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Abstract

Slc29a1 encodes for equilibrative nucleoside transporter subtype 1 (ENT1), the primary

mechanism of adenosine transfer across cell membranes. Previous studies showed that tis-

sues isolated from Slc29a1-null mice are relatively resistant to injury caused by vascular

ischemia-reperfusion. To determine if there are similar changes in the microvasculature,

and investigate underlying mechanism, we examined aortas isolated from wildtype and

Slc29a1-null mice. Aorta macrostructure and gene expression were examined histologically

and by qPCR, respectively. Wire myography was used to assess the contractile properties

of isolated thoracic aortic rings and their response to adenosine under both normoxic and

hypoxic conditions. In vivo haemodynamic parameters were assessed using the tail-cuff

method. Slc29a1-null mice had significantly (P<0.05) increased plasma adenosine (2.75-

fold) and lower blood pressure (~15% #) than wild-type mice. Aortas from Slc29a1-null

mice were stiffer with a smaller circumference (11% #), and had an enhanced contractile

response to KCl and receptor-mediated stimuli. Blockade of ENT1 with nitrobenzylthioino-

sine significantly enhanced (by ~3.5-fold) the response of aorta from wild-type mice to phen-

ylephrine, but had minimal effect on aortas from Slc29a1-null mice. Adenosine enhanced

phenylephrine-mediated constriction in the wild-type tissue under both normoxic (11.7-fold)

and hypoxic (3.6-fold) conditions, but had no effect on the Slc29a1-null aortic aorta. In con-

clusion, aortas from Slc29a1-null mice respond to hypoxic insult in a manner comparable to

wild-type tissues that have been pharmacologically preconditioned with adenosine. These

data also support a role for ENT1 in the regulation of the protective effects of adenosine on

contractile function in elastic conduit arteries such as thoracic aorta.

Introduction

Slc29a1 encodes for a membrane transporter with broad specificity for both purine and pyrim-

idine nucleosides, commonly referred to as Equilibrative Nucleoside Transporter 1 (ENT1).

Adenosine, the primary endogenous substrate of ENT1 [1], is well established as a vasodilator,

PLOS ONE | https://doi.org/10.1371/journal.pone.0207198 November 8, 2018 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Best KA, Bone DB, Vilas G, Gros R,

Hammond JR (2018) Changes in aortic reactivity

associated with the loss of equilibrative nucleoside

transporter 1 (ENT1) in mice. PLoS ONE 13(11):

e0207198. https://doi.org/10.1371/journal.

pone.0207198

Editor: Michael Bader, Max Delbruck Centrum fur

Molekulare Medizin Berlin Buch, GERMANY

Received: September 27, 2018

Accepted: October 26, 2018

Published: November 8, 2018

Copyright: © 2018 Best et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information file.

Funding: This work was supported by operating

grants to JRH [Grant #T7275 and G-16-00012740]

from the Heart and Stroke Foundation of Canada

(http://www.heartandstroke.ca/). The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

http://orcid.org/0000-0002-9006-7529
https://doi.org/10.1371/journal.pone.0207198
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0207198&domain=pdf&date_stamp=2018-11-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0207198&domain=pdf&date_stamp=2018-11-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0207198&domain=pdf&date_stamp=2018-11-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0207198&domain=pdf&date_stamp=2018-11-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0207198&domain=pdf&date_stamp=2018-11-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0207198&domain=pdf&date_stamp=2018-11-08
https://doi.org/10.1371/journal.pone.0207198
https://doi.org/10.1371/journal.pone.0207198
http://creativecommons.org/licenses/by/4.0/
http://www.heartandstroke.ca/


cardioprotectant and immunosuppressant in the cardiovasculature [2–7]. Adenosine may also

play a role in tissue ‘preconditioning’ [3, 8–12], the phenomenon whereby prior exposure of

tissue to ischemia-reperfusion attenuates the damage caused by subsequent ischemia-reperfu-

sion events [13]. Enhancement of adenosine action has been explored by many investigators as

a mechanism to attenuate the effects of tissue hypoxia and ischemia-reperfusion injury [4, 14–

25]. ENT1 is also involved in the transport of anticancer and antiviral nucleoside analogues

into cells [26], and reduction in the expression of ENT1 has been linked to the development of

drug resistance is some cancers [1, 27–29].

Given the significant biological roles of adenosine and its modulation by ENT1, it is reason-

able to anticipate that genetic knockout of Slc29a1 would have obvious effects on biological

function in numerous systems. Initial studies on a Slc29a1-null mouse [30] revealed that these

ENT1-deficient animals displayed reduced anxiety in behavioural studies [31], as well as a

reduced response to ethanol in spite of enhanced ethanol drinking preference [30]. Our lab

has shown previously that the Slc29a1-null mouse develops a progressive ectopic mineraliza-

tion phenotype involving the axial skeleton that resembles diffuse idiopathic skeletal hyperos-

tosis in people [32]. We have also reported that hearts from Slc29a1-null mice are significantly

protected from the effects of ischemia-reperfusion [16]. Others have shown a similar precondi-

tioning-like phenotype in isolated kidneys and livers from these mice [24, 33]. These data sug-

gest that there are adaptive changes in the Slc29a1-null mouse that provide a significant

protective advantage to tissues under conditions of vascular stress. Understanding what these

changes are may reveal previously unexplored ways to attenuate ischemia-reperfusion injury

and the effects of hypoxia. While most of the known vascular actions of adenosine involve the

smaller resistance vessels, adenosine can also regulate the elastic properties of conduit arteries,

such as the thoracic aorta, via adenosine receptor-mediated nitric oxide production [34, 35].

In the present study, we show that loss of ENT1 in the Slc29a1-null mice results in significant

changes in the contractile activity of the thoracic aorta and its response to hypoxic insult.

Materials and methods

Reagents

All reagents were purchased from Sigma-Aldrich (Oakville, Ontario, Canada), with the excep-

tion of the following. The oligonucleotide primers for PCR were prepared by Integrated DNA

Technologies (Iowa, USA). Hematoxylin and DNA polymerase were purchased from Thermo-

Fisher Scientific Canada (Burlington, Ontario, Canada), and SCH58261 was from Tocris Bio-

science (via Cederlane Corp., Burlington, Ontario, Canada).

Animals

Slc29a1-null mice were obtained originally from Dr Doo-Sup Choi (Mayo Clinic, Rochester,

MI, USA) and used to establish a breeding colony at the University of Western Ontario (Lon-

don, Canada), and subsequently at the University of Alberta (Edmonton, Canada). The

Slc29a1-null mice were bred with C57BL/6 mice as described previously by Chen et al. (2007)

[31]. Maintenance of the mouse colony occurred through the breeding of Slc29a1+/- (heterozy-

gous) pairs to obtain Slc29a1+/+ (Wild-type) and Slc29a1-/- (Slc29a1-null) littermates. All pro-

cedures were in accordance with policies and guidelines outlined by the Canadian Council on

Animal Care and approved by the Animal Use Subcommittees of the University of Western

Ontario and the University of Alberta. These Canadian policies and guidelines comply with

National Institutes of Health guide for the care and use of Laboratory animals (NIH Publica-

tions No. 8023, revised 1978). Mice were housed under a 12 h light/dark cycle and allowed

unlimited access to rodent chow and drinking water. Male mice were utilized for this study to
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reduce the influences of hormonal cycles on the vascular functions being studied. Previous

studies using the Slc29a1-null mouse showed no obvious gross anatomical abnormalities up to

the age of about 4 months. Mice older than 4 months showed spine stiffness and gait distur-

bances [32, 36], likely due to the progressive ectopic mineralization that has been reported in

these mice [32, 37]. Therefore, the data reported herein are from mice of 3–4 months of age. In

addition to litter genotyping, loss of ENT1 protein in the Slc29a1-null mice was confirmed

periodically (every 3–4 months) by the lack of high affinity binding of the ENT1-selective high

affinity probe [3H]nitrobenzylthioinosine (NBMPR).

Plasma adenosine

Mice were anaesthetized with pentobarbital and blood was collected by cardiac puncture into

a 1 ml syringe preloaded with 0.2 ml of a ‘stop’ solution composed of 118 mM NaCl, 5 mM

KCl, 13.2 mM EDTA, 10 μM 5-iodotubercidin (adenosine kinase inhibitor), 100 μM erythro-

9-(2-Hydroxy-3-nonyl)adenine hydrochloride (EHNA; adenosine deaminase inhibitor), and

10 μM dilazep (ENT inhibitor) [38]. Sampled blood was immediately mixed with the stop solu-

tion by inverting the syringe several times; this mixture was designed to prevent metabolism of

adenosine during subsequent sample processing. Serum was isolated by centrifugation at 3000

x g for 10 min at 4˚C and then applied to a 10 kDa cut-off ultra-filtration column and centri-

fuged at 14 000 x g for 15 min at 4˚C. Filtrate was used for HPLC analysis using an Onxy

monolithic C18 column with a slightly modified protocol as established by Farthing et al [39]

where adenosine was detected with a UV detector at 260 nm and the adenosine metabolites

xanthine and uric acid were detected at 250 nm.

Haemodynamics

Due to the reported anxiolytic phenotype of the Slc29a1-null mice [31], all haemodynamic

parameters were derived using anaesthetized animals to eliminate behavioral influences on

sympathetic neuronal regulation of vascular function. Heart rate and blood pressure were

determined using the CODA-6 non-invasive tail-cuff method (Kent Scientific Corporation,

Torrington, CT, USA). Anaesthetized animals (1.5% isoflurane in O2) were kept on a heated

pad to prevent loss of body temperature. Animals were subjected to five acclimatization

rounds (no data collection) followed by two separate acquisition cycles of 15 measurements

each. There was a 60 s rest period between acquisition cycles. The tail cuff was deflated over a

period of 20 s during data acquisition.

Gene expression

Thoracic aortas were frozen in liquid nitrogen immediately upon dissection. Frozen tissue was

placed in a microcentrifuge tube to which 0.5 ml Trizol was added along with a stainless steel

bead and homogenized using a TissueLyser (Qiagen, Toronto, ON, Canada). Once complete

tissue homogenization was obtained (~5 min), 0.1 ml of chloroform was added, vortex mixed,

and then centrifuged for 15 min at 12,000 x g at 4˚C. The top aqueous layer was transferred to

a new microcentrifuge tube, and centrifuged again for 15 min at 12,000 x g at 4˚C. The aque-

ous layer from this tube (~200 μl) was placed in a fresh microcentrifuge tube and an equal vol-

ume of 70% ethanol added. Total RNA was extracted using a Qiagen RNesy Mini Kit with a

30 μl final elution volume using procedures specified by the kit manufacturer. All samples

were subjected to in-column treatment with DNase I (Qiagen, Toronto, ON, Canada). RNA

concentration and quality was assessed using a NanoDrop 2000 spectrophotometer (Life Tech-

nologies Inc., Burlington, ON, Canada), and then stored -80˚C. cDNA was generated from

0.5 μg of RNA using SuperScript II Reverse Transcriptase and Oligo(dT) 12–18 primers
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(Invitrogen). Real-time PCR was carried out in a StepOnePlus instrument (Applied Biosys-

tems, Life Technologies, Burlington, ON, Canada) using Power SYBR Green PCR Master Mix

(Invitrogen) and primers designed, and verified, to amplify the transcripts as shown in S1

Table. Mouse UBC, eIF4a2, and ActB were used as reference genes and their geometric mean

was used to calculate a normalization index [40]. Target gene expression was calculated using

the relative standard curve method.

Histology

Mice were anesthetized with ketamine/xylazine and perfused via the left ventricle with phos-

phate-buffered saline (PBS) and then paraformaldehyde (4% wt/vol) under physiological pres-

sure for 30–45 min [41]. After immersion in 4% paraformaldehyde for overnight, two-mm

segments of the thoracic aorta were embedded in paraffin and cut into 5 μm-thick serial sec-

tions. The tissues were sectioned in the coronal plane, mounted on glass slides and baked at

45˚C for 48 h. Samples were then stained with hematoxylin and eosin (H&E) or Alizarin Red

(to detect calcification) counterstained with H&E. Sections were subsequently dewaxed in

xylene and rehydrated via consecutive immersion in decreasing concentrations of ethanol to

aid in the visualization of the cell nuclei. Shur/Mount xylene-based liquid mounting media

(Durham, NC, USA) was used.

Aortic ring myography

Vascular reactivity was assessed in aortic rings in accordance with previously published meth-

ods [42, 43]. A DMT (Danish Myo Technology) Myograph 620M was used to measure the ten-

sion generated, with data rendered using a PowerLab 4/30 (ADInstruments) and LabChart 7

Pro software (ADInstruments, Australia). Mice were anaesthetized with pentobarbital sodium

(540 mg/kg ip), the chest wall was opened and the thoracic aorta removed and transferred to a

Petri dish (on ice) containing Krebs physiological salt solution (KPSS; composition (mmol/l)—

NaCl 118.0, NaHCO3 25.0, d-glucose 11.1, KCl 4.72, CaCl22H2O 2.56, NaH2PO42H2O 1.13,

MgCl26H2O 1.12, (-) ascorbic acid 0.114, and disodium EDTA 0.03). Connective tissue and

blood were removed and four ring segments (2 mm in length) from each aorta were cut and

mounted in organ baths individually gassed with 95% O2 and 5% CO2 and maintained at 37˚C.

The length-tension relationship of the thoracic aortas was assessed following a 30 min equilibra-

tion period by increasing the stretch of the tissue by 50 microns every 2 min until the tension

generated reach a maximum. Subsequent experiments were done under an applied tension of

0.5 g, to simulate physiological pressure. The rings were equilibrated for 30 min before being

constricted with 100 mM KCl to assess tissue viability. To assess receptor-mediated contractil-

ity, aortic rings were exposed to increasing doses of phenylephrine (1 nM– 30 μM), prostaglan-

din F2α (PGF2α; 10 nM– 30 μM) or 5-hydroxytryptamine (5-HT; 1 nM– 30 μM). In some

cases, tissue was treated with NBMPR; 1 μM) or dimethyl sulfoxide (DMSO; 0.1%) for 15 min

prior to application of constricting agent. To assess vasodilatory responses to adenosine, aortic

rings were pre-constricted with PGF2α (80% of maximum using a predetermined concentra-

tion) and then exposed to increasing adenosine concentrations at two min intervals. KPSS in

the organ bath was changed three times after each treatment.

Effect of hypoxia

Aortic rings were exposed to hypoxic (95% N2−5% CO2) or normoxic (95% O2−5% CO2) con-

ditions for 60 min, rinsed three times with KPSS, and returned to normoxic conditions for an

additional 30 min. To assess the effect of blockade of ENT1 on the response of the tissue to

hypoxia, aortas were exposed to NBMPR (1 μM) for 15 min prior to the normoxic/hypoxic

Vascular phenotype of the Slc29a1-null mouse
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period and maintained at that concentration throughout the 60 min of hypoxia. To examine

the ability of adenosine to precondition the tissue, aortas were exposed to adenosine (10 μM)

for 30 min prior to the initiation of hypoxia (or normoxia control). Aortic rings were then

exposed to increasing doses of phenylephrine (1 nM– 30 μM), with results expressed as a per-

centage of the initial KCl-induced maximum contraction (determined prior to any treatment).

Statistical analysis

Results are reported as mean ± SEM from at least 5 independent experiments (N values are

shown in figure legends). Data were analyzed using non-linear regression and statistical analy-

ses were performed using Prism 7.02 (GraphPad Software Inc., San Diego, CA). Data sets were

compared using a two-tailed Student’s t-test or a 2-way ANOVA with Bonferroni post-tests as

appropriate. Significance was determined based on a P value of 0.05.

Results

Plasma adenosine levels

Plasma adenosine levels were significantly elevated (2.75-fold) in Slc29a1-null mice

(1650 ± 370 ng/ml) compared to wild-type mice (600 ± 100 ng/ml). There were no differences

in xanthine or uric acid concentrations between genotypes (Fig 1).

Haemodynamics

Slc29a1-null mice had significantly lower systolic (117 ± 4 mmHg) and diastolic (83 ± 4

mmHg) blood pressure than wild-type mice (135 ± 8 mmHg and 100 ± 6 mmHg for systolic

and diastolic pressure, respectively) (Fig 2A). This change occurred in the absence of any dif-

ference in heart rate between the wild-type (434 ± 15 bpm) and Slc29a1-null (439 ± 15 bpm)

mice (Fig 2B).

Fig 1. Plasma adenosine levels. Blood was obtained from wild-type (WT) and Slc29a1-null (KO) mice via cardiac

puncture (in the presence of dilazep, EHNA and iodotubercidin to limit adenosine metabolism) and processed for

HPLC analysis of adenosine, xanthine and uric acid content. �Significant difference between wild-type and Slc29a1-

null mice for the indicated parameter (Student’s t-test for unpaired samples, two-tailed, P<0.05, N = 5).

https://doi.org/10.1371/journal.pone.0207198.g001
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Histology

Histological examination of the thoracic aorta showed normal vessel morphology in the

Slc29a1-null mice (Fig 3A) with no difference in the width of the vessel wall compared with

wild-type (Fig 3B). However, aortas from the Slc29a1-null mice were significantly smaller in

circumference (2064 ± 36 versus 2320 ± 71 microns for aortas from the Slc29a1-null and wild-

type mice, respectively; Fig 3C).

Fig 2. Haemodynamic measurements. Systolic, diastolic, mean arterial pressure (MAP) (Panel A), and heart rate

(Panel B), were measured in anesthetized wild-type (WT) and Slc29a1-null (KO) mice using the tail-cuff method.
�Significant difference between wild-type and Slc29a1-null mice for the indicated parameter (Student’s t-test for

unpaired samples, two-tailed, P<0.05).

https://doi.org/10.1371/journal.pone.0207198.g002

Vascular phenotype of the Slc29a1-null mouse

PLOS ONE | https://doi.org/10.1371/journal.pone.0207198 November 8, 2018 6 / 22

https://doi.org/10.1371/journal.pone.0207198.g002
https://doi.org/10.1371/journal.pone.0207198


Gene expression

A consequence of global knockout of Slc29a1 may be compensatory changes in the expression

of other components of the purinergic regulatory system. Real-time semi-quantitative PCR

revealed no change in the expression of genes encoding other plasma membrane-located equi-

librative nucleoside transporters (Slc29a2 or Slc29a4) in the thoracic aorta. Nor was there a dif-

ference in expression of any of the adenosine receptors (Adora1, 2a, 2b, 3), or adenosine

metabolic enzymes (Ada, Adk, Enpp1, Nt5e, Pnp, ATP5b). The only significant difference

observed was a 2.3-fold increase in transcript (Slc29a3) for the intracellular lysosomal-located

equilibrative nucleoside transporter subtype 3 (ENT3) in the aortas from Slc29a1-null mice

(Fig 4).

Vascular reactivity

Aortic rings from Slc29a1-null mice had a significantly increased length-tension profile (Fig 5)

compared with aortas from wild-type mice. Aortic rings from Slc29a1-null animals also had a

significantly increased contractile response to KCl over a range of applied tensions (Fig 6A).

To determine whether this enhanced KCl contraction was due to the loss of ENT1 function,

aortas from both wild-type and Slc29a1-null mice were incubated with the ENT1-selective

blocker NBMPR (1 μM, supramaximal inhibitory concentration). NBMPR eliminated the dif-

ference in KCl-induced contraction between the aortas from wild-type and Slc29a1-null mice

(Fig 6B) suggesting that the difference was indeed due to the loss of ENT1. However, the

Fig 3. Histological appearance of thoracic aorta in wild-type (WT) and Slc29a1-null (KO) mice. Tissues were

gravity perfusion fixed with paraformaldehyde, sectioned in the transverse plane and stained with haematoxylin and

eosin. Layers of elastin as well as nuclei arrangement were analyzed (Panel A). Images are representative of six animals

of each genotype. Scale bars represent 100 μm. Panel B shows the vascular wall thickness and lumen circumference

derived from these tissue samples (Mean ± SEM, N = 6). � Significant difference in measured parameter between the

wild-type and Slc29a1-null samples (Student’s t-test for unpaired samples, P<0.05).

https://doi.org/10.1371/journal.pone.0207198.g003
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overall response to KCl in the presence of NBMPR was lower relative to the controls in the aor-

tic rings from both wild-type and Slc29a1-null mice. When the KCl contraction of aorta from

wild-type mice was measured with and without incubation with 0.1% v/v DMSO (the solvent

for NBMPR), it was found that DMSO itself caused about a 30% reduction in the response of

the aorta to 100 mM KCl (Fig 6C).

Receptor-mediated contraction of isolated thoracic aorta by 5-HT, phenylephrine, or

PGF2α was not different between the tissues from wild-type and Slc29a1-null mice when nor-

malized to the KCl-induced contractions (Fig 7). 5-HT produced a maximum tension of

1.06 ± 0.06 mg and a logEC50 of -6.25 ± 0.08 in the aorta from wild-type mice, whereas aorta

from Slc29a1-null mice showed a maximum tension of 0.99 ± 0.07 mg and a logEC50 of

-6.28 ± 0.10. Phenylephrine produced a maximum tension of 0.39 ± 0.02 mg with a logEC50 of

–6.88 ± 0.08 in the aorta from wild-type mice, and a maximum tension of 0.43 ± 0.03 mg with

a logEC50 of -7.10 ± 0.19 in the aorta from Slc29a1-null mice.

Fig 4. Gene expression in wildtype and Slc29a1-null mice: qPCR was employed, using the primer sets shown in S1 Table, to assess the relative

expression of the equilibrative nucleoside transporters, Slc29a1, Slc29a2, Slc29a3, and Slc29a4, the adenosine receptors, Adora1, Adora2a, Adora2b,

and Adora3, and enzymes involved in purine metabolism, ADA, Nt5e, ADK, Pnp, Enpp1, and ATP5b. Gene expression (mean ± SEM) is shown as relative

to the geometric mean of the reference genes UBC, eIF4a2, and ActB. � Significant difference between wild-type (N = 5) and Slc29a1-null (N = 8) mice

(Student’s t-test for unpaired samples, two-tailed, P<0.05).

https://doi.org/10.1371/journal.pone.0207198.g004
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When adenosine was applied to aortas pre-constricted with PGF2α there was no adeno-

sine-induced relaxation observed in aortas from wild-type mice at any concentration tested

(up to 3 mM), but there was a significant dose-dependent relaxation of aortic rings from

Slc29a1-null mice (Fig 8A). The effect of adenosine on aortas from Slc29a1-null mice was pre-

vented by the adenosine A2 receptor blocker SCH58261 (100 nM) (Fig 8B). SCH58261 alone

also significantly increased the PGF2α-mediated constriction, particularly in the aortic rings

from Slc29a1-null mice (Fig 8B). Aortas from both wild-type and Slc29a1-null mice, pre-con-

stricted with PGF2α, showed a similar relaxant response to 10 μM methacholine (~20%

decrease in tension) (Fig 8C), confirming that the aortas had a viable endothelium, and that

loss of ENT1 activity did not affect vascular endothelial function in this model.

Response to hypoxia

Sixty min of hypoxia had no effect on the response of aortas from wild-type mice to phenyl-

ephrine (Fig 9A). Aortas from Slc29a1-null mice, on the other hand, had a significantly lower

contractile response to phenylephrine after hypoxic insult relative to the normoxic controls

(maximum tension of 0.27 ± 0.02 mg and 0.43 ± 0.03 mg in hypoxic versus normoxic condi-

tions, respectively) (Fig 9B). Pre-incubation of the aortic rings with NBMPR increased the

maximum tone produced by phenylephrine in the aortas from wild-type mice (maximum ten-

sion of 0.44 ± 0.01 mg versus 0.37 ± 0.03 mg in the presence and absence of NBMPR) (Fig 9C),

but had no effect on the maximum tone generated in aortas from Slc29a1-null mice (Fig 9D).

However, NBMPR enhanced the apparent potency of phenylephrine, under hypoxic condi-

tions, in aortas isolated from both wild-type (logEC50 = -7.62 ± 0.04 and -7.11 ± 0.26 in the

presence and absence, respectively, of NBMPR) and Slc29a1-null mice (logEC50 of -7.85 ± 0.11

and -7.04 ± 0.25 in the presence and absence, respectively, of NBMPR).

Fig 5. Length-tension relationship for aorta from wild-type (WT) and Slc29a1-null (KO) mice. Tissues were

incubated for 30 min at 22˚C in KPSS buffer with no resting tension, prior to increasing tension in 50 micron

increments. Each point represents the mean ± SEM, N = 7. �Significant difference between aortas from wild-type and

Slc29a1-null mice (Two-Way ANOVA for unpaired experimental parameters, P<0.05).

https://doi.org/10.1371/journal.pone.0207198.g005
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Pre-incubation of aorta from wild-type mice with 10 μM adenosine also enhanced the

potency (by ~12-fold) of phenylephrine in the generation of vessel tone (logEC50 of

-7.94 ± 0.22 and -6.87 ± 0.08 with and without adenosine, respectively), with no change in the

maximum contraction produced (Fig 10A). Under hypoxic conditions in aortas from wild-

type mice, adenosine increased the potency of phenylephrine by 3.6-fold (logEC50 of

-7.53 ± 0.26 and -6.97 ± 0.12 with and without adenosine, respectively), and also enhanced the

maximum contraction achieved (0.51 ± 0.05 and 037 ± 0.02 mg tension with and without

adenosine, respectively) (Fig 10B). These effects of adenosine were absent in the aortas from

Slc29a1-null mice under both normoxic and hypoxic conditions (Fig 10C).

Discussion

The primary goal of this study was to examine the characteristics of the isolated thoracic aorta

from wild-type and Slc29a1-null mice under hypoxic and normoxic conditions. In conjunc-

tion with this analysis, the in vivo haemodynamic parameters and plasma adenosine levels in

these mice were assessed. Given the important role of adenosine in regulating vascular func-

tion, the loss of ENT1 in the Slc29a1-null mice may be expected to have a significant impact

on response of vascular tissue to hypoxia and the preconditioning effect of adenosine.

Plasma adenosine levels and in vivo haemodynamics

The plasma concentration of adenosine was elevated by almost 3-fold in the Slc29a1-null mice

relative to wild-type mice. Increased plasma adenosine levels in the Slc29a1-null mice has also

been reported by others [44], as has increased plasma thymidine levels [45]. These data are

compatible with the concept that the adenosine gradient across the plasma membrane is

inwards under physiological conditions [46, 47], where loss of ENT1 would prevent accumula-

tion of adenosine by tissues, and its subsequent metabolism by intracellular adenosine kinase

and adenosine deaminase, leading to an increase in circulating adenosine concentrations.

Anaesthetized Slc29a1-null mice also had decreased blood pressure relative to wild-type mice,

which is congruous with the increased circulating adenosine levels leading to enhanced vasodi-

latory tone. Interestingly, this also suggests minimal compensation in other adenosine signal-

ling and metabolic components in response to the loss of ENT1 activity. This is supported by

our findings that there are no significant differences in the expression of transcripts for adeno-

sine receptors, adenosine metabolizing enzymes or other plasma membrane nucleoside trans-

porter subtypes in aortas from wild-type and Slc29a1-null mice. A previous study also showed

that hearts isolated from wild-type and Slc29a1-null mice do not differ in the expression of

these genes [16]. It remains possible that there were changes in gene expression and/or enzyme

activities in other tissues that may affect adenosine metabolism in the Slc29a1-null mice. Nev-

ertheless, regardless of underlying mechanism, the end result was an increase in circulating

adenosine.

Fig 6. KCl-induced contraction of thoracic aorta from wild-type (WT) and Slc29a1-null (KO) mice. Tissues were

incubated for 30 min at 37˚C in KPSS buffer at resting tensions of 500 mg, 750 mg and 1000 mg. Following

equilibration period, 100 mM KCl was administered to assess tissue viability (Panel A). Each point represents the

mean ± SEM, N = 6. Panel B shows the effect of NBMPR on KCl-induced contractions of the thoracic aorta from wild-

type and Slc29a1-null mice. Tissues were incubated for 30 min at 37˚C in KPSS buffer at resting tensions of 500mg in

the absence and presence of 1 μM NBMPR, and then 100 mM KCl was administered. Each bar represents the

mean ± SEM, N = 7. NBMPR was prepared in DMSO with a final concentration of DMSO in the tissue bath of 0.1% v/

v. Panel C shows the effect of 0.1% DMSO alone on the KCl-induced contraction of wild-type thoracic aortas (N = 5).
�Significant difference between aortas from wild-type and Slc29a1-null mice (Panel A and B) or ± DMSO (Panel C)

(Student’s t-test, � P<0.05).

https://doi.org/10.1371/journal.pone.0207198.g006
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Thoracic aorta contractility

The thoracic aorta is an elastic artery that plays a crucial role in damping the pressure wave

that occurs due to the pulsatile nature of cardiac function, to maintain a relatively constant

pressure of flow to the circulatory system. Thus, changes in aortic reactivity can have signifi-

cant effects on cardiac function and tissue perfusion. Aorta from Slc29a1-null mice were

slightly constricted (reduced lumen circumference) and stiffer (increased length tension rela-

tionship) than aorta from wild-type mice. The reduced lumen size may reflect a compensation

to the increased vasodilatory tone in these animals [48]. Increased aorta stiffness is normally

associated with hypertension and ageing, and is thus a paradoxical finding in this study where

there was actually a decreased blood pressure in these relatively young (3-month) Slc29a1-null

animals. Histochemical analysis revealed no changes in vascular wall organization, nor in the

elastic fiber layers. Previous microCT imaging studies revealed no abnormal mineralization of

the aorta from Slc29a1-null mice [32], and we found no evidence of mineralization of these tis-

sues based on Alizarin Red staining. However, we cannot rule out changes in collagen content.

Increased signalling via adenosine A2a receptors has been shown to increase collagen synthesis

[49], and the mouse aorta does express A2a receptors. While we did not see any change in A2a

receptor expression in aortas from Slc29a1-null mice (relative to wild-type), the enhanced cir-

culating adenosine levels may result in increased A2a receptor signalling. The enhanced con-

traction induced by KCl-depolarization in the aortas from Slc29a1-null mice may be a

reflection of this increased vessel stiffness and decreased circumference. There is a complex

interplay between vessel diameter, preload, and stiffness that can impact tissue biomechanics

[50]. The increased contraction of the Slc29a1 aortic rings may also be due to the inability of

adenosine to be released, via ENT1, from the contracting muscle cells, thereby attenuating a

normal compensatory adenosine-mediated vasodilation. Our finding that the ENT1 blocker,

NBMPR, eliminated the difference in KCl-induced contraction between the aortas from wild-

type and Slc29a1-null mice would support this hypothesis. It is noteworthy that DMSO itself

(the solvent for NBMPR) had a significant effect on vascular contractility in this study. A simi-

lar vasodilatory effect of DMSO has been reported for rat aorta [51]. Pre-incubation of aortic

rings isolated from wild-type mice with NBMPR lead to an enhancement in the maximum

tone generated by phenylephrine. This effect of NBMPR was not seen in aortic rings from

Slc29a1-null mice, suggesting that it was a consequence of ENT1 blockade. However, NBMPR

pre-incubation also had a significant enhancing effect on the potency of phenylephrine in aor-

tic rings from both wild-type and Slc29a1-null mice, suggesting that this effect is independent

of the actions of NBMPR as an ENT1 blocker. The concentration NBMPR used in this experi-

ment (10 μM, to ensure complete ENT1 block) was >1,000-fold higher than its Ki for ENT1

inhibition [52]. It is possible that NBMPR at these high concentrations is having nonspecific

(and undocumented) actions on other components of the α-adrenergic signalling system.

Effect of adenosine

Adenosine was unable to relax pre-constricted aortas from wild-type mice, but did have a sig-

nificant relaxant effect on the aortas from Slc29a1-null mice. This is likely due to a longer half-

Fig 7. Dose-response curves for receptor-mediated contraction of thoracic aortas isolated from wild-type (WT)

and Slc29a1-null (KO) mice. Tissues were incubated for 30 min at 37˚C in KPSS buffer at resting tensions of 500 mg

after which they were depolarized with 100 mM KCl, washed thrice, and then exposed to increasing concentrations of

phenylephrine (Panel A), 5-HT (Panel B) or PGF2α (Panel C). Each point represents the mean ± SEM from 5

independent experiments, and expressed as tension generated normalized to the 100 mM KCl-induced contraction.

No significant differences were observed between aortas from wild-type and Slc29a1-null mice in any of the data sets

shown (Two-Way ANOVA for paired experimental parameters, P<0.05).

https://doi.org/10.1371/journal.pone.0207198.g007
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life of the adenosine in the extracellular media in the absence of ENT1-mediated uptake. The

fact that SCH58261 blocked this effect of adenosine confirmed that it was due to interactions

with extracellular adenosine A2 receptors. It is also noteworthy that SCH58261 on its own led

to an increase in contraction of the aortas, with a greater effect apparent in the tissue from

Slc29a1-null mice. This supports the concept that there in an enhanced adenosine-mediated

vasodilatory ‘tone‘in Slc29a1-null mice, with the aortic rings from these mice having an

increased adenosine A2 receptor stimulation due to higher extracellular adenosine concentra-

tions. It should be noted that the concentrations of adenosine required to cause vasodilation of

the aortic rings, even in the absence of functional ENT1 (>100 μM), are an order of magnitude

higher than levels normally achieved in vivo. A similar low sensitivity of mouse aorta to the

vasodepressant effects of adenosine has been described by others [34, 53]. Therefore, although

adenosine A2a receptors are expressed in the mouse thoracic aorta and can mediate

Fig 8. Adenosine induced vasodilation of thoracic aortas isolated from wild-type (WT) and Slc29a1-null (KO)

mice. Tissues were incubated for 30 min at 37˚C in KPSS buffer at resting tensions of 500 mg after which they were

depolarized with 100 mM KCl to test for viability. Aortic rings were pre-constricted with PGF2α to 80% of maximum

(dose range 1 μM– 10 μM) and then exposed to increasing concentrations of adenosine at two min intervals, in the

absence (Control; Panel A) or presence (Panel B) of the adenosine A2 receptor blocker SCH58261 (100 nM), or 10 μM

methacholine (Panel C). Relaxation responses were expressed as a percentage of the initial PGF2α contraction (shown

by a dashed line in Panels A and B). Each point represents the mean ± SEM from 5 experiments. �Significant

difference in response between aortic rings from wild-type and Slc29a1-null mice (Two-Way ANOVA for unpaired

experimental parameters, �P<0.05).

https://doi.org/10.1371/journal.pone.0207198.g008

Fig 9. Phenylephrine dose-response curves for isolated thoracic aorta from wild-type (WT) and Slc29a1-null (KO)

mice after exposure to hypoxia. Tissues were incubated for 30 min at 37˚C in KPSS buffer at resting tensions of 500

mg after which they were depolarized with 100 mM KCl. Tissues were then incubated for 60 min under either

normoxic or hypoxic conditions, and then exposed to increasing concentrations of phenylephrine (Panels A and B).

Panels C (WT) and D (KO) show the effect of 1 μM NBMPR on the response to hypoxia. NBMPR was administered 15

min prior to hypoxia, and then removed prior to the construction of the phenylephrine dose-response relationship.

Each point is the mean ± SEM from 6 (Panel A & B) or 5 (Panel C and D) experiments. �Significant difference between

treatment groups (Student’s t-test for unpaired samples, �P<0.05).

https://doi.org/10.1371/journal.pone.0207198.g009
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adenosine-induced vasodilation, the vasodilatory activity of adenosine is not likely to be physi-

ologically relevant in the mouse thoracic aorta.

Effect of hypoxia

Prolonged hypoxia, as employed in this study, has been shown to impair vascular reactivity to

phenylephrine in rat aorta [54, 55]. Our data showed a similar effect of hypoxia on vascular

reactivity in mouse aorta. Hypoxia is known to enhance the extracellular levels of adenosine in

vascular tissue, which leads to increased vasodilation and protection of vascular endothelial

cells from the hypoxic insult by promoting vascular barrier integrity and reducing tissue accu-

mulation of neutrophils [56–58]. This effect of hypoxia on vascular adenosine levels is due, in

part, to a HIF-1α-dependent transcriptional repression of ENT1 [58, 59]. A similar mechanism

has also been described for enhancement of extracellular adenosine in response to inflamma-

tory lung injury, where both ENT1 and another member of the equilibrative nucleoside trans-

porter family, ENT2, were repressed in this model [60]. HIF-1α-mediated repression of ENT2

has also been implicated in adenosine-mediated attenuation of hypoxia-associated inflamma-

tion of intestinal epithelium [61].

Under physiological conditions, most of the adenosine comes from extracellular sources.

However, in times of cellular metabolic stress, such as that caused by hypoxia, adenosine is

formed from the metabolism of intracellular ATP and is released from cells to mediate its car-

dioprotective effects via interactions with adenosine receptors on the cell membranes. Since

ENT1 is the primary mechanism by which adenosine is released from cells, we hypothesized

that the protective effect of adenosine under hypoxic conditions would be reduced in the

ENT1-deficient aortas from the Slc29a1-null mice. Hypoxia had no significant effect on the

phenylephrine-induced contraction of aortas from wild-type mice, suggesting the activity of a

robust endogenous protective mechanism. However, in the aortas from Slc29a1-null mice,

hypoxia caused a significant reduction in the maximum contraction induced by phenyleph-

rine, which supports the hypothesis that adenosine release is needed for its protective effects

under these conditions. To confirm that this difference was due to the inability of the aortas

from Slc29a1-null mice to release adenosine, we conducted a similar study after pre-incubation

of the aortas of wild-type and Slc29a1-null mice with the ENT1 inhibitor NBMPR. As would

be expected, NBMPR had no significant effect on the phenylephrine-induced tone in the

ENT1-deficient aortas from the Slc29a1-null mice. However, in contrast to expectations,

NBMPR enhanced the maximum phenylephrine induced contraction in the aortas from wild-

type mice under hypoxic conditions, opposite to that seen using aortas from Slc29a1-null

mice. This may reflect a nonspecific action of NBMPR on the tissue, not related to its

ENT1-blocking activity, similar to that invoked for its effect on phenylephrine potency in aor-

tas from Slc29a1-null mice. Alternatively, NBMPR could be preventing adenosine from being

released from cells during hypoxia and thereby maintaining intracellular ATP stores which

would be beneficial in the maintenance of contractile function in the wild-type mice. However,

the latter scenario is not compatible with our findings that aortas from Slc29a1-null mice have

reduced functionality relative to the aortas from wild-type mice under hypoxic conditions. An

alternate explanation is that exposure of the aortas from wild-type mice to NBMPR prior to

Fig 10. Effect of adenosine pre-incubation on phenylephrine-induced contractions of isolated thoracic aorta from

wild-type (WT) and Slc29a1-null (KO) mice. Tissues were incubated for 30 min at 37˚C in KPSS buffer at resting

tensions of 500 mg after which they were depolarized with 100 mM KCl. Tissues were then incubated in the presence

or absence of 10 μM adenosine for 30 min, and then washed and incubated for an additional 60 min under either

normoxic (Panel A) or hypoxic (Panels B and C) conditions. Each point is the mean ± SEM from 6 experiments.
�Significant difference between treatment groups (Student’s t-test for unpaired samples, �P<0.05).

https://doi.org/10.1371/journal.pone.0207198.g010
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hypoxia may induce a preconditioning-like effect on the tissue via enhancement of extracellu-

lar adenosine levels. To test this hypothesis, we exposed aortas from wild-type and Slc29a1-

null mice to adenosine for 30 min (same protocol as used with NBMPR) prior to assessing the

ability of phenylephrine to constrict the tissue under hypoxic conditions. As was seen using

NBMPR, pre-treatment of aortas from wild-type mice with adenosine enhanced their response

to phenylephrine, but this was not seen using aortas from Slc29a1-null mice. The similarity in

the effects of the NBMPR and adenosine pre-treatment on the maximum contraction gener-

ated by phenylephrine in the aortas from wild-type mice suggests that NBMPR was enhancing

extracellular adenosine levels and thereby mediating an adenosine-induced preconditioning-

like effect. Others have also shown that treatment of tissues with adenosine [3], or with the

adenosine uptake inhibitor dipyridamole [62], can protect those tissues from subsequent

ischemia-reperfusion induced injury. Given that aortas from the Slc29a1-null mice have been

chronically exposed to elevated adenosine, they may already be preconditioned and conse-

quently further exposure to adenosine or NBMPR has no effect. In support of this conjecture,

it has been noted that cardiomyocytes isolated from Slc29a1-null mice had increased expres-

sion of HIF-1α under normoxic conditions which mimicked the response of wild-type cardio-

myocytes in response to hypoxic challenge, and that hypoxia had no effect on HIF-1α in the

Slc29a1-null cells [44]. Isolated hearts and livers from the Slc29a1-null mice were also shown

to be relatively resistant to ischemia-reperfusion injury compared with the tissues from wild-

type mice [16, 24], and those investigators suggested that this was due to a preconditioned phe-

notype of the Slc29a1-null mice. These data support a role for ENT1 in the regulation of the

protective effects of adenosine on contractile function in elastic conduit arteries such as tho-

racic aorta. This study also suggests that thoracic aorta can be preconditioned by exposure to

relatively high concentrations of adenosine, thereby limiting the dysfunction caused by hyp-

oxia. Suppression of ENT1 function may thus be a viable therapeutic option to pursue for the

treatment of conditions involving aortic dysfunction.
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