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Background: Cells have heterogeneous cellular diversity in size, morphology, cell cycle, 
metabolism, differentiation degree, and spatial distribution. The shift of specific cells to-
wards the desired cells is crucial for maintaining uniform cellular function and can be 
represented by homogeneity and heterogeneity. Here, we developed a simple and di-
rect method for evaluating the homogeneous distribution of desired cells in a constant 
region. Methods: We differentiated osteoclast progenitors into bone-resorbing multinu-
cleated giant osteoclasts in a 2-dimensional culture plate under 2 conditions. Cells were 
stained with tartrate-resistant acid phosphatase to assess osteoclast differentiation, im-
ages were taken using a microscope and divided into sectors, and the number of osteo-
clasts (≥3 nuclei) in each sector was counted. To assess the homogeneity of the spatial 
distribution of osteoclasts, the standard deviation (SD) was calculated from the mean 
number of osteoclasts within each sector. Results: From the 2 groups, a value with a SD 
close to 0 indicates high spatial homogeneity while a relatively high SD represents low 
spatial homogeneity. Conclusions: Our findings suggest that spatial homogeneity can 
be represented as SD.

Key Words: Cell differentiation · Homogeneity · Heterogeneity · Osteoclast · Spatial distri-
bution

INTRODUCTION

Cells are necessary for switching between homogeneous and heterogeneous 
states according to circumstances. Unidirectional differentiation and proliferation 
of stem cells into a homogeneous cell population are effective in maintaining uni-
form cellular function.[1] A high yield of cells of interest by reducing heteroge-
neous cell populations is also important for improving cell therapy to treat diseas-
es.[1,2] Conversely, the drift of homogeneous cells to heterogeneous cells confers 
specialized functions in physiological and pathological conditions. Heteroge-
neous cells derived from homogeneous cells are favorable for coping with chang-
ing environments [3]; on the contrary, cancer cell heterogeneity caused by genet-
ic mis-regulations (e.g., genomic instability, epigenetic alteration, and plastic 
gene expression), signal transduction, and microenvironmental differences drives 
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phenotypic diversity (heterogeneity), resulting in resis-
tance to anticancer treatment).[4] Hereafter, the biotech-
nology-based development of heterogeneous cancer cells 
with resistance to anticancer treatment that can induce 
homogeneous cancer cells with sensitivity to anticancer 
drugs becomes an important issue.[5,6] Thus, a proper bal-
ance between heterogeneous and homogeneous cells is 
required to regulate cell capacity in various environments 
under time and space of physiological conditions.

In in vitro cell culture, cells show differences between 
neighboring cells in the same area and space. Their cells 
display differences in external cellular phenotypes (e.g., 
cell size and morphology) and internal cellular events that 
happen inside the cell (e.g., cell cycle, metabolic and cellu-
lar signaling pathways, and transcriptional and transla-
tional activities).[7] In addition, the final cells formed under 
specific conditions differ in their degree of differentiation 
and spatial distribution.[8] This difference could result from 
various factors, such as medium composition, cell disper-
sion and confluence, and heterogeneous cell populations 
with genetic background variation. Reprograming hetero-
geneous cells to homogeneous cells will act favorably in 
inducing cells with a uniform function. For instance, mes-

enchymal stem cells with ectopic expression of specific 
transcription factors promote trans-differentiation into os-
teogenic, chondrogenic, adipogenic and myogenic cell lin-
eage [9] or synchronized osteoclast progenitors with cell 
cycle arrest by macrophage colony-stimulating factor (M-
CSF) depletion effectively undergo uniform osteoclast dif-
ferentiation.[10] Among the cellular heterogenic diversi-
ties in microenvironments that vary in time and space, the 
spatial distribution of cells serves as a cell fate determinant 
of migration, differentiation, proliferation, and programmed 
cell death.[11-14] This is also a key player in tissue develop-
ment.[15] 

Parallel to the technical exploration of switching be-
tween heterogeneous and homogeneous cells, a method 
for evaluating homogeneity is required to accurately de-
fine the degree of homogeneity. In this study, we devel-
oped a simple method for assessing the extent of the spa-
tial distribution of a certain cell in a constant area. The 
mean value of the desired cell number in a region was ob-
tained from all cell numbers within the total area, and the 
standard deviation (SD) was then calculated from the devi-
ated value of the mean. Small and large SDs represent 
high and low homogeneities, respectively. This method is 
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useful for assessing the spatial distribution of the targeted 
cells in 2-dimensional (D) area and 3D space.

 

METHODS

To generate osteoclast progenitors, bone marrow cells 
were flushed out from the femur and tibia of 6-week-old 
male C5BL/6J mice (Central Lab Animal, Seoul, Korea) us-
ing α-minimal essential medium (α-MEM; HyClone, Logan, 
UT, USA). Cells were plated on cell culture plates in α-MEM 
with 10% fetal bovine serum (FBS) and 5 ng/mL M-CSF, and 
incubated in a humidified incubator with 5% CO2 at 37°C 
overnight. Non-adherent cells were harvested and cultured 
in α-MEM containing 10% FBS and 30 ng/mL M-CSF for 2 
days to produce osteoclast progenitors. For osteoclast dif-
ferentiation, osteoclast progenitors (1×104 cells/well or 
2×104 cells/well in a 24-well culture plate) were cultured 
in α-MEM with M-CSF (30 ng/mL) and receptor activator of 
nuclear factor-κB ligand (RANKL; 100 ng/mL) for 4 days, 
with fresh medium replaced after 2 days. To assess osteo-
clast formation, cells were washed with phosphate-buff-
ered saline, fixed with 3.7% (v/v) formaldehyde, and stained 
for tartrate-resistant acid phosphatase (TRAP) using a com-
mercial leukocyte acid phosphatase staining kit (Sigma-Al-
drich, St. Louis, MO, USA). After cell images were taken un-
der a light microscope, TRAP-positive multinucleated cells 
(TRAP+MNCs) with more than 3 nuclei were counted to 
assess the extent of osteoclast differentiation in a constant 
area.

RESULTS AND DISCUSSION

1. Three formulas for assessing cellular 
homogeneity in spatial distribution

To assess the spatial distribution, the images taken un-
der different cell conditions were divided into sectors with 
a regular quadrangle. After counting specific cells within 
each sector and adding all cell numbers, the mean, a sta-
tistical average, was calculated by dividing the sum of all 
the numbers within the sector by the number of sectors, 
as described in equation (1).

 
� (1)    
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Finally, the SD (σ), which is a measure of the amount of 
variation or dispersion of a set of values, was calculated from 
the square root of the variance [as described in equation 
(3)].[16]
                                                   σ=√   V  � (3)

A low SD indicates that the values are clustered closely 
around the mean, whereas a high SD indicates that they 
are scattered far from the mean. Thus, the SD deduced from 
the resulting mean can be applied to evaluate the spatial 
distribution of the targeted cells in a constant region.

2. Application of SD to homogenic assessment 
for the spatial distribution of osteoclast 
differentiation

To demonstrate the possibility that SD can be applied to 
assess the spatial homogeneity of a certain cell, we attempt-
ed to induce the differentiation of bone marrow-derived 
osteoclast progenitors into bone-resorbing multinucleated 
osteoclasts. As shown in Figure 1, osteoclast progenitors 
with cell numbers of 1×104 cells/well (group A) and 2×104 
cells/well (group B) in 24-well plates were cultured in a me-
dium containing M-CSF. When the cells reached approxi-
mately 40% (group A) and 60% confluence (group B), they 
were differentiated into osteoclasts in a conditioned medi-
um containing M-CSF and RANKL for 4 days. To assess the 
homogeneous distribution of differentiated osteoclasts, 
cell images were taken from the 2 groups (A and B) under 
a microscope. After the images were divided into regular 
quadrangle sections, osteoclasts with more than 3 nuclei 
within each sector were counted. The mean was obtained 
by dividing the sum of the cell numbers for all sectors by 
the number of sectors, and the SD was estimated from the 
resulting mean. SD provides the extent of homogeneous 
distribution between groups, whether the values converge 
to and diverge from the mean. The SDs for groups A and B 
were 1.946 and 1.138, respectively, indicating that the os-
teoclasts in group B, which had a lower SD, were more even-
ly distributed in the 2D culture condition than those in 
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group A, which had a higher SD. Moreover, the graphs of 
the mean and SD can be used to visualize the extent of ho-
mogeneous distribution (Fig. 2). The higher homogeneity 
in the distribution of osteoclasts in group B compared to 
those in group A could be attributed to the fine-tuned com-
munication between adjacent mononuclear osteoclast 
progenitors and the effective sequential processes via in-
creased mononuclear cell migration and fusion.

In addition to technical advances that can control the 
switching between homogeneous and heterogeneous 
cells, a method capable of determining homogeneity is 
emerging for achieving a homogeneous assessment. Here, 

we suggest a useful method for evaluating the homoge-
neous distribution of specific cells in a 2D area and 3D ge-
ometry.
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Figure 1

Fig. 2. Graphic illustration for the spatial distribution of differentiated 
osteoclasts. The values of mean and standard deviation (SD) obtained 
from Figure 1 were illustrated as a graph to visualize the data.
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