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/e purpose of this paper is to define the concept of (3, 2)-fuzzy sets and discuss their relationship with other kinds of fuzzy sets.
We describe some of the basic set operations on (3, 2)-fuzzy sets. (3, 2)-Fuzzy sets can deal with more uncertain situations than
Pythagorean and intuitionistic fuzzy sets because of their larger range of describing the membership grades. Furthermore, we
familiarize the notion of (3, 2)-fuzzy topological space and discuss the master properties of (3, 2)-fuzzy continuous maps./en, we
introduce the concept of (3, 2)-fuzzy points and study some types of separation axioms in (3, 2)-fuzzy topological space. Moreover,
we establish the idea of relation in (3, 2)-fuzzy set and present some properties. Ultimately, on the basis of academic performance,
the decision-making approach of student placement is presented via the proposed (3, 2)-fuzzy relation to ascertain the suitability
of colleges to applicants.

1. Introduction

/e concept of fuzzy sets was proposed by Zadeh [1]. /e
theory of fuzzy sets has several applications in real-life
situations, and many scholars have researched fuzzy set
theory. After the introduction of the concept of fuzzy sets,
several research studies were conducted on the generaliza-
tions of fuzzy sets. /e integration between fuzzy sets and
some uncertainty approaches such as soft sets and rough sets
has been discussed in [2–4].

/e idea of intuitionistic fuzzy sets suggested by Ata-
nassov [5] is one of the extensions of fuzzy sets with better
applicability. Applications of intuitionistic fuzzy sets appear
in various fields, including medical diagnosis, optimization
problems, and multicriteria decision making [6–8]. Yager
[9] offered a new fuzzy set called a Pythagorean fuzzy set,
which is the generalization of intuitionistic fuzzy sets.
Fermatean fuzzy sets were introduced by Senapati and Yager
[10], and they also defined basic operations over the Fer-
matean fuzzy sets.

/e concept of fuzzy topological spaces was introduced
by Chang [11]. He studied the topological concepts like
continuity and compactness via fuzzy topological spaces.
/en, Lowen [12] presented a new type of fuzzy topological
spaces. Çoker [13] subsequently initiated a study of intui-
tionistic fuzzy topological spaces. Recently, Olgun et al. [14]
presented the concept of Pythagorean fuzzy topological
spaces and Ibrahim [15] defined the concept of Fermatean
fuzzy topological spaces.

/e main purpose of this paper is to introduce the
concept of (3, 2)-fuzzy sets and compare them with the other
types of fuzzy sets. We introduce the set of operations for the
(3, 2)-fuzzy sets and explore their main features. Following
the idea of Chang, we define a topological structure via (3,
2)-fuzzy sets as an extension of fuzzy topological space,
intuitionistic fuzzy topological space, and Pythagorean fuzzy
topological space. We discuss the main topological concepts
in (3, 2)-fuzzy topological spaces such as continuity and
compactness. In addition, the concept of relation to (3, 2)-
fuzzy sets is investigated. Finally, an improved version of
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max-min-max composite relation for (3, 2)-fuzzy sets is
proposed.

2. (3, 2)-Fuzzy Sets

In this section, we initiate the notion of (3, 2)-fuzzy sets and
study their relationship with other kinds of fuzzy sets. /en,
we furnish some operations to (3, 2)-fuzzy sets.

Definition 1. Let X be a universal set. /en, the (3, 2)-fuzzy
set (briefly, (3, 2)-FS) D is defined by the following:

D � 〈r, αD(r), βD(r)〉: r ∈ X􏼈 􏼉, (1)

where αD(r): X⟶ [0, 1] is the degree of membership and
βD(r): X⟶ [0, 1] is the degree of non-membership of
r ∈ X to D, with the condition

0≤ αD(r)( 􏼁
3

+ βD(r)( 􏼁
2 ≤ 1. (2)

/e degree of indeterminacy of r ∈ X to D is defined by

πD(r) �

���������������������

1 − αD(r)( 􏼁
3

+ βD(r)( 􏼁
2

􏽨 􏽩
5

􏽱

. (3)

It is clear that (αD(r))3 + (βD(r))2 + (πD(r))5 � 1, and
πD(r) � 0 whenever (αD(r))3 + (βD(r))2 � 1. In the in-
terest of simplicity, we shall mention the symbol
D � (αD, βD) for the (3, 2)-FS
D � 〈r, αD(r), βD(r)〉: r ∈ X􏼈 􏼉.

Definition 2. Let X be a universal set./en, the intuitionistic
fuzzy set (IFS) [5] (resp. Pythagorean fuzzy set (PFS) [9] and
Fermatean fuzzy set (FFS) [10]) is defined by the following:

K � 〈r, αK(r), βK(r)〉: r ∈ X􏼈 􏼉, (4)

with the condition 0≤ αK(r) + βK(r)≤ 1 (resp.
0≤ (αK(r))2 + (βK(r))2 ≤ 1, 0≤ (αK(r))3 + (βK(r))3 ≤ 1),
where αK(r): X⟶ [0, 1] is the degree of membership and
βK(r): X⟶ [0, 1] is the degree of non-membership of
every r ∈ X to K.

To illustrate the importance of (3, 2)-FS to extend the
grades of membership and non-membership degrees, as-
sume that αD(r) � 0.9 and βD(r) � 0.5 for X � r{ }. We
obtain 0.9 + 0.5 � 1.40> 1 and (0.9)2 + (0.5)2 � 1.06> 1
which means that D � (0.9, 0.5) neither follows the con-
dition of IFS nor follows the condition of PFS. On the other
hand, (0.9)3 + (0.5)2 � 0.979< 1 which means we can apply
the (3, 2)-FS to control it./at is, D � (0.9, 0.5) is a (3, 2)-FS.

Theorem 1. ,e set of (3, 2)-fuzzy membership grades is
larger than the set of intuitionistic membership grades and
Pythagorean membership grades.

Proof. It is well known that for any two numbers
r1, r2 ∈ [0, 1], we have

r
3
1 ≤ r

2
1 ≤ r1,

r
2
2 ≤ r2.

(5)

/en, we get

r1 + r2 ≤ 1

⇒r
2
1 + r

2
2 ≤ 1

⇒r
3
1 + r

2
2 ≤ 1.

(6)

Hence, the space of (3, 2)-fuzzy membership grades is
larger than the space of intuitionistic membership grades
and Pythagorean membership grades. /is development can
be evidently recognized in Figure 1. □

Lemma 1. Let X � rj: j � 1, . . . , k􏽮 􏽯 be a universal set and
D be (3, 2)-FS. If πD(rj) � 0, then
|αD(rj)| �

���������������������
|(βD(rj) − 1)(βD(rj) + 1)|3

􏽱
.

Proof. Presume that D is (3, 2)-FS and πD(rj) � 0 for
rj ∈ X; then,

αD rj􏼐 􏼑􏼐 􏼑
3

+ βD rj􏼐 􏼑􏼐 􏼑
2

� 1⇒ − αD rj􏼐 􏼑􏼐 􏼑
3

� βD rj􏼐 􏼑􏼐 􏼑
2

− 1⇒ − αD rj􏼐 􏼑􏼐 􏼑
3

� βD rj􏼐 􏼑 − 1􏼐 􏼑 βD rj􏼐 􏼑 + 1􏼐 􏼑⇒ αD rj􏼐 􏼑􏼐 􏼑
3

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

� βD rj􏼐 􏼑 − 1􏼐 􏼑 βD rj􏼐 􏼑 + 1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌⇒ αD rj􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
3

� βD rj􏼐 􏼑 − 1􏼐 􏼑 βD rj􏼐 􏼑 + 1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌⇒ αD rj􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 �

����������������������

βD rj􏼐 􏼑 − 1􏼐 􏼑 βD rj􏼐 􏼑 + 1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
3

􏽱

.

(7)

□
Example 1. Let D be (3, 2)-FS and r ∈ X such that βD(r) �

0.82 and πD(r) � 0. /en, |αD(r)| �
����������������
|(βD(r) − 1)(βD(r)3

􏽰

+1)| �
������������
|(− 0.18)(1.82)|3

􏽰
�

������
0.32763

√
.

Definition 3. Let δ be a positive real number (δ > 0). If D1 �

(αD1
, βD1

) and D2 � (αD2
, βD2

) are two (3, 2)-FSs, then their
operations are defined as follows:

(1) D1 ∩D2 � (min αD1
, αD2

􏽮 􏽯, max βD1
, βD2

􏽮 􏽯).
(2) D1 ∪D2 � (max αD1

, αD2
􏽮 􏽯, min βD1

, βD2
􏽮 􏽯).

(3) Dc
1 � (βD1

, αD1
).

(4) δD1 � (
������������
1 − (1 − α3D1

)δ5
􏽱

, βδD1
).

(5) Dδ
1 � (αδD1

,
������������
1 − (1 − β2D1

)δ5
􏽱

).

Remark 1. We will use supremum “sup” instead of maxi-
mum “max” and infimum “inf” instead of minimum “min” if
the union and the intersection are infinite.

Example 2. Assume that D1 � (αD1
� 0.9, βD1

� 0.5) and
D2 � (αD2

� 0.89, βD2
� 0.49) are both (3, 2)-FSs. /en,
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(1) D1 ∩D2 � (min αD1
, αD2

􏽮 􏽯, max βD1
, βD2

􏽮 􏽯)

� (min 0.9, 0.89{ }, max 0.5, 0.49{ }) � (0.89, 0.5).
(2) D1 ∪D2 � (max αD1

, αD2
􏽮 􏽯, min βD1

, βD2
􏽮 􏽯)

� (max 0.9, 0.89{ }, min 0.5, 0.49{ }) � (0.9, 0.49).
(3) Dc

1 � (0.5, 0.9).
(4) δD1 � (

������������
1 − (1 − α3D1

)δ5
􏽱

, βδD1
) � (

���
1−5

√
(1 − 0.93)4,

0.54) ≈ (0.99892, 0.06250), for δ � 4.
(5) Dδ

1 � (αδD1
,

������������
1 − (1 − β2D1

)δ5
􏽱

) � (0.94,������������

1 − (1 − 0.52)45
􏽱

) ≈ (0.65610, 0.92674), for δ � 4.

Theorem 2. Let L1 � (αL1
, βL1

) and L2 � (αL2
, βL2

) be two (3,
2)-FSs; then, the following properties hold:

(1) L1 ∩ L2 � L2 ∩ L1.
(2) L1 ∪ L2 � L2 ∪ L1.
(3) (L1 ∩ L2)∪L2 � L2.
(4) (L1 ∪ L2)∩L2 � L2.

Proof. From Definition 3, we can obtain

(1) L1 ∩ L2 � (min αL1
, αL2

􏽮 􏽯, max βL1
, βL2

􏽮 􏽯) � (min
αL2

, αL1
􏽮 􏽯, max βL2

, βL1
􏽮 􏽯) � L2 ∩ L1.

(2) /e proof is similar to (1).
(3) (L1 ∩ L2)∪L2 � (min αL1

, αL2
􏽮 􏽯, max βL1

, βL2
􏽮 􏽯)∪

(αL2
, βL2

) �

(max min αL1
, αL2

􏽮 􏽯, αL2
􏽮 􏽯, min max βL1

, βL2
􏽮 􏽯, βL2

􏽮 􏽯)

� (αL2
, βL2

) � L2.
(4) /e proof is similar to (3). □

Theorem 3. Let L1 � (αL1
, βL1

), L2 � (αL2
, βL2

) and
L3 � (αL3

, βL3
) be three (3, 2)-FSs and δ > 0; then,

(1) L1 ∩ (L2 ∩L3) � (L1 ∩L2)∩L3.
(2) L1 ∪ (L2 ∪L3) � (L1 ∪L2)∪L3.
(3) δ(L1 ∪ L2) � δL1 ∪ δL2.
(4) (L1 ∪ L2)

δ � Lδ
1 ∪Lδ

2.

Proof. For the three (3, 2)-FSs L1, L2, and L3 and δ > 0,
according to Definition 3, we can obtain

(1)

L1 ∩ L2 ∩ L3( 􏼁 � αL1
, βL1

􏼐 􏼑∩ min αL2
, αL3

􏽮 􏽯, max βL2
, βL3

􏽮 􏽯􏼐 􏼑 � min αL1
, min αL2

, αL3
􏽮 􏽯􏽮 􏽯, max βL1

, max βL2
, βL3

􏽮 􏽯􏽮 􏽯􏼐 􏼑

� min min αL1
, αL2

􏽮 􏽯, αL3
􏽮 􏽯, max max βL1

, βL2
􏽮 􏽯, βL3

􏽮 􏽯􏼐 􏼑

� min αL1
, αL2

􏽮 􏽯, max βL1
, βL2

􏽮 􏽯􏼐 􏼑∩ αL3
, βL3

􏼐 􏼑 � L1 ∩L2( 􏼁∩L3.

(8)

(2) /e proof is similar to (1). (3)

δ L1 ∪ L2( 􏼁 � δ max αL1
, αL2

􏽮 􏽯, min βL1
, βL2

􏽮 􏽯􏼐 􏼑 �

��������������������

1 − 1 − max α3L1
, α3L2

􏽮 􏽯􏼐 􏼑
δ5

􏽲

, min βδL1
, βδL2

􏽮 􏽯􏼠 􏼡,

δL1 ∪ δL2 �

�����������

1 − 1 − α3L1
􏼐 􏼑

δ5

􏽲

, βδL1
􏼠 􏼡∪

�����������

1 − 1 − α3L2
􏼐 􏼑

δ5

􏽲

, βδL2
􏼠 􏼡

� max
�����������

1 − 1 − α3L1
􏼐 􏼑

δ5

􏽲

,

�����������

1 − 1 − α3L2
􏼐 􏼑

δ5

􏽲

􏼨 􏼩, min βδL1
, βδL2

􏽮 􏽯􏼠 􏼡

�

��������������������

1 − 1 − max α3L1
, α3L2

􏽮 􏽯􏼐 􏼑
δ5

􏽲

, min βδL1
, βδL2

􏽮 􏽯􏼠 􏼡 � δ L1 ∪ L2( 􏼁.

(9)

α3
D + β2

D = 1

α2
P + β2

P = 1

αI + βI = 1

1

1
0

Figure 1: Comparison of grade space of IFSs, PFSs, and (3, 2)-FSs.
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(4) /e proof is similar to (3). □

In the following result, we claim that Lc is (3, 2)-FS for
any (3, 2)-FS L.

Theorem 4. Let L1 � (αL1
, βL1

) and L2 � (αL2
, βL2

) be two (3,
2)-FSs such that Lc

1 and Lc
2 are (3, 2)-FSs. ,en,

(1) (L1 ∩L2)
c � Lc

1 ∪ Lc
2.

(2) (L1 ∪ L2)
c � Lc

1 ∩Lc
2.

Proof. For the two (3, 2)-FSs L1 and L2, according to
Definition 3, we can obtain

(1)

L1 ∩ L2( 􏼁
c

� min αL1
, αL2

􏽮 􏽯, max βL1
, βL2

􏽮 􏽯􏼐 􏼑
c

� max βL1
, βL2

􏽮 􏽯􏼐 ,

min αL1
, αL2

􏽮 􏽯􏼑 � βL1
, αL1

􏼐 􏼑∪ βL2
, αL2

􏼐 􏼑 � L
c
1 ∪ L

c
2.

(10)

(2) /e proof is similar to (1). □

Definition 4. Let D1 � (αD1
, βD1

) and D2 � (αD2
, βD2

) be two
(3, 2)-FSs; then,

(1) D1 � D2 if and only if αD1
� αD2

and βD1
� βD2

.
(2) D1 ≥D2 if and only if αD1

≥ αD2
and βD1

≤ βD2
.

(3) D2 ⊂ D1 or D1
D2 if D1 ≥D2.

Example 3.

(1) If D1 � (0.9, 0.5) and D2 � (0.9, 0.5) for X � x{ },
then D1 � D2.

(2) If D1 � (0.9, 0.5) and D2 � (0.81, 0.61) for X � x{ },
then D2 ≤D1 and D2 ⊂ D1.

3. Topology with respect to (3, 2)-Fuzzy Sets

In this section, we formulate the concept of (3, 2)-fuzzy
topology on the family of (3, 2)-fuzzy sets whose comple-
ments are (3, 2)-fuzzy sets and scrutinize main properties.
/en, we define (3, 2)-fuzzy continuous maps and give some

characterizations. Finally, we establish two types of (3, 2)-
fuzzy separation axioms and reveal the relationships be-
tween them.

3.1. (3, 2)-Fuzzy Topology

Definition 5. Let τ be a family of (3, 2)-fuzzy subsets of a
non-empty set X. If

(1) 1X, 0X ∈ τ where 1X � (1, 0) and 0X � (0, 1),
(2) D1 ∩D2 ∈ τ, for any D1, D2 ∈ τ,
(3) ∪ i∈IDi ∈ τ, for any Di􏼈 􏼉i∈I ⊂ τ,

then τ is called a (3, 2)-fuzzy topology onX and (X, τ) is a (3,
2)-fuzzy topological space.We call D an open (3, 2)-FS if it is
a member of τ and call its complement a closed (3, 2)-FS.

Remark 2. We call τ � 1X, 0X􏼈 􏼉 the indiscreet (3, 2)-fuzzy
topology on X. If τ contains all (3, 2)-fuzzy subsets, then we
call τ the discrete (3, 2)-fuzzy topology on X.

Example 4. Let τ � 1X, 0X, D1, D2, D3, D4, D5􏼈 􏼉 be the
family of (3, 2)-fuzzy subsets of X � x1, x2􏼈 􏼉, where

D1 � 〈x1, αD1
x1( 􏼁 � 0.8, βD1

x1( 􏼁 � 0.62〉, 〈x2, αD1
x2( 􏼁 � 0.81, βD1

x2( 􏼁 � 0.61〉􏽮 􏽯,

D2 � 〈x1, αD2
x1( 􏼁 � 0.83, βD2

x1( 􏼁 � 0.53〉, 〈x2, αD2
x2( 􏼁 � 0.82, βD2

x2( 􏼁 � 0.62〉􏽮 􏽯,

D3 � 〈x1, αD3
x1( 􏼁 � 0.79, βD3

x1( 􏼁 � 0.63〉, 〈x2, αD3
x2( 􏼁 � 8, βD3

x2( 􏼁 � 0.63〉􏽮 􏽯,

D4 � 〈x1, αD4
x1( 􏼁 � 0.83, βD4

x1( 􏼁 � 0.53〉, 〈x2, αD4
x2( 􏼁 � 0.82, βD4

x2( 􏼁 � 0.61〉􏽮 􏽯,

D5 � 〈x1, αD5
x1( 􏼁 � 0.8, βD5

(1) � 0.62〉, 〈x2, αD5
x2( 􏼁 � 0.81, βD5

x2( 􏼁 � 0.62〉􏽮 􏽯.

(11)

Hence, τ is (3, 2)-fuzzy topology on X.

Remark 3. We showed that every fuzzy set D on a set X is a
(3, 2)-fuzzy set having the form D � 〈r, αD(r), 1􏼈

− αD(r)〉: r ∈ X}. /en, every fuzzy topological space
(X, τ1) in the sense of Chang is obviously a (3, 2)-fuzzy

topological space in the form τ � D: αD ∈ τ1􏼈 􏼉 whenever we
identify a fuzzy set in X whose membership function is αD

with its counterpart D � 〈r, αD(r), 1 − αD(r)〉: r ∈ X􏼈 􏼉.
Similarly, one can note that every intuitionistic fuzzy to-
pology (Pythagorean fuzzy topology) is (3, 2)-fuzzy topol-
ogy. /e following examples explain this note.
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Example 5. Consider τ � 1X, 0X, D1, D2􏼈 􏼉 as family of fuzzy
subsets of X � x{ }, where

1X � 〈c, α1X
(x) � 1, 1 − α1X

(x) � β1X
(x) � 0〉􏽮 􏽯,

0X � 〈c, α0X
(x) � 0, 1 − α0X

(x) � β0X
(x) � 1〉􏽮 􏽯,

D1 � 〈c, αD1
(x) � 0.7, 1 − αD1

(x) � βD1
(x) � 0.3〉􏽮 􏽯,

D2 � 〈c, αD2
(x) � 0.2, 1 − αD2

(x) � βD2
(x) � 0.8〉􏽮 􏽯.

(12)

/en, τ is fuzzy topology on X, and hence it is (3, 2)-
fuzzy topology.

Example 6. Let τ � 1X, 0X, D1, D2􏼈 􏼉 be the family of (3, 2)-
fuzzy subsets on X � x1, x2􏼈 􏼉 where

D1 � 〈x1, αD1
x1( 􏼁 � 0.76, βD1

x1( 􏼁 � 0.74〉, 〈x2, αD1
x2( 􏼁 � 0.6, βD1

x2( 􏼁 � 0.83〉􏽮 􏽯,

D2 � 〈x1, αD2
x1( 􏼁 � 0.75, βD2

x1( 􏼁 � 0.74〉, 〈x2, αD2
x2( 􏼁 � 0.59, βD2

x2( 􏼁 � 0.83〉􏽮 􏽯.
(13)

Hence, τ is (3, 2)-fuzzy topology. On the other hand, τ is
neither intuitionistic fuzzy topology nor Pythagorean fuzzy
topology.

Definition 6. Let (X, τ) be a (3, 2)-fuzzy topological space
and D � 〈x, αD(x), βD(x)〉: x ∈ X􏼈 􏼉 be a (3, 2)-FS in X.
/en, the (3, 2)-fuzzy interior and (3, 2)-fuzzy closure of D

are, respectively, defined by

(1) cl(D) � ∩ H: H{ is a closed (3, 2)-FS in X and
D ⊂ H}.

(2) int(D) � ⋃ G: G{ is an open (3, 2)-FS in X and
G ⊂ D}.

Remark 4. Let (X, τ) be a (3, 2)-fuzzy topological space and
D be any (3, 2)-FS in X. /en,

(1) int(D) is an open (3, 2)-FS.
(2) cl(D) is a closed (3, 2)-FS.
(3) int(1X) � cl(1X) � 1X and int(0X) � cl(0X) � 0X.

Example 7. Consider the (3, 2)-fuzzy topological space
(X, τ) in Example 4. If D � 〈c1, 0.67, 0.81〉,􏼈

〈c2, 0.75, 0.74〉}, then int(D) � 0X and cl(D) � 1X.

Theorem 5. Let (X, τ) be a (3, 2)-fuzzy topological space and
D1, D2 be (3, 2)-FSs in X. ,en, the following properties hold:

(1) int(D1) ⊂ D1 and D1 ⊂ cl(D1).
(2) If D1 ⊂ D2, then int(D1) ⊂ int(D2) and

cl(D1) ⊂ cl(D2).
(3) D1 is an open (3, 2)-FS if and only if D1 � int(D1).
(4) D1 is a closed (3, 2)-FS if and only if D1 � cl(D1).

Proof. (1) and (2) are obvious.
(3) and (4) follow from Definition 6. □

Corollary 1. Let (X, τ) be a (3, 2)-fuzzy topological space
and D1, D2 be (3, 2)-FSs in X. ,en, the following properties
hold:

(1) int(D1)∪ int(D2) ⊂ int(D1 ∪D2).
(2) cl(D1 ∩D2) ⊂ cl(D1)∩ cl(D2).
(3) int(D1 ∩D2) � int(D1)∩ int(D2).
(4) cl(D1)∪ cl(D2) � cl(D1 ∪D2).

Proof. (1) and (2) follows from (1) of the above theorem.
(3): since int(D1 ∩D2) ⊂ int(D1) and int(D1 ∩D2)

⊂ int(D2), we obtain int(D1 ∩D2) ⊂ int(D1)∩ int(D2). On
the other hand, from the facts int(D1) ⊂ D1 and
int(D2) ⊂ D2, we have int(D1)∩ int(D2) ⊂ D1 ∩D2 and
int(D1)∩ int(D2) ∈ τ; we see that int(D1)∩ int(D2) ⊂
int(D1 ∩D2), and hence int(D1 ∩D2) � int(D1)∩ int (D2).

(4) can be proved similar to (3). □

Theorem 6. Let (X, τ) be a (3, 2)-fuzzy topological space and
D be (3, 2)-FS in X. ,en, the following properties hold:

(1) cl(Dc) � int(D)c.
(2) int(Dc) � cl(D)c.
(3) cl(Dc)c � int(D).
(4) int(Dc)c � cl(D).

Proof. We only prove (1); the other parts can be proved
similarly.

Let D � 〈x, αD(x), βD(x)〉: x ∈ X􏼈 􏼉 and suppose that
the family of open (3, 2)-fuzzy sets contained in D is indexed
by the family 〈x, αUi

(x), βUi
(x)〉: i ∈ J􏽮 􏽯. /en,

int(D) � 〈x,∨αUi
(x),∧βUi

(x)〉􏽮 􏽯. /erefore, int(D)c �

〈x,∧βUi
(x),∨αUi

(x)〉􏽮 􏽯. Now, Dc � 〈x, βD(x), αD(x)〉􏼈 􏼉

such that αUi
≤ αD, βUi

≥ βD for each i ∈ J. /is implies that
〈x, βUi

(x), αUi
(x)〉: i ∈ J􏽮 􏽯 is the family of all closed (3, 2)-

fuzzy sets containing Dc. /at is,
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cl(Dc) � 〈x,∧βUi
(x),∨αUi

(x)〉􏽮 􏽯. Hence, cl(Dc) �

int(D)c. □

3.2. (3, 2)-Fuzzy Continuous Maps

Definition 7. Let f: X⟶ Y be a map and A and B be (3,
2)-fuzzy subsets of X and Y, respectively. /e functions of
membership and non-membership of the image of A,
denoted by f[A], are, respectively, calculated by

αf[A](y) ≔
sup

z∈f− 1(y)

αA(z), if f
− 1

(y)≠ϕ,

0, otherwise,

⎧⎪⎨

⎪⎩

βf[A](y) ≔
inf

z∈f− 1(y)
βA(z), if f

− 1
(y)≠ ϕ,

1, otherwise.

⎧⎪⎨

⎪⎩

(14)

/e functions of membership and non-membership of
preimage of B, denoted by f− 1[B], are, respectively, cal-
culated by

αf− 1[B](x) ≔ αB(f(x)),

βf− 1[B](x) ≔ βB(f(x)).
(15)

Remark 5. To show that f[A] and f− 1[B] are (3, 2)-fuzzy
subsets, consider cA(z))5 � αA(z))3 + (βA(z))2. If f− 1(y) is
non-empty, then we obtain

αf[A](y)􏼐 􏼑
3

+ βf[A](y)􏼐 􏼑
2

� sup
z∈f− 1(y)

αA(z)⎛⎝ ⎞⎠

3

+ inf
z∈f− 1(y)

βA(z)􏼠 􏼡

2

� sup
z∈f− 1(y)

αA(z)( 􏼁
3

+ inf
z∈f− 1(y)

βA(z)( 􏼁
2

� sup
z∈f− 1(y)

cA(z)( 􏼁
5

− βA(z)( 􏼁
2

􏼐 􏼑 + inf
z∈f− 1(y)

βA(z)( 􏼁
2

≤ sup
z∈f− 1(y)

1 − βA(z)( 􏼁
2

􏼐 􏼑 + inf
z∈f− 1(y)

βA(z)( 􏼁
2

� 1.

(16)

In contrast, f− 1(y) � ϕ leads to the fact that
(αf[A](y))3 + (βf[A](y))2 � 1.

It is easy to prove the case of f− 1[B].

Theorem 7. Let f: X⟶ Y be a map s.t. A and B are (3, 2)-
fuzzy subsets of X and Y, respectively. ,en, we have

(1) f− 1[Bc] � f− 1[B]c.
(2) f[A]c⊆f[Ac].
(3) If B1⊆B2, then f− 1[B1]⊆f− 1[B2] where B1 and B2 are

(3, 2)-fuzzy subsets of Y.
(4) If A1⊆A2, then f[A1]⊆f[A2] where A1 and A2 are (3,

2)-fuzzy subsets of X.
(5) f[f− 1[B]]⊆B.
(6) A⊆f− 1[f[A]].

Proof

(1) Consider v ∈ X and let B be a (3, 2)-fuzzy subset ofY.
/en,

αf− 1 Bc[ ](v) � αBc (f(v)) � βB(f(v)) � βf− 1[B](v) � αf− 1[B]c (v).

(17)

Similarly, one can have βf− 1[Bc](v) � βf− 1[B]c (v).
/erefore, f− 1[Bc] � f− 1[B]c, as required.

(2) For any w ∈ Y such that f− 1(w)≠ ϕ and for any (3,
2)-fuzzy subset A of X, we can write

cf[A](w)􏼐 􏼑
5

� αf[A](w)􏼐 􏼑
3

+ βf[A](w)􏼐 􏼑
2

� sup
z∈f− 1(w)

αA(z)( 􏼁
3

+ inf
z∈f− 1(w)

βA(z)( 􏼁
2

� sup
z∈f− 1(w)

cA(z)( 􏼁
5

− βA(z)( 􏼁
2

􏼐 􏼑 + inf
z∈f− 1(w)

βA(z)( 􏼁
2

≤ sup
z∈f− 1(w)

cA(z)( 􏼁
5

􏼐 􏼑 − inf
z∈f− 1(w)

βA(z)( 􏼁
2

+ inf
z∈f− 1(w)

βA(z)( 􏼁
2

� sup
z∈f− 1(w)

cA(z)( 􏼁
5

􏼐 􏼑.

(18)

Now from (18), we have
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αf Ac[ ](w) � sup
z∈f− 1(w)

αAc (z)

� sup
z∈f− 1(w)

βA(z)

� sup
z∈f− 1(w)

�����������������

cA(z)( 􏼁
5

− αA(z)( 􏼁
3

􏽱

≥
�����������������������������

sup
z∈f− 1(w)

cA(z)( 􏼁
5

− sup
z∈f− 1(w)

αA(z)( 􏼁
3

􏽳

≥
����������������������

cf[A](w)􏼐 􏼑
5

− αf[A](w)􏼐 􏼑
3

􏽲

� βf[A](w)

� αf[A]c (w).

(19)

/e proof is easy when f− 1(w) � ϕ. Following a
similar technique, we obtain βf[Ac](w)≤ βf[A]c (w),
which means that f[A]c⊆f[Ac].

(3) Assume that B1⊆B2. /en, for each v ∈ X,
αf− 1[B1](v) � αB1

(f(v))≤ αB2
(f(v)) � αf− 1[B2](v).

Also, βf− 1[B1](v)≥ βf− 1[B2](v). Hence, we obtain the
desired result.

(4) Assume that A1⊆A2 and w ∈ Y. /e proof is easy
when f(w) � ϕ. So, presume that f(w)≠ϕ. /en,

αf A1[ ](w) � sup
z∈f− 1(w)

αA1
(z)≤ sup

z∈f− 1(w)

αA2
(z) � αf A2[ ](w).

(20)

/us, αf[A1]≤ αf[A2] follows. Similarly, we have
βf[A1]≥ βf[A2].

(5) For any w ∈ Y s.t. f(w)≠ϕ, we find that

αf f− 1[B][ ](w) � sup
z∈f− 1(w)

αf− 1[B](z) � sup
z∈f− 1(w)

αB(f(z))

≤ αB(w).

(21)

On the other hand, we have
αf[f− 1[B]](w) � 0≤ αB(w) when f(w) � ϕ. Similarly,
we have βf[f− 1[B]](w) � 0≥ βB(w).

(6) For any v ∈ X, we have

αf− 1[f[A]](v) � αf[A](f(v)) � sup
z∈f− 1(f(v))

αA(z)≥ αA(v).

(22)

Similarly, we have βf− 1[f[A]] ≤ βA. □

/e proof of the following result is easy, and hence it is
omitted.

Theorem 8. Let X and Y be two non-empty sets and
f: X⟶ Y be a map. ,en, the following statements are
true:

(1) f[∪ i∈IAi] � ∪ i∈If[Ai] for any (3, 2)-fuzzy subset Ai

of X.
(2) f− 1[∪ i∈IBi] � ∪ i∈If

− 1[Bi] for any (3, 2)-fuzzy
subset Bi of Y.

(3) f[A1 ∩A2] ⊂ f[A1]∩f[A2] for any two (3, 2)-fuzzy
subsets A1 and A2 of X.

(4) f− 1[∩ i∈IBi] � ∩ i∈If
− 1(Bi) for any (3, 2)-fuzzy

subset Bi of Y.

Definition 8. In a (3, 2)-fuzzy topological space, consider
that A and U are two (3, 2)-fuzzy subsets. We call U a
neighborhood of A, briefly nbd, if there exists an open (3, 2)-
fuzzy subset E such that A⊆E⊆U.

Theorem 9. A (3, 2)-fuzzy subset A is open iff it contains a
nbd of its each subset.

Proof. /e proof is easy. □

Definition 9. A map f: (X, τ1)⟶ (Y, τ2) is said to be (3,
2)-fuzzy continuous if for any (3, 2)-fuzzy subset A of X and
for any nbd V of f[A] there is a nbd U of A s.t. f[U]⊆V.

Theorem 10. ,e following statements are equivalent for a
map f: (X, τ1)⟶ (Y, τ2):

(1) f is (3, 2)-fuzzy continuous.
(2) For each (3, 2)-FS A of X and each nbd V of f[A],

there is a nbd U of A s.t. for each B⊆U, we obtain
f[B]⊆V.

(3) For each (3, 2)-FS A of X and for each nbd V of f[A],
there is a nbd U of A s.t. U⊆f− 1[V].

(4) For each (3, 2)-FS A of X and for each nbd V of f[A],
f− 1[V] is a nbd of A.

Proof.

(1)⇒(2): let f be a (3, 2)-fuzzy continuous map.
Consider A as a (3, 2)-FS of X and V as a nbd of f[A].
/en, there is a nbd U of A s.t. f[U]⊆V. If B⊆U, we
obtain f[B]⊆f[U]⊆V.
(2)⇒(3): assumeA as a (3, 2)-FS of X andV as a nbd of
f[A]. According to (2), there is a nbd U of A s.t. for
each B⊆U, we find f[B]⊆V. /erefore,
B⊆f− 1[f[B]]⊆f− 1[V]. Since B is chosen arbitrarily,
U⊆f− 1[V].
(3)⇒(4): presume A is a (3, 2)-FS of X and V is a nbd
of f[A]. According to (3), there is a nbd U of A s.t.
U⊆f− 1[V]. Since U is a nbd of A, there is an open (3,
2)-FS K of X s.t. A⊆K⊆U. On the other hand, we obtain
A⊆K⊆f− 1[V] because U⊆f− 1[V]. /is means that
f− 1[V] is a nbd of A.
(4)⇒(1): suppose that A is a (3, 2)-FS of X and V is a
nbd of f[A]. By hypothesis, f− 1[V] is a nbd of A. So,
there is an open (3, 2)-FS K of X s.t. A⊆K⊆f− 1[V]

which means f[K]⊆f[f− 1[V]]⊆V. Moreover, K is an
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open (3, 2)-FS, so it is a nbd of A. Hence, we obtain the
proof that f is (3, 2)-fuzzy continuous. □

Theorem 11. A map f: (X, τ1)⟶ (Y, τ2) is (3, 2)-fuzzy
continuous iff f− 1[B] is an open (3, 2)-FS of X for each open
(3, 2)-FS B of Y.

Proof. Necessity: presume f as a (3, 2)-fuzzy continuous
map. Consider an open (3, 2)-FS B of Y s.t. A⊆f− 1[B]. /is
directly gives that f[A]⊆B. It follows from /eorem 9 that
there is a nbd V of f[A] satisfying V⊆B. Now, f is (3, 2)-
fuzzy continuous, so by (4) of /eorem 10, we obtain that
f− 1[V] is a nbd of A. Also, it follows from (3) of /eorem 7
that f− 1[V]⊆f− 1[B]. So, f− 1[B] is a nbd of A. Since A is an
arbitrary subset of f− 1[B], then by /eorem 9, the (3, 2)-FS
f− 1[B] is open. □

3.2.1. Sufficiency. Presume A is a (3, 2)-FS of X and V is a
nbd of f[A]. /en, τ2 contains a (3, 2)-FS L of s.t.
f[A]⊆L⊆V. By hypothesis, f− 1[L] is an open (3, 2)-FS. Also,
we have A⊆f− 1[f[A]]⊆f− 1[L]⊆f− 1[V]. /us, f− 1[V] is a
nbd of A which demonstrates that f is (3, 2)-fuzzy
continuous.

We build the following two examples such that the first
one provides a (3, 2)-fuzzy continuous map, whereas the
second one presents a fuzzy map that is not (3, 2)-fuzzy
continuous.

Example 8. Consider X � a1, a2􏼈 􏼉 with the (3, 2)-fuzzy
topology τ1 � 1X, 0X, A1􏼈 􏼉 and Y � b1, b2􏼈 􏼉 with the (3, 2)-
fuzzy topology τ2 � 1Y, 0Y, B1􏼈 􏼉, where

A1 � 〈a1, 0.7, 0.78〉, 〈a2, 0.9, 0.5〉􏼈 􏼉,

B1 � 〈b1, 0.9, 0.5〉, 〈b2, 0.7, 0.78〉􏼈 􏼉.
(23)

Let f: X⟶ Y be defined as follows:

f(x) �
b2, if x � a1,

b1, if x � a2.
􏼨 (24)

Since 1Y, 0Y, and B1 are open (3, 2)-fuzzy subsets of Y,
then

f
− 1 1Y􏼂 􏼃 � 〈a1, 1, 0〉, 〈a2, 1, 0〉􏼈 􏼉,

f
− 1 0Y􏼂 􏼃 � 〈a1, 0, 1〉, 〈a2, 0, 1〉􏼈 􏼉,

f
− 1

B1􏼂 􏼃 � 〈a1, 0.7, 0.78〉, 〈a2, 0.9, 0.5〉􏼈 􏼉

(25)

are open (3, 2)-fuzzy subsets of X. /us, f is (3, 2)-fuzzy
continuous.

Example 9. Consider X � a1, a2􏼈 􏼉 with the (3, 2)-fuzzy
topology τ1 � 1X, 0X􏼈 􏼉 and Y � b1, b2􏼈 􏼉 with the (3, 2)-fuzzy
topology τ2 � 1Y, 0Y, B1􏼈 􏼉, where
B1 � 〈b1, 0.82, 0.62〉, 〈b2, 0.52, 0.90〉􏼈 􏼉.

Let f: X⟶ Y be defined as follows:

f(x) �
b1, if x � a1,

b2, if x � a2.
􏼨 (26)

Since B1 is an open (3, 2)-fuzzy subset of Y, but
f− 1[B1] � 〈a1, 0.82, 0.62〉, 〈a2, 0.52, 0.90〉􏼈 􏼉 is not an open
(3, 2)-fuzzy subset of X, f is not (3, 2)-fuzzy continuous.

Theorem 12. ,e following are equivalent to each other:

(1) f: (X, τ1)⟶ (Y, τ2) is (3, 2)-fuzzy continuous.
(2) For each closed (3, 2)-fuzzy subset B of Y we have that

f− 1[B] is a closed (3, 2)-fuzzy subset of X.
(3) cl(f− 1[B])⊆f− 1[cl(B)] for each (3, 2)-fuzzy set in Y.
(4) f− 1[int(B)]⊆int(f− 1[B]) for each (3, 2)-fuzzy set in

Y.

Proof. /ey can be easily proved using /eorems 6, 7, and
11. □

Theorem 13. Let (Y, τ) be a (3, 2)-fuzzy topological space
and f: X⟶ Y be a map. ,en, there is a coarsest (3, 2)-
fuzzy topology τ1 over X such that f is (3, 2)-fuzzy
continuous.

Proof. Let us define a class of (3, 2)-fuzzy subsets τ1 of X by

τ1 ≔ f
− 1

[V]: V ∈ τ􏽮 􏽯. (27)

We prove that τ1 is the coarsest (3, 2)-fuzzy topology
over X such that f is (3, 2)-fuzzy continuous.

(1) We can write for any x ∈ X that

αf− 1 0Y[ ](x) � α0Y
(f(x)) � 0 � α0X

(x). (28)

Similarly, we immediately have βf− 1[0Y](x) � β0X
(x)

for any x ∈ X which implies f− 1[0Y] � 0X. Now, as
0Y ∈ τ, we have 0X � f− 1[0Y] ∈ τ1. In a similar
manner, it is easy to see that 1X � f− 1[1Y] ∈ τ1.

(2) Assume that D1, D2 ∈ τ1. /en, for i � 1, 2, there
exists Bi ∈ τ such that f− 1[Bi] � Di which implies
αf− 1[Bi]

� αDi
and βf− 1[Bi]

� βDi
. /us, we obtain for

any x ∈ X that

αD1 ∩D2
(x) � min αD1

(x), αD2
(x)􏽮 􏽯􏽮 􏽯 � min αf− 1 B1[ ](x), αf− 1 B2[ ](x)􏼚 􏼛 � min αB1

(f(x)), αB2
(f(x))􏽮 􏽯

� αB1 ∩B2
(f(x)) � αf− 1 B1 ∩B2[ ](x).

(29)
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Similarly, it is not difficult to see that
βD1 ∩D2

� βf− 1[B1 ∩B2]. Hence, we get D1 ∩D2 ∈ τ1.
(3) Assume that Di􏼈 􏼉i∈I is an arbitrary subfamily of τ1.

/en, for any i ∈ I, there exists Bi ∈ τ1 such that
f− 1[Bi] � Di which implies αf− 1[Bi]

� αDi
and

βf− 1[Bi]
� βDi

. /erefore, one can get for any x ∈ X

that

α∪ i∈IDi
(x) � sup

i∈IαDi

(x)

� sup
i∈Iαf− 1 Bi[ ]

(x)

� sup
i∈IαBi

(f(x))

� α∪ i∈IBi
(f(x))

� αf− 1 ∪ i∈IBi[ ](x).

(30)

On the other hand, it is easy to see that
β∪ i∈IDi

� βf− 1[∪ i∈IBi]
. /us, we have ∪ i∈IDi ∈ τ1.

From /eorem 11, the (3, 2)-fuzzy continuity of f is
trivial. Now, we prove that τ1 is the coarsest (3, 2)-fuzzy
topology over X such that f is (3, 2)-fuzzy continuous. Let
τ2⊆τ1 be a (3, 2)-fuzzy topology over X such that f is (3, 2)-
fuzzy continuous. If B ∈ τ1, then there is V ∈ τ such that
f− 1[V] � B. Since f is (3, 2)-fuzzy continuous with respect
to τ2, we have B � f− 1[V] ∈ τ2. Hence, τ2 � τ1, as
required. □

3.3. (3, 2)-Fuzzy Separation Axioms. Separation axioms are
one of the most important and popular notions in topo-
logical studies. /ey have been studied and applied to model
some real-life issues in soft setting as explained in [16, 17].

Definition 10. Let X≠∅ and x ∈ X be a fixed element in X.
Suppose that r1 ∈ (0, 1] and r2 ∈ [0, 1) are two fixed real
numbers such that r31 + r22 ≤ 1. /en, a (3, 2)-fuzzy point
px

(r1 ,r2) � 〈x, αp(x), βp(x)〉􏽮 􏽯 is defined to be a (3, 2)-fuzzy
set of X as follows.

p
x

r1 ,r2( )(y) ≔
r1, r2( 􏼁, if y � x,

(0, 1), otherwise,
􏼨 (31)

for y ∈ X. In this case, x is called the support of px
(r1 ,r2). A (3,

2)-fuzzy point px
(r1 ,r2) is said to belong to a (3, 2)-fuzzy set

D � 〈x, αD(x), βD(x)〉􏼈 􏼉 of X denoted by px
(r1 ,r2) ∈ D if

r1 ≤ αD(x) and r2 ≥ βD(x). Two (3, 2)-fuzzy points are said
to be distinct if their supports are distinct.

Remark 6. Let D1 � 〈x, αD1
(x), βD1

(x)〉􏽮 􏽯 and
D2 � 〈x, αD2

(x), βD2
(x)〉􏽮 􏽯 be two (3, 2)-fuzzy sets of X.

/en, D1⊆D2 if and only if px
(r1 ,r2) ∈ D1 implies px

(r1 ,r2) ∈ D2
for any (3, 2)-fuzzy point px

(r1 ,r2) in X.

Definition 11. Let r1, r3 ∈ (0, 1], r2, r4 ∈ [0, 1), and x, y ∈ X.
A (3, 2)-fuzzy topological space (X, τ) is said to be

(1) T0 if for each pair of distinct (3, 2)-fuzzy points
px

(r1 ,r2), p
y

(r3 ,r4) in X, there exist two open (3, 2)-fuzzy
sets L and K such that

L � 〈x, 1, 0〉, 〈y, 0, 1〉􏼈 􏼉,

orK � 〈x, 0, 1〉, 〈y, 1, 0〉􏼈 􏼉.
(32)

(2) T1 if for each pair of distinct (3, 2)-fuzzy points
px

(r1 ,r2), p
y

(r3 ,r4) in X, there exist two open (3, 2)-fuzzy
sets L and K such that

L � 〈x, 1, 0〉, 〈y, 0, 1〉􏼈 􏼉,

K � 〈x, 0, 1〉, 〈y, 1, 0〉􏼈 􏼉.
(33)

Proposition 1. Let (X, τ) be a (3, 2)-fuzzy topological space.
If (X, τ) is T1, then (X, τ) is T0.

Proof. /e proof is straightforward from Definition 11. □

Here is an example which shows that the converse of
above proposition is not true in general.

Example 10. Consider X � c1, c2􏼈 􏼉 with the (3, 2)-fuzzy
topology τ � 1X, 0X, D􏼈 􏼉, where D � 〈c1, 1, 0〉, 〈c2, 0, 1〉􏼈 􏼉.
/en, (X, τ) is T0 but not T1 because there does not exist an
open (3, 2)-fuzzy set K such that K � 〈x, 0, 1〉, 〈y, 1, 0〉􏼈 􏼉.

Theorem 14. Let (X, τ) be a (3, 2)-fuzzy topological space,
r1, r3 ∈ (0, 1], and r2, r4 ∈ [0, 1). If (X, τ) is T0, then for each
pair of distinct (3, 2)-fuzzy points px

(r1 ,r2), p
y

(r3 ,r4) of X,
cl(px

(r1 ,r2))≠ cl(p
y

(r3 ,r4)).

Proof. Let (X, τ) be T0 and px
(r1 ,r2), p

y

(r3 ,r4) be any two
distinct (3, 2)-fuzzy points of X. /en, there exist two open
(3, 2)-fuzzy sets L and K such that

L � 〈x, 1, 0〉, 〈y, 0, 1〉􏼈 􏼉,

orK � 〈x, 0, 1〉, 〈y, 1, 0〉􏼈 􏼉.
(34)

Let L � 〈x, 1, 0〉, 〈y, 0, 1〉􏼈 􏼉 exist. /en,
Lc � 〈x, 0, 1〉, 〈y, 1, 0〉􏼈 􏼉 is a closed (3, 2)-fuzzy set which
does not contain px

(r1 ,r2) but contains p
y

(r3 ,r4). Since cl(p
y

(r3 ,r4))

is the smallest closed (3, 2)-fuzzy set containing p
y

(r3 ,r4), then
cl(p

y

(r3 ,r4))⊆L
c, and therefore px

(r1 ,r2) ∉ cl(p
y

(r3 ,r4)). Conse-
quently, cl(px

(r1 ,r2))≠ cl(p
y

(r3 ,r4)). □

Theorem 15. Let (X, τ) be a (3, 2)-fuzzy topological space. If
px

(1,0) is closed (3, 2)-fuzzy set for every x ∈ X, then, (X, τ) is
T1.

Proof. Suppose px
(1,0) is a closed (3, 2)-fuzzy set for every

x ∈ X. Let px
(r1 ,r2), p

y

(r3 ,r4) be any two distinct (3, 2)-fuzzy
points of X; then, x≠y implies that px

(1,0)c and p
y

(1,0)c are
two open (3, 2)-fuzzy sets such that

p
y

(1,0)c � 〈x, 1, 0〉, 〈y, 0, 1〉􏼈 􏼉,

p
x
(1,0)c � 〈x, 0, 1〉, 〈y, 1, 0〉􏼈 􏼉.

(35)
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/us, (X, τ) is T1. □

4. (3, 2)-Fuzzy Relations

A relation is a mathematical description of a situation where
certain elements of sets are related to one another in some
way. /e system of fuzzy relation equations was first studied
by Sanchez [18–21], who used it in medical research. Biswas
[22] defined the method of intuitionistic medical diagnosis
which involves intuitionistic fuzzy relations. Kumar et al.
[23] used the applications of intuitionistic fuzzy set theory in
diagnosis of various types of diseases. /e notion of max-
min-max composite relation for Pythagorean fuzzy sets was
studied by Ejegwa [24], and the approach was improved and
applied to medical diagnosis.

In this section, we introduce the notions of max-min-
max composite relation and improved composite relation
for (3, 2)-FSs. Moreover, we provide a numerical example to
elaborate on how we can apply the composite relations to
obtain the optimal choices.

Definition 12. Let X and Y be two (crisp) sets. /e (3, 2)-
fuzzy relation R (briefly, (3, 2)-FR) from X to Y is a (3, 2)-FS
of X × Y characterized by the degree of membership
function αR and degree of non-membership function βR./e
(3, 2)-FR R from X to Y will be denoted by R(X⟶ Y). If D

is a (3, 2)-FS of X, then

(1) /e max-min-max composition of the (3, 2)-FR
R(X⟶ Y) with D is a (3, 2)-FS C of Y denoted by
C�R o D and is defined by

αRoD(n) � ∨
m

αD(m)∧αR(m, n)􏼂 􏼃,

βRoD(n) � ∧
m

βD(m)∨βR(m, n)􏼂 􏼃,

for all n ∈ Y.

(36)

(2) /e improved composite relation of R(X⟶ Y)

with D is a (3, 2)-FS C of Y denoted by C�R o D,
such that

αRoD(n) � ∨
m

αD(m) + αR(m, n)

2
􏼢 􏼣,

βRoD(n) � ∧
m

βD(m) + βR(m, n)

2
􏼢 􏼣,

for all n ∈ Y.

(37)

Definition 13. Let Q(X⟶ Y) and R(Y⟶ Z) be two (3,
2)-FRs. /en, for all (m, r) ∈ X × Z and n ∈ Y,

(1) /e max-min-max composition R o Q is the (3, 2)-
fuzzy relation from X to Z defined by

αRoQ(m, r) � ∨
n
αQ(m, n)∧αR(n, r)􏽨 􏽩,

βRoQ(m, r) � ∧
n
βQ(m, n)∨βR(n, r)􏽨 􏽩.

(38)

(2) /e improved composite relation R o Q is the (3, 2)-
fuzzy relation from X to Z such that

αRoQ(m, r) � ∨
n

αQ(m, n) + αR(n, r)

2
􏼢 􏼣,

βRoQ(m, r) � ∧
n

βQ(m, n) + βR(n, r)

2
􏼢 􏼣.

(39)

Remark 7. /e improved composite and max-min-max
composite relations for (3, 2)-fuzzy sets are calculated by the
following:

SR � αRoQ − βRoQ · πRoQ. (40)

Example 11. Let D1 and D2 be two (3, 2)-fuzzy sets for
X � x1, x2, x3, x4􏼈 􏼉. Assume that

D1 � 〈x1, 0.8, 0.61〉, 〈x2, 0.5, 0.87〉, 〈x3, 0.85, 0.55〉, 〈x4, 0.8, 0.69〉􏼈 􏼉,

D2 � 〈x1, 0.7, 0.79〉, 〈x2, 0.78, 0.73〉, 〈x3, 0.6, 0.85〉, 〈x4, 0.89, 0.54〉􏼈 􏼉.
(41)

By using Definitions 12 (1) and 13 (1), respectively, we
find the max-min-max composite relation with application
to D1 and D2 as follows:

αC d1i, d2k( 􏼁 � ∨
xj

[0.7, 0.5, 0.6, 0.8] � 0.8,

βC d1i, d2k( 􏼁 � ∧
xj

[0.79, 0.87, 0.85, 0.69] � 0.69.
(42)

It is obvious that the minimum value of the membership
values of the elements (that is, x1, x2, x3, x4) in D1 and D2,
respectively, is 0.7, 0.5, 0.6, and 0.8. Also, the maximum
value of the non-membership values of the elements (that is,
x1, x2, x3, x4) in D1 and D2, respectively, is 0.79, 0.87, 0.85,
and 0.69. From Remark 7, we can get

SR � 0.8 − (0.69) · (
���
[5]

􏽰
0.0119) ≈ 0.52. (43)
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Again, by using Definitions 12 (2) and 13 (2), respec-
tively, we find the improved composite relation with ap-
plication to D1 and D2 as follows:

αC d1i, d2k( 􏼁 � ∧
xj

[0.75, 0.64, 0.725, 0.845] � 0.845,

βC d1i, d2k( 􏼁 � ∧
xj

[0.7, 0.8, 0.7, 0.615] � 0.615.
(44)

From Remark 7, we can get

SR � 0.845 − (0.615) · (
���
[5]

􏽰
0.018423875) ≈ 0.57. (45)

Hence, from (43) and (45), we obtain that the improved
composite relation produces better relation with greater
relational value when compared to max-min-max composite
relation.

5. Application of (3, 2)-Fuzzy Sets

We localize the idea of (3, 2)-FR as follows.
Let S � r1, . . . , rl􏼈 􏼉 be a finite set of subjects related to the

colleges, C � b1, . . . , bm􏼈 􏼉 be a finite set of colleges, and A �

t1, . . . , tn􏼈 􏼉 be a finite set of students. Suppose that we have
two (3, 2)-FRs, U(A⟶ S) and R(S⟶ C), such that

U � 〈(t, r), αU(t, r), βU(t, r)〉| (t, r) ∈ A × S􏼈 􏼉,

R � 〈(r, b), αR(r, b), βR(r, b)〉| (r, b) ∈ S × C􏼈 􏼉.
(46)

where

αU(t, r) denotes the degree to which the student (t)
passes the related subject requirement (r).
βU(t, r) denotes the degree to which the student (t)
does not pass the related subject requirement (r).
αR(r, b) denotes the degree to which the related subject
requirement (r) determines the college (b).
βR(r, b) denotes the degree to which the related subject
requirement (r) does not determine the college (b).

T � RoU is the composition of R and U. /is describes
the state in which the students, ti, with respect to the related
subject requirement, rj, fit the colleges, bk. /us,

αT ti, bk( 􏼁 � ∨
rj∈S

αU ti, rj􏼐 􏼑∧αR rj, bk􏼐 􏼑􏽨 􏽩,

βT ti, bk( 􏼁 � ∧
rj∈S

βU ti, rj􏼐 􏼑∨βR rj, bk􏼐 􏼑􏽨 􏽩,
(47)

∀ti ∈ A and bk ∈ C, where i, j, and k take values from
1, . . . , n.

/e values of αRoU(ti, bk) and βRoU(ti, bk) of the com-
position T�R o U are as follows (Table 1).

If the value of T is given by the following:

T � αT ti, bk( 􏼁 − βT ti, bk( 􏼁 · πT ti, bk( 􏼁, (48)

then the student placement can be achieved.

5.1. Application Example. By using a hypothetical case with
quasi-real data, we apply this method. Let
A � t1, t2, t3, t4, t5􏼈 􏼉 be the set of students for the colleges;
S � {English Lang., Mathematics, Biology, Physics, Chem-
istry, Computer Sci.} be the set of related subject require-
ment to the set of colleges; and C � {College of Engineering
(E), College of Medicine (M), College of Agricultural En-
gineering Sciences (AE), College of Sport Sciences (Sp),
College of Science (S)} be the set of colleges the students are
vying for (Algorithm 1).

From Table 4 and based on suitability of the students to
the list of colleges, this decision making is made:

(1) t1 and t2 are suitable to study at College of Agri-
cultural Engineering Sciences.

(2) t3 is suitable to study at College of Agricultural
Engineering Sciences, College of Sport Sciences, and
College of Science.

(3) t4 is suitable to study at College of Medicine.
(4) t5 is suitable to study at College of Agricultural

Engineering Sciences and College of Science.

6. Discussion

/e main idea of this work is to introduce a new type of
fuzzy set called (3, 2)-FS. We illustrated that this type
produces membership grades larger than intuitionistic
and Pythagorean fuzzy sets which are already defined in
the literature. However, Fermatean fuzzy sets give a larger
space of membership grades than (3, 2)-FS. Figure 2 il-
lustrates the relationships between these types of fuzzy
sets.

(3,2)-FS

IFS PFS FFS

We summarize the relationships in terms of the space of
membership and non-membership grades in the following
figure.

Regarding topological structure, we illustrated that
every fuzzy topology in the sense of Chang (intuitionistic
fuzzy topology and Pythagorean fuzzy topology) is a (3,
2)-fuzzy topology. In contrast, every (3, 2)-fuzzy topo-
logical space is a Fermatean fuzzy topological space be-
cause every (3, 2)-fuzzy subset of a set can be considered as
a Fermatean fuzzy subset. /e next example elaborates
that Fermatean fuzzy topological space need not be a (3,
2)-fuzzy topological space.

Example 12. Let X � x1, x2􏼈 􏼉. Consider the following family
of Fermatean fuzzy subsets τ � 1X, 0X, D1, D2􏼈 􏼉, where
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D1 � 〈x1, αD1
x1( 􏼁 � 0.75, βD1

x1( 􏼁 � 0.81〉, 〈x2, αD1
x2( 􏼁 � 0.85, βD1

x2( 􏼁 � 0.7〉􏽮 􏽯,

D2 � 〈x1, αD2
x1( 􏼁 � 0.76, βD2

x1( 􏼁 � 0.81〉, 〈x2, αD2
x2( 􏼁 � 0.86, βD2

x2( 􏼁 � 0.7〉􏽮 􏽯.
(49)

Table 1: /e composition R o U.

R o U E M AE Sp S
t1 (0.81, 0.60) (0.81, 0.60) (0.81, 0.61) (0.81, 0.60) (0.81, 0.60)
t2 (0.82, 0.59) (0.82, 0.60) (0.82, 0.61) (0.82, 0.59) (0.82, 0.60)
t3 (0.82, 0.60) (0.82, 0.60) (0.82, 0.61) (0.82, 0.61) (0.82, 0.61)
t4 (0.82, 0.60) (0.83, 0.60) (0.82, 0.61) (0.82, 0.61) (0.82, 0.60)
t5 (0.83, 0.59) (0.83, 0.59) (0.83, 0.60) (0.83, 0.59) (0.83, 0.60)

Table 2: /e (3, 2)-fuzzy relation U(A⟶ S).

U(A⟶ S) Mathematics Computer Sci. English Lang. Biology Physics Chemistry
t1 (0.81, 0.61) (0.80, 0.62) (0.81, 0.61) (0.80, 0.61) (0.71, 0.71) (0.81, 0.60)
t2 (0.80, 0.61) (0.81, 0.61) (0.80, 0.61) (0.62, 0.80) (0.82, 0.60) (0.82, 0.59)
t3 (0.82, 0.61) (0.82, 0.60) (0.82, 0.61) (0.80, 0.62) (0.62, 0.80) (0.81, 0.61)
t4 (0.81, 0.62) (0.83, 0.60) (0.81, 0.61) (0.81, 0.61) (0.80, 0.61) (0.82, 0.60)
t5 (0.83, 0.59) (0.82, 0.60) (0.83, 0.60) (0.82, 0.59) (0.81, 0.59) (0.83, 0.59)

Table 3: /e (3, 2)-fuzzy relation R(S⟶ C).

R(S⟶ C) E M AE Sp S
Mathematics (0.83, 0.59) (0.84, 0.59) (0.80, 0.62) (0.82, 0.61) (0.83, 0.60)
Computer Sci. (0.82, 0.60) (0.83, 0.59) (0.80, 0.61) (0.80, 0.62) (0.80, 0.61)
English Lang. (0.84, 0.59) (0.83, 0.60) (0.84, 0.59) (0.83, 0.60) (0.84, 0.59)
Biology (0.81, 0.61) (0.80, 0.609) (0.80, 0.62) (0.81, 0.61) (0.81, 0.60)
Physics (0.83, 0.60) (0.82, 0.60) (0.82, 0.61) (0.82, 0.60) (0.82, 0.60)
Chemistry (0.83, 0.59) (0.83, 0.60) (0.82, 0.61) (0.84, 0.59) (0.83, 0.60)

Table 4: Greatest value given by T � αT(ti, bk) − βT(ti, bk) · πT(ti, bk).

T E M AE Sp S
t1 0.425 0.425 0.434 0.425 0.425
t2 0.447 0.450 0.455 0.447 0.450
t3 0.450 0.450 0.455 0.455 0.455
t4 0.450 0.479 0.455 0.455 0.450
t5 0.474 0.474 0.479 0.474 0.479

Step 1./e (3, 2)-fuzzy relationU(A⟶ S) and the (3, 2)-fuzzy relation R(S⟶ C) are given as in Tables 2 and 3, respectively./ese
data in (3, 2)-F values are assumably obtained after students finished from preparatory school.
Step 2. Compute the composition R o U as in Table 1.
Step 3. Calculate T � αT(ti, bk) − βT(ti, bk) · πT(ti, bk) as in Table 4.
Step 4. We present the decision making from Table 4. /e greatest value of relation between students and colleges is taken for
decisions.

ALGORITHM 1: Determination of the optimal college for students.
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Observe that (X, τ) is a Fermatean fuzzy topological
space, but (X, τ) is not a (3, 2)-fuzzy topological space.

7. Conclusions

In this paper, we have introduced a new generalized
intuitionistic fuzzy set called (3, 2)-fuzzy sets and studied
their relationship with intuitionistic fuzzy, Pythagorean
fuzzy, and Fermatean fuzzy sets. In addition, some operators
on (3, 2)-fuzzy sets are defined and their relationships have
been proved. /e notions of (3, 2)-fuzzy topology, (3, 2)-
fuzzy neighborhood, and (3, 2)-fuzzy continuous mapping
were studied. Furthermore, we introduced the concept of (3,
2)-fuzzy points and studied separation axioms in (3, 2)-fuzzy
topological space.We also introduced the concept of relation
to (3, 2)-fuzzy sets, called (3, 2)-FR. Moreover, based on
academic performance, the application of (3, 2)-FSs was
explored on student placement using the proposed com-
position relation.

In future work, more applications of (3, 2)-fuzzy sets
may be studied; also, (3, 2)-fuzzy soft sets may be studied. In
addition, we will try to introduce the compactness and
connectedness in (3, 2)-fuzzy topological spaces. /e mo-
tivation and objectives of this extended work are given step
by step in this paper.
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[14] M. Olgun, M. Ünver, and Ş. Yardımcı, “Pythagorean fuzzy
topological spaces,” Complex & Intelligent Systems, vol. 5,
no. 2, pp. 177–183, 2019.

[15] H. Z. Ibrahim, “Fermatean fuzzy topological spaces,” Journal
of Applied Mathematics and Informatics, 2022, In press.

[16] T. M. Al-shami, “On soft separation axioms and their ap-
plications on decision-making problem,” Mathematical
Problems in Engineering, vol. 2021, Article ID 8876978,
12 pages, 2021.

[17] T. M. Al-shami and M. E. El-Shafei, “Partial belong relation
on soft separation axioms and decision-making problem, two
birds with one stone,” Soft computing, vol. 24, no. 7,
pp. 5377–5387, 2020.

[18] E. Sanchez, “Resolution of composite fuzzy relation equa-
tions,” Information and Control, vol. 30, no. 1, pp. 38–48,
1976.

[19] E. Sanchez, “Solutions in composite fuzzy relation equations.
Application to medical diagnosis in Brouwerian logic,” in
Fuzzy Automata and Decision Processes, M. M. Gupta,
G. N. Saridis, and B. R. Gaines, Eds., pp. 221–234, Elsevier/
North Holland, New York, NY, USA, 1977.

[20] E. Sanchez, “Resolution of eigen fuzzy sets equations,” Fuzzy
Sets and Systems, vol. 1, no. 1, pp. 69–74, 1978.

[21] E. Sanchez, “Compositions of fuzzy relations,” in Advances in
Fuzzy Set,eory and Applications, M.M. Gupta, R. K. Ragade,
and R. R. Yager, Eds., pp. 421–433, North-Holland,
Amsterdam, Netherlands, 1979.

[22] R. Biswas, “Intuitionistic fuzzy relations,” Bull. Sous. Ens.
Flous. Appl., (BUSEFAL), vol. 70, pp. 22–29, 1997.

α3
D + β2

D = 1

α3
F + β3

F = 1

α2
P + β2

P = 1

αI + βI = 1

1

1
0

Figure 2: Comparison of grade space of IFSs, PFSs, FFSs, and (3,
2)-FSs.

Computational Intelligence and Neuroscience 13



[23] S. Kumar, R. Biswas, and A. R. Ranjan, “An application of
intuitionistic fuzzy sets in medical diagnosis,” Fuzzy Sets and
Systems, vol. 117, pp. 209–213, 2001.

[24] P. A. Ejegwa, “Improved composite relation for pythagorean
fuzzy sets and its application to medical diagnosis,” Granular
Computing, vol. 5, no. 2, pp. 277–286, 2020.

14 Computational Intelligence and Neuroscience


