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Mechanoactive proteins are essential for a myriad of physiological and

pathological processes. Guided by the advances in single-molecule force

spectroscopy (SMFS), we have reached a molecular-level understanding of

how mechanoactive proteins sense and respond to mechanical forces.

However, even SMFS has its limitations, including the lack of detailed

structural information during force-loading experiments. That is where

molecular dynamics (MD) methods shine, bringing atomistic details with

femtosecond time-resolution. However, MD heavily relies on the availability

of high-resolution structural data, which is not available for most proteins. For

instance, the Protein Data Bank currently has 192K structures deposited, against

231M protein sequences available on Uniprot. But many are betting that this gap

might become much smaller soon. Over the past year, the AI-based AlphaFold

created a buzz on the structural biology field by being able to predict near-

native protein folds from their sequences. For some, AlphaFold is causing the

merge of structural biology with bioinformatics. Here, using an in silico SMFS

approach pioneered by our group, we investigate how reliable AlphaFold

structure predictions are to investigate mechanical properties of

Staphylococcus bacteria adhesins proteins. Our results show that AlphaFold

produce extremally reliable protein folds, but in many cases is unable to predict

high-resolution protein complexes accurately. Nonetheless, the results show

that AlphaFold can revolutionize the investigation of these proteins, particularly

by allowing high-throughput scanning of protein structures. Meanwhile, we

show that the AlphaFold results need to be validated and should not be

employed blindly, with the risk of obtaining an erroneous protein mechanism.
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Introduction

Over the past year, the artificial intelligence (AI)-based

software AlphaFold created a buzz on the structural biology

field. For the first time, a software was able to predict near-native

protein folds from their genetic sequence (Jumper et al., 2021b).

DeepMind’s AlphaFold transformed, in principle, the protein

structure solving problem that has been around for the past

50 years into a trivial task. The number of research papers and

preprints citing the method soared since its code was released in

July 2021 (Callaway, 2022), with the accompanying article

achieving about 1,000 citations (according to Google Scholar)

in its first year.

The success of AlphaFold, and the analog RoseTTAFold

approach (Baek et al., 2021) that appeared a few months later,

is partially due to their open-source nature, which makes them

readily and freely available to anyone who is interested in trying

these software. Furthermore, by pairing it with the European

Bioinformatics Institute (EBI), AlphaFold has taken structural

biology to the next level, allowing big consortiums to perform

protein structure prediction to entire genomes, including human,

mouse, Saccharomyces, and E. coli (Tunyasuvunakool et al.,

2021). The resulting structures were made available on a

database maintained by the EBI, containing almost a million

structures: https://alphafold.ebi.ac.uk.

The broad spread use of AI-based structure prediction leads

us to ask the question: How reliable are the structures predicted

by such models? Despite the growing number of success stories

(Jumper et al., 2021a; Jumper et al., 2021b; Mosalaganti et al.,

2021; Skolnick et al., 2021; Hartmann et al., 2022; Varadi et al.,

2022), researchers are accumulating evidence showing that AI-

based structure prediction methods are still not perfect (Perrakis

and Sixma, 2021; Outeiral et al., 2022), and that there is ample

room for improvement. In other words, some results suggest that

both AlphaFold and RoseTTAFold are qualitatively great, but in

many cases, they lack the level of details that is important to

understand a protein function (Akdel et al., 2021; Eisenstein,

2021; Callaway, 2022).

High-resolution protein structures are also crucial for drug-

discovery. The ability to readily access the structure of any

protein of the human genome is very attractive to those

developing new drug compounds. Using an AI-based tool to

predict how drugs bind to these proteins is an even larger

challenge that will probably not be overcome soon due to the

limited publicly available data for small molecule binding

(Mullard, 2021). In addition to that, AlphaFold lacks the

precision to predict structural changes in consequence of

mutations (Buel and Walters, 2022).

Working as a “computational microscope” molecular

dynamics (MD) simulations are a unique tool to investigate

biomolecules’ behavior with atomic resolution (Lee et al.,

2009; Dror et al., 2012; Perilla et al., 2015). However, as most

computational chemistry methods, the quality of MD results

relies heavily, among other things, on the quality of the initial

biomolecule structure (Bernardi and Pascutti, 2012;

Vanommeslaeghe and MacKerell, 2015; Heo and Feig, 2018;

Melo et al., 2018). If AI-based structure prediction software are

able to predict protein folds to the atomic level, MD simulations

should be able to profit from these structures and give similar

results to those obtained with experimentally determined

structures.

A particularly powerful way of using MD simulations is by

using it hand-in-hand with experimental methods. Such form of

use, among other things, allows computational biophysicists to

overcome another limitation of MD simulations, namely the

reliability of molecular mechanics force fields, particularly to

treat ions and polarizable molecules (Neremberg and Head-

Gordon, 2018; Yoo and Aksimentiev, 2018). In the past few

years, taking advantage of steered MD protocols, our group has

pioneered what we call in silico single-molecule force

spectroscopy (in silico SMFS) (Bernardi et al., 2019; Sedlak

et al., 2019; Sedlak et al., 2020). In this technique, steered MD

(SMD) simulations are used in a wide-sampling approach to

perform dozens to thousands of “pulling experiments,” in an

analogy to what is done experimentally using atomic force

microscopes (AFM). Allied to AFM-based SMFS, SMD has

been successfully used to investigate a myriad of mechanically

relevant biomolecular systems, including avidin:biotin

(Grubmüller et al., 1996; Izrailev et al., 1997; Merkel et al.,

1999), titin (Gao et al., 2002), human fibronectin (Gao et al.,

2002), aquaporins (de Groot et al., 2009), among others.

The development of an in silico SMFSmethodology, allowed us

to go even further and to fine-tunemechanical properties of protein

folds (Verdorfer et al., 2017). Besides protein design, our

methodology allowed us to discover ultrastable protein

complexes, and to decipher their intricate mechanostability

mechanisms (Schoeler et al., 2014; Bernardi et al., 2019; Liu

et al., 2020; Bauer et al., 2022). Among these ultrastable protein

complexes, the ones formed by Staphylococci bacteria when

adhering to humans are particularly interesting (Herman-

Bausier and Dufrêne, 2018). These bacteria adhere to their hosts

through proteins called adhesins (Dufrêne and Viljoen 2020). A

particular class of adhesins, called microbial surface components

recognizing adhesive matrix molecules (MSCRAMMs), play critical

roles during infection, especially during the early step of adhesion

when cells are exposed tomechanical stress. During the first steps of

Staphylococcus infection, the interactions between these adhesins

and proteins of the human extracellular matrix are a key virulence

factor for these bacteria (Otto, 2008), and a crucial first step of

biofilm formation (Latasa et al., 2006). These Staphylococcus

biofilms are associated with more than half of all nosocomial

infections (Jamal et al., 2018), with Staphylococcus epidermidis

and S. aureus listed as the most common pathogens (Otto,

2008; Schilcher and Horswill, 2020).

To demonstrate the advantages and limitations of AI-based

protein structure prediction methods, in this perspective article
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we used AlphaFold to predict the structures of several S. aureus

MSCRAMM adhesins from the adhesion domain superfamily.

First, a bioinformatics analysis was performed to select a set of

adhesin sequences of different S. aureus strains that were then

used as input for AlphaFold, when structural models were

generated. Then, we employed our in silico SMFS

methodology to characterize the mechanical properties of

these proteins, comparing the results to those obtained with

traditional structure biology methods.

Application: Adhesin folding domains

How good is AlphaFold to model full
length adhesins?

After selecting 42 S. aureus adhesins from the adhesion

superfamily, we used AlphaFold 2 through the VMD’s

(Humphrey et al., 1996) QwikFold plugin (Gomes et al., 2022)

batch mode to construct the models for full length apo adhesin

protein models. Overall, AlphaFold 2 consistently predicted the

canonical folds for N2 and N3 domains for all proteins and the

homologous B repeats according to each protein domain

organization (Foster and Hook, 1998; Ganesh et al., 2011; Foster

et al., 2013) (Supplementary Figure S1; Supplementary Table S1). As

expected, domains such as the serine aspartate or fibronectin binding

repeats, as well as signal sequences, were predicted as disordered.

An example of an AlphaFold prediction for the serine-

aspartate repeat-containing protein E (SdrE) is shown at

Figure 1. The software predicted the Ig-like N2 and

N3 domains in addition to B1, B2, and B3 repeats

(Figure 1A). The N and C-terminal regions normally

comprise disordered regions, such as peptide signals and the

SD repeats, in the case of the serine aspartate repeat proteins

(Figure 1A). A comparison between the available SdrE crystal

structures in its unbound and bound states (PDB IDs 5wta and

5wtb, respectively) revealed a root mean square deviation

(RMSD) of 1.71 and 2.79 Å, respectively, indicating that the

model is a good approximation for the crystallographic structure

of the Ig-like domains and can differentiate between bound and

unbound states (Figure 1B). The major conformational change

was found in the N2 domain: RMSD between SdrE in its

unbound state (PDB ID: 5wta) and the model considering

only N3 yields a RMSD of 0.84 Å.

FIGURE 1
Full-length structure prediction of S. aureus serine-aspartate repeat protein (SdrE, Uniprot ID: Q932F7). (A) Top ranked SdrE model is
represented in cartoon and its different domains are indicated. The protein is colored by the pLDDT scores generated by AlphaFold 2where dark blue
represent regions with very high quality (pLDDT > 90) and red represent regions with very low quality (pLDDT < 50). (B) Structural alignment between
the N2 and N3 regions of the AlphaFold 2 model (dark blue) and SdrE crystallographic structure (cyan, PDB ID: 5WTA). (C) By residue pLDDT
scores for the generated SdrE models. (D) Predicted alignment error (PAE) for the best ranked model. The color at (x, y) corresponds to the expected
distance error in residue x’s position, when the prediction and true structure are aligned on residue y.
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The per-residue model quality can be evaluated by the

predicted Local Distance Difference Test (pLDDT) quality

scores, standard metric to evaluate AlphaFold generated

models. In our studies, the pLDDT scores varied from ~20 to

90 (Figure 1C) ranging from the disordered to folded regions of

the proteins, which were predicted with high-quality. The

confidence of the prediction can be accessed through the

predicted alignment error (PAE) plots, which indicates the

expected distance error in Angstroms (Figure 1D). PAE shows

low error values for the N2, N3 (big blue square) and the B

domains (three small squares), corroborating the pLDDT scores

for the same region and indicating high confidence for the

prediction of the mentioned domains.

Is AlphaFold multimer reliable for in-silico
force spectroscopy experiments?

Most Staphylococcal adhesins use a conserved “dock, lock,

and latch” (DLL) mechanism—in which the host target, usually a

peptide on the order of 15 residues, is first bound (dock), then

buried (lock) between two immunoglobulin-like (Ig) fold

domains N2 and N3 (Ponnuraj et al., 2003), and finally a

“latch” connects N3 back to N2 holding the complex in place

(Figure 2A). Small conformational changes in the Ig-like N2 and

N3 domains could potentially impact force resilience when

complexed to peptides if the DLL configuration is lost. Similar

to the DLL mechanism, multiple biological phenomena rely on

specific protein:protein interactions. Leveraging the initial

protein structure prediction model, AlphaFold Multimer

(Evans et al., 2022) was developed to predict structures of

protein complexes for computational studies.

Here, we tested the reliability of in silico SMFS experiments

performed with protein structures predicted by AlphaFold

Multimer. To this end, we selected 27 adhesin sequences to be

modelled in complex with extracellular matrix peptides

(Supplementary Table S2). AlphaFold Multimer was used to

construct models for the complexes through the QwikFold

(Gomes et al., 2022) interface. Models were ranked by the

interface predicted template modelling (ipTM) scores, used by

FIGURE 2
AlphaFold Multimer predictions for S. aureus adhesins. (A) Schematic view of adhesin’s Ig-like domain. Peptides from the host extracellular matrix are
“locked” on a cleft between the N-terminal N2 and N3 domains, snugly accommodated by the “locking strand,” connecting N3 to N2 by β-Strand
complementation (latch). SMDsimulationswereperformedby keeping theC-terminal fixed as itwould beanchored to themembranewhile thepeptide is pulled
at theopposite directionby itsN-terminal. (B)By residuepLDDT scores for the top rankedmodel at each complexprediction. The insert shows the variation
among the C-terminal residues. (C) Comparison between AlphaFold Multimer score (ipTM) and RMSD values for equilibration pre-SMD simulations. (D) Peak
Forces registered during SMD simulations for each studied complex. Color code indicates the origin of the departure structure: AlphaFold (orange), Modeller
(green), or crystallographic (blue). Description of each accession entry are available at Supplementary Table S2.
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AlphaFold Multimer, and the best ranked model for each

complex was selected for SMD simulations. These simulations

were carried out using NAMD 3.0 (Phillips et al., 2020), keeping

the C-terminal of the adhesins anchored while the peptides were

pulled at a constant speed. Such approach resembles an AFM-

based SMFS experiments and can be used to measure the force

upon which the complex dissociates (Gomes et al., 2022). Details

and parameters are described at the Supplementary Material

session. As control experiments, we also initiated SMD

simulations using S. aureus crystallographic structures of three

adhesin: peptide complexes: bone sialoprotein binding protein

(BBP), clumping factor A (ClfA), and SdrE.

The predicted complexes were evaluated using pLDDT

scores (Figure 2B). Most of the protein display high quality

(pLDDT > 80), with exception of a very small portion of the

N-terminal (10–15 residues) and a significant region of the

C-terminal (last 50 residues, Figure 2B insert). The locking

strand involved on the DLL mechanism is located on the

C-terminal region of the protein structure, so this loss in

model quality could impact the usability of the predicted

structures in high-resolution experiments such as MD or

SMD simulations.

A comparison of the RMSD calculated on an equilibration

MD versus the general AlphaFold Multimer scores for the best

ranked structures is shown at Figure 2C. We noticed that there is

a correlation (Pearson correlation of 0.82, p < 0.005) between the

model stability and the AlphaFold Multimer scores. Therefore,

we can anticipate that high-scored structures present less

deviation from its initial configuration, suggesting a more

stable or resilient fold. AlphaFold Multimer scoring is based

on an ipTM score that takes into account protein-protein

interactions. This scoring function was shown to be more

advantageous over the pTM and pLDDT scores used in

AlphaFold 2 (Gao et al., 2022). The raking of the models is,

in this case, a good indicator of model confidence based on the

RMSD values.

After performing in silico SFMS experiments on all

27 complexes, we observed that the peak-force profiles

ranged from ~600 to 4,000 pN, a much broader range than

previously simulated SdrE, BBP, and ClfA complexes, which

were started from crystal structures (Figure 2D). S. aureus

adhesins have been shown to be extremely mechanostable,

with rupture forces consistently on the 2,000 pN regime

(Milles et al., 2018). This force regime was also observed on

this study maintaining the same in silico SFMS protocol used

for all complexes. Considering the drastic difference in rupture

forces, we found that the very low values (600–1,000 pN) seen

for some of the complexes might have arisen from inaccurate

initial structures. Visual inspection of the models with low

rupture forces revealed that in most cases the locking strand was

modelled in an unfavorable conformation to hold the peptide in

the DLL configuration, which explains the observed behavior

(Supplementary Figure S2).

To test this hypothesis, we re-modelled those complexes

using comparative modelling with Modeller (Eswar et al.,

2008) (Supplementary Table S2). The models were inspected

for the presence of the locking strand and simulated according to

the same protocol described above (peak force profiles are shown

in Figure 2D). For all cases we recover the force resilience, with

peaks reaching 2,000–3,000 pN range, confirming that a high-

resolution initial structure is necessary to be used for MD and

SMD simulations. It is important to note that, instead of

Modeller, we could have employed custom templates in

AlphaFold, which would have likely “forced” the structure

into its correct conformation. However, the goal of this

perspective article was to test how reliable “blind-runs” of

AlphaFold are to predict structures to be used for in silico

SMFS studies.

Discussion

Protein structure prediction has been one of the grand

challenges in Biology since the 1950’s (Dill et al., 2008; Dill

and MacCallum, 2012). Several methods have been developed

over the past 40 years that span from comparative modeling

with the increase of experimentally determined protein

structures by X-ray crystallography, nuclear magnetic

resonance spectroscopy (NMR) and cryo-electron

microscopy (cryo-EM) (Goh et al., 2016), but little progress

was seen on ab-initio methodologies that rely solely on the

protein sequence. But all of that changed upon the release of

AlphaFold 2 in 2021. Although AlphaFold requires only the

protein sequence as input, it should not be considered an ab-

initio method since it is built on 50 years of knowledge of

protein structure determination by experimental methods.

AlphaFold tremendous success took advantage of both the

recent explosion of AI methods, as well as the huge database

of protein structure offered by the protein data bank (PDB)

(Berman et al., 2000).

However, as nearly any other AI-based tool, AlphaFold is

biased towards its training set, meaning that the search for

unusual folds is unlikely to provide an accurate result. Despite

the software’s success on the folded part of most proteins,

AlphaFold lacks accuracy for regions where fewer sequences

are available for alignment and intrinsically disordered regions,

the latter are about one third of the human proteome, present in

all proteomes of all kingdoms of life, and of all viral proteomes

analyzed so far (Xue et al., 2012; Peng et al., 2015). It also

struggles with protein interfaces in homo or hetero-multimers

(Evans et al., 2022) and other aspects of protein structures such as

co-factors, post-translational modifications and DNA or RNA

complexes.

In order to show how revolutionary AlphaFold is for the

single-molecule biophysics community, here we put AlphaFold

to the test by using it to model full length Staphylococcus adhesins
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and estimate how stable are the protein structures. Ignoring the

disordered regions, AlphaFold was able to model the Ig-like

domains of MSCRAMMs adhesins as well as other key structural

features of these proteins, such as the homologous B domains, for

all the tested sequences. With a little refinement from in-

equilibrium MD simulations, the generated structures could

help to investigate the properties of many of the domains that

still have an unknown function.

Additionally, we tested the newly developed AlphaFold

Multimer to model adhesin:peptide complexes from different

strains of S. aureus involved in biofilm formation. These protein

complexes have been shown to be mechanically hyperstable, with a

force resilience equivalent to that of a covalent bond at different

pulling velocities (Milles et al., 2018), and lifetime under constant force

that is in the order of hours (Huang et al., 2022). By comparing the

force profile obtained from crystallographic structures of the

complexes, we showed that AlphaFold Multimer failed to predict

important key structural motifs for some of the protein complexes.

Particularly, the locking strand of the adhesins, which are essential for

interacting and locking the human target peptide in a tight complex

with the N2 and N3 domains. However, it is still unclear why the

predicted models worked for some cases and not for others. Limiting

the set of templates to the ones where we know that the correct

structures are present did not help to improve the results (data not

shown). This highlights that itsMultimermode is not yet suitable to be

blindly used as a peptide docking approach and the generated models

should pass through a manual inspection to be suited for MD

simulations.

In summary, AlphaFold 2 is a truly revolutionary tool that is

bringing a new level of structural biology to bioinformatics. Although

there are many areas where its methodology can be improved, the

current algorithm can be clearly employed to work alongside single-

molecule biophysics experiments. It is important to note that, as any

other scientific tool, particularly new ones, AlphaFold 2 results cannot

be employed blindly. Assessing the quality of the results and the

usability of the predicted structures to infer function or mechanism to

proteins is still the work of a trained scientist that can bring together

data from multiple sources in a careful analysis of protein structure

and dynamics.
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