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Purpose: To build a machine learning model to predict histology (type I and type II), stage,
and grade preoperatively for endometrial carcinoma to quickly give a diagnosis and assist
in improving the accuracy of the diagnosis, which can help patients receive timely,
appropriate, and effective treatment.

Materials and Methods: This study used a retrospective database of preoperative
examinations (tumor markers, imaging, diagnostic curettage, etc.) in patients with
endometrial carcinoma. Three algorithms (random forest, logistic regression, and deep
neural network) were used to build models. The AUC and accuracy were calculated.
Furthermore, the performance of machine learning models, doctors’ prediction, and
doctors with the assistance of models were compared.

Results: A total of 329 patients were included in this study with 16 features (age, BMI,
stage, grade, histology, etc.). A random forest algorithm had the highest AUC and
Accuracy. For histology prediction, AUC and accuracy was 0.69 (95% CI=0.67-0.70)
and 0.81 (95%CI=0.79-0.82). For stage they were 0.66 (95% CI=0.64-0.69) and 0.63
(95% CI=0.61-0.65) and for differentiation grade 0.64 (95% CI=0.63-0.65) and 0.43 (95%
CI=0.41-0.44). The average accuracy of doctors for histology, stage, and grade was 0.86
(with AI) and 0.79 (without AI), 0.64 and 0.53, 0.5 and 0.45, respectively. The accuracy of
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doctors’ prediction with AI was higher than that of Random Forest alone and doctors’
prediction without AI.

Conclusion: A random forest model can predict histology, stage, and grade of
endometrial cancer preoperatively and can help doctors in obtaining a better diagnosis
and predictive results.
Keywords: machine learning, endometrial carcinoma, diagnosis, prediction, random forest, preoperatively
1 INTRODUCTION

Endometrial carcinoma (EC) represents the sixth most common
malignant tumor worldwide (1). In 2020, the number of new
cases of endometrial cancer was 417,367, and the number of new
deaths was 97,370 (1). This may be due to increased obesity,
aging, and physical inactivity (2, 3). Endometrial carcinoma
occurs most commonly in postmenopausal women (4). The
first symptom is often abnormal vaginal bleeding. Transvaginal
ultrasound is an effective examination to evaluate the presence of
endometrial carcinoma, besides pelvic and physical examination
(2, 5). A histopathology diagnosis is commonly assessed by
dilation and curettage (D&C) or endometrial biopsy before
surgery. However, the preoperative endometrial biopsy and
final diagnosis are not completely consistent with only a
moderate agreement rate on grade, especially for grade 2
tumors (2). In addition, other serological and imaging tests are
routine tests for the diagnosis of endometrial carcinoma (2, 3).

With the development of computer science, clinical decision
support systems (CDSSs) are being developed. A CDSS is defined
as a system that enhances clinical information and medical
knowledge to help doctors and nurses with clinical decisions
for better health care (6). CDSS is a major subject of medical
artificial intelligence (AI). CDSS can be used pre-diagnosis
(prepare diagnoses), during diagnosis (review and filter
diagnoses), and post-diagnosis (predict future events).

However, there are no studies that use an AI model to predict
histology, stage, and grade for endometrial carcinoma based on
the preoperative examinations. Such an AI model can be a part of
an endometrial cancer CDSS to improve the efficiency of doctors,
reduce the rate of misdiagnosis, and improve the quality of
health care.

Machine learning (ML), a type of AI (7), is widely used in
medical fields, such as anatomy, medical diagnoses, and brain-
machine interfaces (8). In 2022 Otani et al. proposed an ML-
based classifier to predict the EC risk from the multiparametric
magnetic resonance images (MRI) (9). And, in 2021, Nakajo
et al. proved that an 18F-FDG PET-based radiomic analysis
using a machine learning approach may be useful for predicting
tumor progression and prognosis in patients with endometrial
cancers (10).

In this study, we used ML to build three models to predict
histology (type I and type II), stage, and grade for endometrial
carcinoma to quickly give a diagnosis and assist in improving the
accuracy of the diagnosis, which can help patients receive timely,
appropriate, and effective treatment.
2

2 METHODS

2.1 Study Subject
This study used a retrospective database of preoperative
examinations in patients with endometrial carcinoma who
were first treated in the Department of Obstetrics and
Gynecology at Beijing Chaoyang Hospital, Capital Medical
University, from January 2000 to April 2014. Inclusion criteria
were as follows: (1) undergoing surgical treatment at Beijing
Chaoyang Hospital, (2) confirmation of endometrial carcinoma
by postoperative pathology, (3) without neoadjuvant
chemotherapy and hormone therapy, (4) all treatments have
been completed, (5) complete clinical-pathological data. The case
exclusion criteria were: (1) presence of primary malignant
tumors of other organs, (2) metastatic cancer caused by
malignant tumors of other organs, (3) not the first-time
surgical treatment at Beijing Chaoyang Hospital, (4) with
neoadjuvant chemotherapy and hormone therapy, (5)
incomplete clinical-pathological data. The obtained data
included age, BMI, childbirth history, preoperative serum
tumor markers, imaging results, histopathology diagnosis after
D&C, hypertension, diabetes, menopause, symptoms,
postoperative histology, stage based on the 2014 International
Federation of Gynecology and Obstetrics (FIGO) staging
system (11), and grade. Ethics approval for this research
was given by the Beijing Chaoyang Hospital, Capital
Medical University.
2.2 Data and Machine Learning Algorithms
A total of 16 features mentioned above were used for the
development of the classification models.

For data preprocessing, first, we transformed semi-structured
and unstructured features such as preoperative serum tumor
markers and imaging results into structured features. Then, we
normalized the continuous variables such as age and BMI into 0
to 1.

In this study, we trained and compared three classifiers,
including logic regression(LR) (12), random forest (RF) (13),
and a deep neural network(DNN) (14). The DNN is based on the
extension of the perceptron: a neural network with many hidden
layers. Random forest is an ensemble algorithm (Ensemble
Learning), which belongs to the Bagging algorithms. By
combining multiple weak classifiers, the result is voted or
averaged, so that the result of the overall model has higher
accuracy and generalization performance.
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The DNN model was composed of two fully connected layers
which have a Rectified Linear Unit (ReLU) activation function to
increase the nonlinearity of the neural network model and
dropout layers with the rate of 0.5 to avoid over-fitting and
one fully connected layer without activation function. The cross-
entropy loss was used to guide the training process by using a
stochastic gradient descent (SGD) optimizer with a 0.0002
learning rate. The random forest included 100 decision trees.

The classification models were trained and tested with the
selected features to predict the histology, stage, and grade of
endometrial cancer. For model training, we trained and validated
the model 100 times (RF, LR) and 10 times (DNN) repeating
random sampling verification. We split the dataset into training
and testing datasets with a ratio of 7:3 in each validation. Then
we used the Synthetic Minority Oversampling Technique
(SMOTE) method in the training set for over-sampling, which
adds artificially simulated new samples to the data set to decrease
the influence of imbalanced data.

To evaluate the performance of the classification models, we
calculated the Area Under the Curve (AUC) and the accuracy.

In addition, we also investigated whether the AI algorithms
can play a role in the accuracy and speed of the doctor’s
diagnosis. We generated four test sets for doctors with 40
patients, half of the patients with an AI prediction class and its
possibility, and the other half of the patients without any
assistance. Then we sent the test sets to obstetric oncologists to
measure the AUC, accuracy, and the time consumption for
predicting the disease category with and without AI assistance.
The function of accuracy is shown below.

accuracy =
TP + TN

TP + TN + FP + FN

TP, True Positive; TN, True Negative; FP, False Positive; FN,
False Negative.

Data pre-processing and machine learning models were
implemented within Python 3.8, and scikit-learn 0.24 and
PyTorch 1.10 packages.

Comparison of Different Models
The comparison of accuracy between models was performed

by using the two-way ANOVA test in GraphPad Prism.
3 RESULTS

3.1 Clinical Information of Cases
A total of 344 endometrium cancer cases were reviewed and
collected. Of these, 14 cases were excluded because of 70% or
more of missing clinical data. As there was only one
undifferentiated case, this category could not be tested because
the test sample would be 0. Therefore, 329 cases were enrolled
into the train and test. The mean age was 56 (range 28-83) years
old (Table 1). The mean BMI was 26.87±4.43. Among these
cases, 86.3% of the patients were type I EC. Most (75.7%) of the
cases were FIGO stage I and 31 cases were grade (G) 1, 114 cases
were G2, 38 cases were G3, and 17 cases were unknown.
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3.2 Comparison of the Models for
the Prediction
3.2.1 Histology
The AUC and accuracy score of the LR were 0.69 (95% CI=0.67-
0.70) and 0.74 (95%CI=0.72-0.75). The AUC and accuracy score
of RF were 0.69 (95% CI=0.67,0.70) and 0.81 (95%CI=0.79-0.82).
The AUC and accuracy score of DNN were 0.60 (95% CI=0.54-
0.65) and 0.83 (95% CI=0.75-0.90). The LR and RF algorithms
had a similar score which was significantly better (p<0.05)
than DNN.

3.2.2 Stage
The AUC and accuracy score of the logistic regression were 0.56
(95% CI=0.54-0.59) and 0.42 (95% CI=0.41-0.44). The AUC and
accuracy score of the random forest were 0.66 (95% CI=0.64-
0.69) and 0.63 (95% CI=0.61-0.65). The AUC and accuracy score
of DNN was 0.48 (95% CI=0.46-0.51) and 0.78 (95%
CI=0.71,0.84). The RF was significantly better than LR and DNN.

3.2.3 Grade
The AUC and accuracy score of the LR were 0.61 (95% CI=0.60-
0.62) and 0.36 (95% CI=0.35-0.38). The AUC and accuracy score
TABLE 1 | Clinicopathological data of patients with endometrial cancer.

Features Frequency (%)
N=329

Age, mean (range) 56 (28-83)
BMI, mean±SD 26.87 ± 4.43
Hypertension
+ 144 (43.8)
– 184 (55.9)
Unknown 1 (0.3)

Diabetes
+ 71 (21.6)
– 256 (77.8)
Unknown 2 (0.6)

Gestation
+ 312 (94.8)
– 17 (5.2)

Parturition
+ 301 (91.8)
– 28 (8.5)

Menopause
+ 192 (58.3)
– 13 (4.0)
Unknown 124 (37.7)

Histology
type I 284 (86.3)
type II 45 (13.7)

FIGO Stage (2009)
I 249 (75.7)
II 28 (8.5)
III 42 (12.8)
IV 10 (3.0)

Differentiation
G1 31 (37.7)
G2 114 (45.6)
G3 38 (11.6)
Unknown 17 (5.2)
May 2022 | Volume 12
G, grade; SD, standard deviation; FIGO, the international federation of obstetrics and
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of RF was 0.64 (95% CI=0.63-0.65) and 0.43 (95% CI=0.41-0.44).
The AUC and accuracy score of DNN were 0.47 (95% CI=0.45-
0.50) and 0.43 (95% CI=0.40-0.45). The LR and RF algorithms
have a similar score significantly better than DNN.

3.3 Performance Comparison Between ML
Model, Doctors’ Prediction, and Doctors
With the Assistance of AI
The result of the doctors’prediction is shown in Table 2. The
average accuracy for histology was 86% (with AI) and 79%
(without AI), respectively. The average accuracy for the stage
was 64% and 53%, respectively. The average accuracy for
differentiation was 50% and 45%, respectively. The time
consumption for each patient to make a decision was 29.25 s
(with AI) and 28.75 s (without AI), respectively. For type and
stage diagnosis, the AI model can improve 6% and 10% of a
doctor’s accuracy. But the accuracy decreases 7% for the
differentiation diagnosis. The average time consumption with
AI was 10 s longer than that without AI, though the AI model
only cost 3 ms to predict one patient.

The comparison of a doctor’s prediction with and without AI
assistance is shown in Figure 2. Compared to LR (Figure 2A),
the accuracy of doctors’ prediction with AI is higher than that of
LR and doctors’ prediction without AI among histology, stage,
and grade. The comparison with RF (Figure 2B) also showed
similar results. However, the accuracy of the DNN’s prediction of
the stage was significantly higher than that of doctors’ prediction
with and without AI assist (Figure 2C). But the accuracy of the
combination of doctor and AI was relatively better as a whole.
4 DISCUSSIONS

Endometrial cancer is a relatively common gynecological tumor.
The development and application of AI in the medical field has
gradually generated significance and value. This study built AI
Frontiers in Oncology | www.frontiersin.org 4
models to predict histology, stage, and grade of EC. Besides the
prediction of AI models, we also compared the AI models,
doctors’ predictions, and doctors’ predictions assisted by the
AI model.

From the point of AUC alone, LR and RF models perform
better in the prediction of histology and grade. RF is better in the
prediction of the stage (Figure 1). If only accuracy is considered,
DNN and RF models work well in the prediction of histology and
grade (Table 3). In the real world, not every patient can complete
all examinations. In this way, the patients with missing values
were also included in the dataset. However, compared with RF
and DNN, the LR is sensitive to missing values, which means the
missing values will significantly influence the performance of LR
(15). On the other hand, DNN with hidden layers has more
capability to learn from nonlinear and complex relationships.
But it has higher requirements for the sample size of training
data than LR and RF (16).

Taking into account the above reasons, the RF model was
relatively better than other models, so RF was used to
assist doctors.

The doctor’s clinical experience combined with the assistance
of AI increases the accuracy of histology, stage, and grade
(Table 2). The main reason is that doctors analyze the highly
relevant features of the disease (such as BMI, D&C, imaging, etc.)
based on their clinical experience and draw conclusions, while
the algorithm learns the influence weights of different features
according to the distribution of training data, and more accurate
judgments can be obtained for some patients who are not
obvious in the preoperative features. Overall, the accuracy of
TABLE 2 | Comparison of doctors’ predictions with and without AI assistance.

Project Without AI (accuracy %) With AI (accuracy %)

Histology 79 86
Stage 53 64
Differentiation 45 50
May 2022 | Volu
AI, artificial intelligence.
A B C

FIGURE 1 | The ROC curve of the histology stage and grade between different models. (A–C) shows the ROC curve and AUC score of three different models for
histology, stage, and grade prediction, respectively.
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doctors with AI assistance is relatively the best choice among the
histology, stage, and grade whether compared to AI alone or
doctor alone (Figure 2). Therefore, the judgment of the doctor
with the RF assistance is the best choice.

The accuracy of grade and stage is not that high, and the AUC
is also relatively low. The reasons can be: 1. The pathological
results of preoperative curettage are not completely accurate, and
there are false negatives (3); 2. The staging of endometrial cancer
is the clinicopathological stage, the determination of staging
requires a combination of preoperative conditions, staged
surgery and postoperative pathology, as well as grade, but the
aim of this study is the preoperative diagnosis, so only
preoperative features are given to AI models and doctors, and
the intraoperative and postoperative characteristics were not
included. Despite this, the AUC of RF is greater than 0.6
among histology, stage, and grade, so it has predictive value,
especially given that it is only based on preoperative features.

Furthermore, in the past years, there is general agreement that
AI may assist physicians in making better clinical decisions. This
technology can provide additional information to help doctors
make proper diagnoses (17). In the classification of grade, the
outcome of AI alone and doctor alone is not very good, but
doctors’ prediction including the AI results improved the
accuracy. In the classification of histology, both doctors and AI
had high accuracy, but the accuracy of doctors combined with AI
was improved. The same is true for staging. The accuracy of
staging is not high, but doctors combined with AI improved the
accuracy. Comparing with and without AI assistance, the time
consumption for doctors with AI assistance is only 10 s longer,
only 0.5 s per patient, 1.7% longer than before, which can be seen
as almost no additional time cost. The extension of time
consumption is not because of the speed predicted by AI, but
because doctors need to analyze the information from AI.
Frontiers in Oncology | www.frontiersin.org 5
Therefore, the AI model we built can effectively assist doctors
in preoperative diagnosis and prediction of histology, stage,
and grade.

There are several limitations to this study. Some multi-
category classifications, such as staging and differentiation,
have small sample sizes, resulting in poor overall performance.
This was a single-center (country) study and an independent
validation set from another country can make the results more
convincing. Prospective, multi-center, large sample size research
will help improve the performance of this AI model. In addition,
the features of the database are mainly derived from text
information, and the dimension of information should be
improved. In the future, more dimensional information can be
directly extracted from the images and examinations, so that
intuitive information can be extracted.
5 CONCLUSION

This study demonstrated that a random forest model can
predict histology, stage, and grade of endometrial cancer
preoperatively and help doctors in obtaining a better diagnosis
and predictive results with minimal additional time, which
can help patients receive timely , appropriate , and
effective treatment.
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LR, Logic Regression; RF, Random Forest; DNN, Deep Neural Network; AUC, Area Under the Curve.
A B C

FIGURE 2 | The accuracy comparison between doctors with and without AI assistance and AI in predicting stage and grade. (A–C) shows the different AI assistance
models. * Indicates P < 0.05
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