.30 µg/m3 in 2019, with a decrease of 22.4%. In terms of the whole study
area, the annual average concentration of PM2.5 and PM10 in 2019 decreased significantly
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compared with 2015, with 44.98 µg/m3 and 91.76µg/m3, respectively, but both exceeded
the secondary standard limit of Ambient Air Quality Standard (GB3095-2012).

The five-year time series of PM2.5 and PM10 in the study area are shown in Figure 2c.
On the whole, PM2.5 presented a distribution characteristic of low concentration in summer
and high concentration in winter. The monthly variation of PM2.5 shows a significant
U-shaped change pattern, reaching the highest in January and the lowest in August. Condi-
tions such as low temperature, relatively stable atmosphere structure and a large number
of pollutants emitted by coal-fired heating [39] lead to the high concentration of particulate
matter in winter. Precipitation can significantly reduce ambient PM2.5 concentrations in
summer. However, the concentration of PM10 showed many peaks from March to May
in 2017, 2018 and 2019, which was due to the occurrence of several serious typical strong
sandstorm events in this period, and the contribution of coarse particles to PM10 in this
region increased significantly [40]. Among them, the concentration of PM10 on 4 May 2017,
reached the highest, which was 599.95 µg/m3.

Figure 3 shows the diurnal variation of PM2.5 and PM10 concentrations during 2015–2019
in the study area. The variation trend of PM2.5 and PM10 concentrations in the study area
is basically the same, showing an obvious double peak and double valley distribution. The
first peak appeared at 10:00–11:00, and the second at 22:00–23:00, which is smaller than the
first peak. The reason for traffic rush pollution in the morning is the enhancement of human
activities [41], and a large amount of tail gas is emitted by vehicles. After the photochemical
reaction, secondary aerosols are generated, which makes PM2.5 concentration reach the first
peak. With the diffusion of pollutants, the concentration gradually decreases and reaches
a valley at 17:00 [42]. With the arrival of the evening traffic peak [43] and the decrease
in night temperature, it is easy to form a temperature inversion, and the atmosphere is
relatively stable, which is not conducive to the diffusion of pollutants, causing the PM2.5
concentration to increase again at night and reach its peak again.

Figure 3. Diurnal variation of PM2.5 and PM10 concentrations in the study area during 2015–2019.

To further understand the characteristics of particulate matter in coal cities, we made
statistics of the annual average concentrations of PM2.5 and PM10 in each city from 2015 to
2019, as shown in Figure 4. It can be found that the average annual concentration of PM2.5
and PM10 in the study area increased first and then decreased.

The severe PM2.5 pollution in 2015 occurred in CZ located in the southeast of the study
area, with a concentration of 64.18 µg/m3. In 2016 and 2017, the annual average PM2.5
concentration in XZ, TY and LL increased significantly. The pollution scope was further
expanded, and the pollution level in the eastern part of the study area was significantly
aggravated. From 2018 to 2019, PM2.5 pollution in the study area as a whole was effectively
alleviated, and the annual average PM2.5 concentration in each city decreased, indicating
that good results have been achieved in the prevention and control of air pollution in the
past two years.

Similar to the pattern of PM2.5, the severe pollution area of PM10 is still concentrated
in the eastern part of the study area. PM10 pollution levels were the most serious in 2017,
and YQ, TY, JC and LF have the highest PM10 concentration. In 2019, the annual average
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concentration of PM10 decreased significantly. Some cities located in the southeast and
central parts of the study area had relatively high concentrations of PM2.5 and PM10. During
the five years, EEDS and YL, which are located in the western part of the study area, had
low concentrations of PM2.5 and PM10, and the overall pollution level was low.

Figure 4. Spatial distribution of PM2.5 and PM10 in the study area from 2015 to 2019.

3.2. Influence of Social-Economic Factors on Particulate Matter

The study area is located in the central region of China, with slow social-economic
development. Compared with the developed eastern region, there is a different correlation
between social-economic factors and particulate matter pollution. In order to further
explore the influence of social-economic factors on particulate matter in the study area, we
conducted statistics on social-economic factors from 2015 to 2019, as shown in Figure S2.
Compared with other cities, SI and GDP of EEDS, YL and TY are higher. TY has a higher



Int. J. Environ. Res. Public Health 2022, 19, 3228 7 of 14

PD; EEDS and YL have higher GC; EEDS, SZ and YL have higher CO. There is a great
difference in the distribution of social-economic factors in different cities. From 2015 to
2019, the regional differences of socioeconomic factors in each year did not change much.

Figures S3–S5 show the fitting curve of particulate matter concentration and social-economic
factors from 2015 to 2019. The parameters of the curve are shown in Table 1. PM2.5
was significantly correlated with SI, PD, GC and CO, while PM10 was only significantly
correlated with GC and CO, which had a poor correlation with other socioeconomic factors.
This may be because the sources of the two particles are different. Fine particles are greatly
affected by human factors, while coarse particles are greatly affected by surrounding
dust [44]; however, coal mining will have a negative impact on land cover and make a
certain contribution to local particulate matter levels [45].

Table 1. Results of curve fitting.

PM2.5 PM10

Year Parameter SI GDP PD GC OC SI GDP PD GC OC

2015 R2 0.64 * 0.24 0.52 * 0.72 ** 0.73 ** 0.37 0.10122 0.73 ** 0.45 0.53 *
b1 0.05570 0.00077 0.14981 0.04629 −0.00079 0.05915 −0.01826 0.19445 0.03317 −0.00076
b2 −0.00004 0.00000 −0.00017 −0.00011 0.00000 −0.00004 0.00000 −0.00020 −0.00009 0.00000

Constant 37.31681 55.43423 29.56998 50.60329 61.89346 79.40285 111.18117 65.78631 96.47074 105.85320
2016 R2 0.66 ** 0.24 0.57 * 0.66 ** 0.63 * 0.52 * 0.20 0.65 ** 0.66 ** 0.70 **

b1 0.08242 0.01819 0.22010 −0.00564 −0.00102 0.07577 −0.02957 0.29224 −0.10892 −0.00203
b2 −0.00005 −0.00001 −0.00025 −0.00006 0.00000 −0.00005 0.00001 −0.00032 0.00003 0.00000

Constant 30.40025 46.04485 21.45023 63.14374 65.60328 83.15594 129.85351 58.40048 131.28330 122.99882
2017 R2 0.53 * 0.24 0.48 0.72 ** 0.72 ** 0.50 * 0.17 0.44 0.76 ** 0.71 **

b1 0.04309 0.00037 0.21455 −0.06208 −0.00156 0.06639 −0.02285 0.22438 −0.14540 −0.00244
b2 −0.00003 0.00000 −0.00025 0.00000 0.00000 −0.00004 0.00000 −0.00022 0.00007 0.00000

Constant 45.00104 62.09259 24.99976 76.73892 73.23390 89.05378 133.89126 73.89322 147.32929 133.74660
2018 R2 0.41 ** 0.20 0.56 * 0.79 ** 0.71 ** 0.30 0.09 0.48 0.55 * 0.55 *

b1 0.01957 −0.01212 0.17716 −0.07201 −0.00126 0.02991 −0.02713 0.11934 −0.06933 −0.00163
b2 −0.00001 0.00000 −0.00020 0.00003 0.00000 −0.00001 0.00001 −0.00008 0.00002 0.00000

Constant 46.30296 65.98086 24.57951 72.64170 64.69729 99.06534 135.54831 87.24706 130.11946 125.60507
2019 R2 0.25 0.10 0.57 * 0.64 * 0.60 * 0.36 0.18 0.32 0.55 * 0.54 *

b1 0.00934 −0.00741 0.14579 −0.08980 −0.00090 0.01014 −0.01464 0.14274 0.02075 −0.00069
b2 −0.00001 0.00000 −0.00015 0.00005 0.00000 −0.00001 0.00000 −0.00014 −0.00004 0.00000

Constant 43.18883 53.97019 22.01969 70.07539 55.57668 92.72066 110.43906 69.47818 94.19326 102.71590

** At level 0.01, the correlation is significant. * At level 0.05, the correlation is significant.

It is worth noting that PM2.5 presents an “inverted U-shaped” quadratic polynomial
relationship with SI and PD, while presenting a U-shaped relationship with GC and
CO. However, the correlation between particulate matter concentration and traditional
social-economic factor GDP is not significant, because TY’s GDP is higher, but particulate
matter pollution is heavier, showing a deviation from the overall relationship. Some
studies [27] reported a positive correlation between SI and PM2.5, which was different
from our results. This may be due to the large difference in economic development
between cities in the study area, and those cities with higher industrial output value also
invest more in environmental governance. Likewise, the reason why the cities with high
CO express a negative relationship is that those have a complete system of coal mining
and transformation in situ [46,47], while coal enterprises in the cities with low CO often
use the basic pattern to mining due to the limits of its small-scale, which easily causes
environmental degradation. Thereby, there is a negative relationship between PM2.5 and
GC, CO.

This spatial correlation expresses the influence of local economic development and
industrial pattern on local particulate matter level, which can provide a reference for the
balance between regional economic development and environmental quality. There are
still many shortcomings in this study, and the effects of various industries on particulate
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pollution can be refined in the follow-up work. In addition to human factors, particulate
levels are also affected by natural factors such as meteorology and atmosphere transport.

3.3. Influence of Natural Factors on Particulate Matter

Through the calculation of the pollution centroid [48], we determine TY as the particle
pollution centroid city in the study area. At the same time, in order to explain the unique
particulates pollution characteristics of TY, we took it as an example to discuss the influence
of natural factors on the concentration of the local particulate.

We calculated Pearson correlation coefficients between six conventional pollutants
and three meteorological factors (Temperature (T), Pressure (P) and Wind Speed (WS)) in
TY in 2019 to discuss their influence on the particulate concentration, and the results are
shown in Table 2. PM2.5 and PM10 are significantly positively correlated with NO2, SO2, CO
and air pressure, and significantly negatively correlated with O3 and Temperature. This is
because NO2 and SO2 in the atmosphere can be converted into secondary inorganic aerosols,
thus promoting the formation of particulate matter to a certain extent; the atmospheric
stability is higher under high pressure and low temperature, which is not conducive to the
diffusion of particulate matter. It is worth noting that wind speed has a significant negative
correlation with PM2.5 and a significant positive correlation with PM10. Higher wind speed
is conducive to the diffusion of fine particles [49,50], but it is easy to produce dust weather,
which increases the concentration of PM10 in the atmosphere, indicating that there are
certain differences between the sources of PM2.5 and PM10. In addition, the significant
correlation between particulate matter and CO, which is commonly used to indicate fossil
fuel combustion, suggests that particulate pollution is influenced by local source emissions.

Table 2. Results of Pearson correlation coefficient.

PM2.5 PM10 SO2 NO2 O3 CO T P WS

PM2.5 1
PM10 0.869 ** 1
SO2 0.713 ** 0.644 ** 1
NO2 0.599 ** 0.584 ** 0.559 ** 1
O3 −0.307 ** −0.317 ** −0.319 ** −0.679 ** 1
CO 0.873 ** 0.713 ** 0.789 ** 0.656 ** −0.355 ** 1
T −0.352 ** −0.333 ** −0.445 ** −0.258 ** 0.408 ** −0.344 ** 1
P 0.275 ** 0.261 ** 0.365 ** 0.266 ** −0.544 ** 0.306 ** −0.862 ** 1

WS −0.079 ** 0.042 * −0.093 ** −0.123 ** 0.040 * −0.132 ** 0.137 ** −0.074 ** 1

** At level 0.01, the correlation is significant. * At level 0.05, the correlation is significant.

Figure 5 is the pollutant rose diagram of wind direction and PM concentration. It can
be seen that the PM10 and PM2.5 concentration from the E-SE direction are relatively high,
followed by the NW and NE directions. TY is adjacent to the Beijing–Tianjin–Hebei urban
agglomeration in the east, and it is among the “2 + 26” cities, which regional pollution of
particulate matter is relatively serious. The high concentration of particulate matter in the
Beijing–Tianjin–Hebei region will have an impact on local PM10 and PM2.5 concentrations
after long-distance transmission, which is consistent with the result of the trajectory cluster
analysis in the next section.

In this study, the number of clusters is determined to be 6, and the clustering results
are shown in Figure 6. In 2015, trajectory C2 was from the southwest direction, which
accounted for the highest proportion 24.78%, and it could be seen from Figure S2 that its
PM2.5 concentration was the highest. Trajectory C2 was from LF and Yanan city in the
southwest direction and had a short moving path, indicating that it was mainly influenced
by local source emissions in surrounding cities. Meanwhile, the PM2.5/PM10 value of C2
also was the highest, indicating that air mass from this direction contributed significantly
to local fine particles. Trajectory C3 from the northwest direction and the C4 from the
northeast direction both originated from Mongolia, and the PM10 and PM2.5 concentration
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were the lowest, which expressed the clean air mass from this district was conducive to the
diffusion of particles matter, thus reducing the PM concentration in TY.

Figure 5. Pollutant rose diagram of wind direction and PM concentration.

Figure 6. Backward trajectory clustering of Taiyuan city from 2015 to 2019.

Similar to 2015, the trajectory C3 from the southwest direction still accounted for the
highest proportion with 28.52% in 2016, and its PM2.5/PM10 ratio reached the highest
among all trajectories. The PM10 and PM2.5 concentration of trajectory C6 from the western
direction was the highest, which originated from Xinjiang.

In 2017, trajectory C2 from the northwest accounted for the highest proportion of
22.17%. The PM concentration of trajectory C1 from the northwest was significantly higher
than that of other trajectories, and it originated from central Xinjiang, northern Gansu and



Int. J. Environ. Res. Public Health 2022, 19, 3228 10 of 14

western Inner Mongolia, which was the main source of sandstorms in China and trans-
ported dust to TY. Multiple sandstorms in 2017 significantly increased the concentration of
PM10 in the region.

In 2018, the trajectory C5 from the eastern direction had the highest proportion of
25.80% and its PM2.5/PM10 ratio was the highest. Although the trajectory C3 from the
northwest direction accounted for proportion with 12.53%, it had the highest PM10 concen-
tration. This trajectory passed through northern Xinjiang and western Inner Mongolia, and
its contribution to local PM10 concentration increased due to frequent dust weather.

In 2019, the trajectory C3 from Mongolia accounted for the highest proportion with
27.69%, followed by trajectory C4 with 26.94%. However, the PM2.5/PM10 ratio of tra-
jectory C4 was the highest. It is worth noting that the proportion of air mass from the
eastern direction has been increasing gradually, indicating that regional transport from the
Beijing–Tianjin–Hebei region has a continuously increasing influence on local PM10 and
PM2.5 concentration.

In general, during 2015–2019, the air mass trajectory of TY is mainly from the northwest
direction, followed by the southwest direction and the east direction. In the northwest,
there are many long tracks of long-distance transmission each year.

The clustering analysis of the trajectories has determined the transport direction and
proportion of the trajectories in Taiyuan. In order to further reveal the spatial distribution
characteristics of potential pollution sources in the study area, the contribution factor
analysis of the potential source area was carried out for the backward trajectories of
PM2.5 concentration exceeding the standard in Taiyuan from 2015 to 2019. The threshold
concentration is set as the secondary standard limit of Ambient Air Quality Standard
(GB3905-2012).

Figure 7 shows the PSCF distribution of PM2.5 in TY from 2015 to 2019. In 2015, the
PM2.5 level in TY was mainly affected by the southwest, northwest and south directions,
with a large range of potential pollution sources. The high WPSCF value was mainly
distributed in Henan, northern Anhui, Shaanxi, Ningxia and eastern Gansu, and it exceeded
0.8 in western Henan and southern Shaanxi. In 2016, the value of WPSCF in Henan
decreased significantly, and the transport of fine particulate pollution from the region
weakened significantly. The high WPSCF values were concentrated in the southwest of
Shaanxi province and the east of Gansu Province, which were >0.7. In 2017, the high
WPSCF values were still concentrated in southwest Shaanxi province and eastern Gansu
Province, but the range decreased. Meanwhile, compared with the previous two years,
fine particulate matter transport from central Xinjiang in the northwest direction increased
significantly, reaching the highest value in several years (WPSCF value > 0.4). In 2018,
the value of WPSCF in Henan increased and its contribution increased significantly. The
WPSCF value in 2019 was significantly lower than that in the past few years, and the
range was significantly reduced. It is worth noting that, from the central and northern
parts of Xinjiang through northern Gansu, western Inner Mongolia, northern Shaanxi and
other regions to TY, there is a potential contribution source belt covering a wide range of
northwest to southeast every year, which has a great contribution to the mass concentration
of PM2.5.

In general, the southwest area of TY is a high potential source area of fine particulate
matter pollution. This area is the core area of the Fenwei Plain, including Baoji City,
Xianyang City, Tongchuan City, Xi’an City and other regions in Shaanxi Province, as well
as Lvliang City, Linfen City and Yuncheng City in Shanxi Province. The results show that
the Fenwei Plain is the main source of PM2.5 in Taiyuan City, which is consistent with
the findings of Yan [51] et al. Further, the long-distance transport of PM2.5 in the dust
source area from the northwest also contributes to local fine particulate matter pollution
to a certain extent; therefore, implementing policies such as windbreak and sand fixation,
afforestation and mitigation of land desertification, and vigorously carrying out regional
joint prevention and control can effectively alleviate the long-distance transmission of
PM2.5 in Northwest China.
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Figure 7. PSCF distribution of PM2.5 in Taiyuan from 2015 to 2019.

In addition, when the distribution of potential source areas is clarified, the contribution
of potential source areas to local air pollution can be preliminarily understood, and the
understanding of PM2.5 transport routes and potential sources in Taiyuan City can be
improved. This can provide a scientific basis for air pollution prevention and control,
provide a reference for effectively controlling air pollution in Taiyuan City and carry out
regional joint prevention and control, and at the same time help reduce inter-regional
human health risks.

4. Conclusions

In this study, 12 cities located in Shanxi Province, Inner Mongolia Autonomous Region
and Shaanxi Province were selected as the study area to explore the spatial and temporal
distribution characteristics of particulate matter in this region, and analyze the effect of
social-economic and natural factors on local particulate matter level. The conclusions are
as follows:

(1) During 2015 to 2019, the average annual concentration of PM2.5 and PM10 increased
first and then decreased, reaching the peak in 2017. Temporally, PM2.5 and PM10
presented a “U” shaped change pattern for monthly variation, and a double-peak and
double-valley pattern for diurnal variation. Spatially, PM2.5 and PM10 concentration
of TY and YQ in the central region and LF and JC in the southern region is higher, and
EEDS and YL in the western region are relatively light.

(2) In terms of social-economic factors, PM2.5 has a significant correlation with SI, PD,
GC and CO. Differently, PM10 has a significant correlation with GC and CO, and a
poor correlation with other social-economic factors. Specifically, PM2.5 has an “in-
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verted U-shaped” quadratic polynomial relationship with SI and PD, and a U-shaped
relationship with GC and CO.

(3) In terms of natural factors, PM2.5 and PM10 are significantly positively correlated
with NO2, SO2, CO and Pressure, and significantly negatively correlated with O3
and Temperature. Notably, wind speed has a significant negative correlation with
PM2.5 and a significant positive correlation with PM10. Moreover, backward trajectory
cluster analysis shows that the air mass trajectory in TY is mainly from the northwest
direction, followed by the southwest direction and the east direction. In the northwest,
there are many trajectories of long-distance transmission each year. PSCF analysis
results show that the southwest region of TY is a high potential source of fine particu-
late matter pollution, and the long-distance transport of PM2.5 from Xinjiang in the
northwest also contributes to fine particulate matter pollution to a certain extent. This
paper discusses the influence of natural factors and social and economic factors on the
concentration of particulate matter in coal production cities. In the follow-up work,
the influence of various industries on particulate matter pollution can also be detailed,
which will help decision-makers to consider these related air pollution conditions
when formulating future urban development policies.
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