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Abstract: Recently, tools developed for detecting human activities have been quite prominent in
contributing to health issue prevention and long-term healthcare. For this occasion, the current study
aimed to evaluate the performance of eye-movement complexity features (from multi-scale entropy
analysis) compared to eye-movement conventional features (from basic statistical measurements)
on detecting daily computer activities, comprising reading an English scientific paper, watching
an English movie-trailer video, and typing English sentences. A total of 150 students participated
in these computer activities. The participants’ eye movements were captured using a desktop eye-
tracker (GP3 HD Gazepoint™ Canada) while performing the experimental tasks. The collected
eye-movement data were then processed to obtain 56 conventional and 550 complexity features of eye
movement. A statistic test, analysis of variance (ANOVA), was performed to screen these features,
which resulted in 45 conventional and 379 complexity features. These eye-movement features with
four combinations were used to build 12 AI models using Support Vector Machine, Decision Tree, and
Random Forest (RF). The comparisons of the models showed the superiority of complexity features
(85.34% of accuracy) compared to conventional features (66.98% of accuracy). Furthermore, screening
eye-movement features using ANOVA enhances 2.29% of recognition accuracy. This study proves
the superiority of eye-movement complexity features.

Keywords: human activity recognition; eye-movement features; complexity; multi-scale entropy

1. Introduction
1.1. Significance of Computer Activity Recognition on Healthcare Issues

Nowadays, developing a tool or system that can detect and recognize human activities
is quite prominent in providing some health issue prevention and even long-term healthcare
for human beings [1,2]. The biological data comprising human heart rate [3], muscle
activities [2], motion acceleration [4], and eye movement have been involved in developing
certain assistive healthcare systems and technologies. The usage of these biometric data
can help human beings to understand their real-time status during their daily activities.

In the current era, the typical human daily activities are various kinds of computer
activities. The development of information technologies enables people to work more
productively using computers. However, this kind of activity often causes healthcare issues,
comprising musculoskeletal disorders that are caused by typing activity or improper
working posture [5,6], and any vision syndrome (e.g., eye strain, dry eyes) because of
long-term computer usage [7]. Therefore, the posture and working behavior need to be
adjusted according to the task that is being worked on. To understand the best working
posture and behavior, the system first needs to have the capability of recognizing the
user’s computer activity. To fulfill this need, once again, biological data can be utilized in
developing the activity detection model.
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1.2. Eye-Movement Complexity Features for Activity Detection Models

Previous studies acknowledge that eye-movement data has been used to build certain
activity detection models involving Artificial Intelligence (AI) methods [8–10]. The eye
movement data captured by the eye-tracker, comprising eye-fixation, blink, pupil diam-
eters, and saccade, are used to generate certain eye-movement features. Conventionally,
eye movement metrics are static since it just calculates a single specific aspect of vision.
Therefore, it ignores the multiple time scales inherent in such time series [11]. These con-
ventional eye-movement features have been used for building machine learning or deep
learning models to detect computer activities. For example, Bulling et al. [9] generated
19 conventional eye-movement features from eyes saccade, fixation, and blink, tracked us-
ing electrooculography (EOG), to build computer activity detection models using Support
Vector Machine (SVM). Their models resulted in 72.7% of accuracy in detecting reading,
browsing, writing, watching a video, and copying words. Our previous study [8] also
utilized 19 eye-movement features to build AI models to detect reading, watching videos,
and typing activities. The models were developed using Convolutional Neural Network
(CNN), and the 19 eye-movement features were calculated based on raw eye fixation,
pupil diameter, blink, and saccade, tracked using desktop-eye-tracker. The models had an
accuracy between 42.78 and 93.15% (mean: 76.14%) in detecting reading, watching videos,
and typing activities.

Specific eye-movement features were reported to help the built model recognize the ac-
tivities [8]. For example, watching videos and typing activities are best detected using pupil
and blink-related features [8,12,13]. To detect the reading activity, pupil dilation [13,14]
related features are helpful because pupil activities have a high correlation with cognition
and perception [15]. However, these conventional eye-movement features are limited
and sometimes fail to describe the pattern of different activities consistently. The conflict
appeared between the results of our previous study [8] and the results from Bulling et al. [9].
The eye-movement features related to fixation were useful to detect the typing activity
in Bulling et al. [9] but not in our previous study [8]. Therefore, further analysis of the
conventional eye-movement features is needed to have clearer eye-movement data patterns
for distinguishing different computer activities.

Meanwhile, complexity analysis [11] was recently used in certain human biometric
data comprising heart rate [16], cerebral hemodynamics [17], blood pressure [18], and in-
fants’ limb movements [19]. The use of the complexity of these biological data can describe
the human states related to their health conditions [16–18] and activities [19,20]. The benefit
is the potential application to eye-movement features. The result may help AI models built
by using eye-movement complexity features to distinguish different human activities [17]
which then may raise the models’ accuracy in detecting the activities. However, based
on our experience, none of the complexity analysis-related research used eye-movement
features to do any human activity recognition.

1.3. Research Objectives

The conventional eye-movement features mentioned have certain limitations in help-
ing the AI models detect computer activities. On the other hand, the complexity analysis
may have potency in describing the changes in the eye-movement pattern during dif-
ferent computer activities. Therefore, this study aimed to evaluate the performance of
eye-movement complexity features compared to conventional eye-movement features, in
detecting the computer activities, comprising reading an English scientific paper abstract,
watching an English movie-trailer video, and typing English sentences. Both complex-
ity and conventional eye-movement features were evaluated using analysis of variance
(ANOVA) of the General Linear Model that treated participants as random factors and
computer activities as fixed factors, to build three kinds of machine learning (ML) models
comprising Support Vector Machine (SVM), Decision Tree (DT), and Random Forest (RF).
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2. Materials and Methods
2.1. Participant, Apparatus, and Materials

One hundred and fifty colleges and graduate international students from Yuan Ze
University (all of them are Southeast Asian) were recruited (by using a local announce-
ment) and participated in this study, voluntarily. They were between 20 and 27 years old
(mean = 23.52) with the same proportion of female and male composition. Throughout the
experiment, all participants reported having normal or corrected-to-normal vision, and no
color-related vision abnormality was reported.

The apparatus used in this study included a GP3 HD (Gazepoint™ Canada) 150Hz
desktop eye-tracker, an Intel® Core™ i7-6700 built-in personal computer (PC), two screen
monitors with 1280× 1024 display resolution, and a 720p resolution of a webcam (Logitech®

C270). The Gazepoint Analysis™ software installed on the PC was used to operate the eye-
tracker and record the collected data. The activities during the experiment were recorded
using a webcam. Each stimulus was shown on a screen in front of the participant, and
the other screen was used to operate the computer and run the installed related software.
These apparatuses were set in a controlled condition room, with approximately 600 lx of
illuminance and 23–24 ◦C temperature, as shown in Figure 1.
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Figure 1. Apparatus and participant setting during the experiment.

Experimental stimuli were a video, English sentences, and an English journal paper.
The video, a movie trailer (https://bit.ly/watch-stimulus accessed on 5 February 2020)
with approximately 64 dB, was used for the watching; the English sentences, taken from
Liu et al. [21], were used for the typing activity; and the journal paper [22] was used for the
reading activity.

2.2. Experimental Setting and Task

During the experiment, as shown in Figure 1, the participant sat on the right side at a
distance of approximately 55–65 cm from the screen monitor. In front of the monitor, the eye-
tracker was placed to record the participant’s eye movements. The experimenter, who sat
on the left side, explained verbally and in writing the experiment objective and procedure
to the participant before beginning the experiment. The experimenter showed the stimuli
to the participant and confirmed whether the participant was able to watch or read the
stimuli. During the explanation, the participant was allowed to speak to ask questions,
but the experimental tasks were performed without talking. However, as described in the
explanation session, the participant was able to stop the experiment at any time. Before
participating in the experiment, all participants signed a consent form allowing their data
to be used for research purposes. As shown in Figure 2, the explanation took about three
minutes and was followed by a half-minute eye-tracker calibration. The participant was
asked to keep his/her head in a certain position to ensure the eyes were well captured
by the eye tracker. However, the participant’s head was not restricted. This procedure
was applied to get accurate and precise eye-movement data from daily activity [23]. After
the calibration, the participant performed a one-minute experimental task and took a one-

https://bit.ly/watch-stimulus
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minute break. The procedure was repeated three times as the participant subsequently
performed reading, watching, and typing tasks. The breaks were arranged to reduce fatigue,
whereas the learning effect was ignorable because all the participants were familiar with
the three computer activities. Considering the participants were international students
enrolled in English-taught courses, and having at least intermediate English proficiency,
therefore they were deemed eligible.
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2.3. Data Preprocessing and Feature Selections

The eye movement data collected by the eye-tracker were processed using Gazepoint
Analysis™ software (Gazepoint, Vancouver, BC, Canada). The processed data consisted
of fixation X- and Y-coordinate positions (FPOGX, FPOGY), fixation duration (FPOGD),
left pupil diameter in both pixels (LPD) and millimeters (LPMM), right pupil diameter
in both pixel (RPD) and millimeters (RPMM), blink duration (BKDUR), blink frequency
(BKPMIN), saccade distance (SAC_MAG), and saccade direction (SAC_DIR). The processed
data had 93.56% mean and standard deviation 0,04 of gaze-data validity; therefore, they
were eligible to be used for further steps [23,24]. All these processed data were then
calculated to generate seven statistical parameters, comprising min, max, median, mean,
standard deviation, variance, and skewness [25–27], resulting in 56 features. A three-second
interval was used to separate the processed data and calculate the statistical parameters.
Therefore, the data collected from a one-minute experimental task resulted in 20 data sets
for each statistical parameter (e.g., mean, max, min, etc.). These data then are called the
“conventional eye-movement features.” The all-conventional eye-movement features were
then screened using ANOVA, with Minitab 18 (Minitab Ltd., Coventry, United Kingdom)
as the statistical package tool.

Besides the conventional eye-movement features, the processed data were also decom-
posed to get the number of intrinsic mode functions (IMFs) by applying the decomposition
of empirical mode (EMD) calculation [28,29]. IMFs consisted of limited simple function
series from raw data X(t) that were filtered in the EMD process. The phase of refining the
raw data X(t) was processed by decomposing them into IMFs, summed up, and last the
leftovers as the formula that is stated in Equation (1).

X̂(t) =
n

∑
i=1

ci(t) + rn(t) (1)

where n = the total of IMFs number; ci = the ith IMFs; rn = the nth residue [28]. EMD
operates without a predefined cut-off frequency as a filter bank [29] and can be used as a
filter series of noise [30].

Each generated IMF from each raw data was then processed to get the multi-scale
entropy (MSE). MSE was initiated by Costa and Goldberger [31] to understand the com-
plexity of time series data from certain biological signals of the human heart rate. MSE
consists of two subsequence steps called coarse-graining operation and sample entropy
calculation. To do the coarse-graining operation for time series y with scale factor τ under
the condition 1 ≤ j ≤ N/τ, the used formula is shown in Equation (2) below [21].

yτ
J =

1
τ

jτ

∑
i=(j−1)τ+1

xi (2)
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where N indicates the amount of dataset, while xi represents the data points in the original
time series. Then, the coarse-grained results were processed to get the sample entropy by
applying Equation (3) below [32].

SampEn(N, m, r) = −ln
Am(r)
Bm(r)

(3)

where m denotes the consecutive data points number, r represents the tolerance of accepting
the match, B indicates the number of vectors Xm(j) within r of Xm(i), and A denotes the
number of vectors Xm+1(j) within r of Xm+1(i). Wolf et al. [33] mentioned that theoretically,
possible and logical estimation for the probabilities can be achieved by setting the value
of N at least 10m to 30m points [21,34,35]. Then to determine the value of r, it followed
the recommendation of Costa et al. [36] with the r range as 0.1~0.2 times the standard
deviation (SD) of original raw time series data. Therefore, to calculate the MSE in this
study, m, r, τ were determined as 2, 0.15SD, and 10, respectively [21,36]. As in conventional
eye-movement features, the all-generated complexity eye-movement features were then
screened using ANOVA, to get the important features.

2.4. AI Modelling for Computer Activities Detection

To compare the effectiveness of ML methods, the statistical screening test, and the com-
plexity method, three ML methods, comprising Support Vector Machine (SVM), Decision
Tree (DT), and Random Forest (RF), were applied to four data sets to build 12 models. The
four data sets were the combinations of screened and unscreened features and conventional
and complexity features.

The SVM models were built using default values of modeling parameters based on
scikit-learn 1.0.2 [37,38]. The models from DT were developed using a default random
state, with a maximum depth of 10 and minimum samples leaf 7. The RF models were
built using 5 maximum depths and 1000 trees in the forest [39]. The summary of AI
models’ architecture is shown in Table 1 below. A total of 80% of the dataset was used as
training, and 20% was used as a testing part. The training and testing dataset were selected
randomly. Each AI model had six replications to get the average and standard deviation of
recognition accuracy.

Table 1. The Architectures of AI Models.

No. ML Method Special Parameters

1 SVM Default

2 DT • Max depth: 5;
• Min. samples leaf: 7

3 RF • Max depth: 5;
• n_estimators: 1000

3. Results
3.1. Important Eye-Movement Features Screened Using ANOVA

All 56 conventional eye-movement features were then tested using ANOVA. In the
ANOVA tests, p-values of 0.05, 0.01, and 0.001 were set as the thresholds to screen the
critical features. The screened features are shown in Table 2, in which a total of 45 features
(items with ‘*’) were found critical—the computer activity had significant effects on these
critical features.
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Table 2. Screened conventional eye-movement features using the ANOVA method from the eye-
movement features.

Features
Statistic

Mean STD Var Median Max Min Skew
FPOGD *** *** *** *** *** **

LPD *** *** *** *** *** ***
LPMM *** *** *** *** *** *** *

RPD *** *** *** *** *** ***
RPMM *** *** *** *** *** *** ***
BKDUR *** *** *** *** *** *** ***
BKPMIN

SAC_MAG *** *** *** *** *** ***
* indicates p-value < 0.05; ** indicates p-value < 0.01; *** indicates p-value < 0.001; grey-color shaded cell indicates
p-value > 0.05.

Moreover, the MSE analysis resulted in 550 numbers of features, and then they were
screened using ANOVA, which resulted in 379 numbers of features. These features were
called the “eye-movement complexity features.” The summary of the screened features, the
complexity index (CI), is shown in Table 3 below. CI is the sum of sample entropy value
from time scale i = 1 to τ, that describes the system integrated complexity [40].

Table 3. Screened Eye-movement Complexity Features from CI of all IMF.

#of IMF
Using CI

Eye-Movement Complexity Features

FPOGD FPOGX FPOGY LPCX LPCY LPD RPD LPMM RPMM
IMF 1 *** *** *** *** *** *** *** ***
IMF 2 * *** *** *** *** *** *** *** ***
IMF 3 *** *** *** *** *** *** *** *** ***
IMF 4 *** *** *** *** *** ** *** ***
IMF 5 *** ** *** ** *** *** ***
IMF 6 *** *** * **

* indicates p-value < 0.05; ** indicates p-value < 0.01; *** indicates p-value < 0.001; grey-color shaded cell indicates
p-value > 0.05.

3.2. Computer Activities Detection Models Performances

Each of the twelve ML models was replicated six times. For the conventional eye-
movement features, six models were built and the results from important feature groups
show that the average accuracy from six replications for SVM, DT, and RF were 52.00%,
66.67%, and 71.33%, respectively. As shown in Figure 3, the accuracy of the RF model built
using ANOVA screened features was significantly higher (p-value < 0.001) compared to
the accuracy of the RF model built using all features (66.61%). This significant difference
in accuracy was shown using unshared letters inside the bars. The result of the SVM
model built using screened features obtained the highest accuracy among the models built
using conventional eye-movement features. On the other hand, the results from SVM
and DT models built using important features were not significantly different compared
to the accuracy from SVM and DT models built using all features (51.84% and 66.67%,
respectively). This significant difference in accuracy was shown using shared letters inside
the bars. The confusion matrices in Table 4 describe the different prediction results between
ML models built using all conventional eye-movement features and important conventional
eye-movement features only (represented by RF models, due to higher accuracy results).
Values in tables are mean with SD in parentheses from the average of six RF models’
replications. The better accuracy should show higher values in diagonal cells with 100%
maximum values and zero SD. The higher values show the bolder red highlight that
indicates the model is able to predict the computer activity from testing data more accurately
compared to the lighter highlighted one.
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Table 4. Confusion matrices of the RF Models built both using all and important conventional
eye-movement features.

RF All Conventional
Eye-Movement Features (56)

RF Important Conventional
Eye-Movement Features (45)

Mean (SD)
Predicted

Mean (SD)
Predicted

Reading Typing Watching Reading Typing Watching

A
ct

ua
l

Reading 1.90
(0.00)%

1.37
(0.00)%

26.89
(0.01)%

A
ct

ua
l

Reading 11.32
(0.03)%

0.27
(0.00)%

18.57
(0.04)%

Typing 0.53
(0.00)%

29.31
(0.01)%

0.32
(0.00)% Typing 0.44

(0.01)%
28.63

(0.07)%
1.08

(0.00)%

Watching 0.32
(0.00)%

0.78
(0.01)%

29.05
(0.01)% Watching 4.97

(0.01)%
0.60

(0.00)%
24.59

(0.01)%
The accuracy degree is denoted by shading, with lighter hues indicative of lower accuracy and darker hues
indicating higher accuracy (white indicates 0% and red represents 100%).

The comparison in Table 4 helps to understand how the important features play a
significant role in distinguishing computer activities. The confusion matric of the RF model
built using all conventional eye-movement features shows that the model confused to
predict reading activity to watching activity (1.90%). After the features were screened, the
accuracy to predict the reading activity significantly raised to 11.32%. Although the value
is low, it was able to improve the model accuracy significantly, from 66.61% to 71.33%. The
confusion matrices from DT and SVM models were not provided here because the results
from these models were not significantly different.

Meanwhile, in eye-movement complexity features groups, there were also six ML
models each of which was run six times for replications. The prediction accuracies of
the AI models comprising SVM, DT, and RF, built using all eye-movement complexity
features were 75.52%, 73.02%, and 84.30% on average, respectively. As shown in Figure 4, a
significant improvement in the average accuracies was obtained in DT (p-value < 0.05) and
RF (p-value < 0.01) models with 74.83% and 86.59% accuracies, respectively. Similar to the
results in the conventional eye-movement features group, the screened important features
in the complexity group did not show significant improvement compared to the SVM
model built using all eye-movement complexity features, with a 76.07% accuracy average.
The confusion matrices for the models showed accuracy improvement (Table 5) and gave
detailed descriptions that the important eye-movement complexity features helped the DT
and RF models to increase the ability for predicting the reading activity (18.81 % to 19.97%
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in DT and 22.18% to 23.89% in RF). The confusion matrices from the SVM models were not
provided here, because the results from these models were not significantly different.

Healthcare 2022, 10, x FOR PEER REVIEW 8 of 13 
 

 

significant improvement in the average accuracies was obtained in DT (p-value < 0.05) and 
RF (p-value < 0.01) models with 74.83% and 86.59% accuracies, respectively. Similar to the 
results in the conventional eye-movement features group, the screened important features 
in the complexity group did not show significant improvement compared to the SVM 
model built using all eye-movement complexity features, with a 76.07% accuracy average. 
The confusion matrices for the models showed accuracy improvement (Table 5) and gave 
detailed descriptions that the important eye-movement complexity features helped the 
DT and RF models to increase the ability for predicting the reading activity (18.81 % to 
19.97% in DT and 22.18% to 23.89% in RF). The confusion matrices from the SVM models 
were not provided here, because the results from these models were not significantly dif-
ferent. 

 
Figure 4. Accuracy comparison of 6 types of ML models built using eye-movement complexity fea-
tures. The number of used features for building the models is indicated by numbers in parentheses. 
Means that do not share a letter are significantly different. 

Table 5. Confusion matrices of the DT and RF Models were built both using all-important complex-
ity features. 

DT All Conventional 
Eye-movement Features (550) 

DT Important Complexity 
Eye-movement Features (379) 

Mean (SD) 
Predicted 

Mean (SD) 
Predicted 

Reading Watching Reading Reading Watching Typing 

A
ct

ua
l 

Reading 18.81 
(0.05)% 

8.90 
(0.02)% 

2.46 
(0.01)% 

A
ct

ua
l 

Reading 19.97 
(0.05)% 

8.57 
(0.02)% 

1.61 
(0.00)% 

Watching 7.15 
(0.02)% 

20.80 
(0.05)% 

2.20 
(0.01)% Watching 7.76 

(0.02)% 
20.96 

(0.05)% 
1.44 

(0.01)% 

Typing 1.62 
(0.00)% 

2.08 
(0.01)% 

26.46 
(0.01)% 

Typing 1.97 
(0.01)% 

1.42 
(0.01)% 

26.77 
(0.07)% 

RF All Conventional 
Eye-movement Features (550) 

RF Important Complexity 
Eye-movement Features (379) 

Mean (SD) 
Predicted 

Mean (SD) 
Predicted 

Reading Watching Typing Reading Watching Typing 

A
ct

ua
l Reading 

22.18 
(0.06)% 

6.85 
(0.01)% 

1.13 
(0.00)% 

A
ct

ua
l Reading 

23.89 
(0.06)% 

5.48 
(0.48)% 

0.73 
(0.01)% 

Typing 
5.03 

(0.01)% 
24.42 

(0.07)% 
0.71 

(0.00)% Typing 
4.58 

(0.01)% 
24.69 

(0.07)% 
0.91 

(0.00)% 

ML Method

ANOVA Screened

RFDT
SV

M

YES (
37

9)

NO (5
50

)

YES (
3 79

)

NO (5
50)

YES (
37

9 )

NO (5
50

)

100

90

80

70

60

50

40

30

20

10

0

A
cc

ur
ac

y 
(%

)

NO (550)
YES (379)

Screened
ANOVA

86.5984.30
74.8373.0276.0775.52

95% CI for the Mean

A

B

CCC

D

Figure 4. Accuracy comparison of 6 types of ML models built using eye-movement complexity
features. The number of used features for building the models is indicated by numbers in parentheses.
Means that do not share a letter are significantly different.

Table 5. Confusion matrices of the DT and RF Models were built both using all-important complex-
ity features.

DT All Conventional
Eye-movement Features (550)

DT Important Complexity
Eye-movement Features (379)

Mean (SD)
Predicted

Mean (SD)
Predicted

Reading Watching Reading Reading Watching Typing

Actual
Reading 18.81

(0.05)%
8.90

(0.02)%
2.46

(0.01)%
Actual

Reading 19.97
(0.05)%

8.57
(0.02)%

1.61
(0.00)%

Watching 7.15
(0.02)%

20.80
(0.05)%

2.20
(0.01)% Watching 7.76

(0.02)%
20.96

(0.05)%
1.44

(0.01)%

Typing 1.62
(0.00)%

2.08
(0.01)%

26.46
(0.01)% Typing 1.97

(0.01)%
1.42

(0.01)%
26.77

(0.07)%
RF All Conventional

Eye-movement Features (550)
RF Important Complexity

Eye-movement Features (379)

Mean (SD)
Predicted

Mean (SD)
Predicted

Reading Watching Typing Reading Watching Typing

Actual
Reading 22.18

(0.06)%
6.85

(0.01)%
1.13

(0.00)%
Actual

Reading 23.89
(0.06)%

5.48
(0.48)%

0.73
(0.01)%

Typing 5.03
(0.01)%

24.42
(0.07)%

0.71
(0.00)% Typing 4.58

(0.01)%
24.69

(0.07)%
0.91

(0.00)%

Watching 0.15
(0.00)%

0.34
(0.00)%

29.67
(0.07)% Watching 0.23

(0.02)%
0.20

(0.00)%
29.75

(0.08)%
The accuracy degree is denoted by shading, with lighter hues indicative of lower accuracy and darker hues
indicating higher accuracy (white indicates 0% and red represents 100%).

Based on the results above, the comparison between the model’s performances from
conventional and eye-movement complexity features is shown in Figure 5 below. This
figure shows that the models built using eye-movement complexity features resulted in
significantly higher performance in detecting the computer activities. No matter what
AI method was used to build the models, in both screened (p-value < 0.01) and all fea-
tures (p-value < 0.05) groups, the accuracy from the eye-movement complexity features
group consistently showed significantly higher. However, similar to the results above,
the RF models resulted in the highest performance among the other models, significantly
(p-value < 0.001).
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4. Discussion
4.1. Roles of Screened Important Features to Help AI for Distinguishing the Computer Activities

The results of the accuracy detection indicate that screened important features have
the ability to help AI models distinguish the different computer activities. The statistical
analysis (ANOVA) selected the features that are more influenced by the different computer
activities. For example, the ANOVA results show that left pupil diameters (LPD) were
significantly influenced by the different computer activities, with watching activity causing
the widest pupil diameter (19.93 pixels compared to 19.34 pixels in typing and 17.97 pixels in
reading). The inclusion of conventional LPD to the important conventional eye-movement
features helped the SVM model to improve its ability to discriminate the reading and
watching activities. Table 4 describes how well the important conventional eye-movement
features raise the accuracy in detecting the reading activity instead of confusing to watching
activity, as happened in the RF model built using unscreened features (1.9% to 11.32%).
This finding confirmed our previous study [8] and a study conducted by Yamada and
Kobayashi [13], which also involved pupil dilation on the critical eye-movement features.

The decreasing trend of confusedness in other cells also indicated an improvement in
detection performances. For example, the 1.47% data from reading activity were falsely
detected as typing activity (RF all features group). This confusedness was decreased to
0.27% by using important features only. Moreover, the improvement was more obvious in
complexity groups. Figure 5 shows that AI models, built using DT and RF methods, were
improved after applying the important features as the predictors. The sensitivity of these
AI models significantly increased after excluding the features that were not affected by
different kinds of computer activities. These results confirm the recommendation in [8,41]
to use ANOVA which proved to be the most potent selector on features engineering, specific
for eye-movement data. However, the ANOVA selection method did not give significant
help for SVM detection models, both in conventional and complexity groups. It confirmed
certain findings that recommended SVM-based features selection methods, e.g., L-J (Lothar-
Joachim) method [42,43], embedded features selection method [44], or Fisher method [45],
to deal with biometric-based features used in SVM models.

4.2. Complexity Eye-Movement Features Potency for AI Modelling

The results that are shown in Figure 5 obviously describe how complexity features have
strengthened the AI models to discriminate the different computer activities. Even though
both use all features or only important features, eye-movement complexity features are
consistently superior in detecting computer activities. The basic nature of complexity-based
features that are containing “implicit” information about body responses to the human
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activity and states [46,47] has benefited AI models to help them to overcome the prediction
confusedness (compare Table 4 with Table 5). As was expected, the findings in this study
prove that complexity analysis is also suitable for eye-movement-based data, as useful
as its usage in human heart rate [16], cerebral hemodynamics [17], blood pressure [18],
and body movements [19,48] data. Moreover, the experimental procedure that resulted in
moderate head movement also confirmed that AI models would be suitable for everyday
use in distinguishing computer activities in daily life.

4.3. Contribution, Possible Applications in Healthcare, and Future Research

The results of this study were focused on showing how powerful eye-movement
complexity features are for building AI models on human activity detection. The findings
also stated that complexity analysis of eye-movement data is beneficial to describe the
human body response. Specifically, these discoveries have contributed to promoting
complexity analysis usage for showing the human body data changes that represent their
real-time status during daily activities. The generated eye-movement complexity features
are precious treasures for developing certain assistive healthcare systems and technologies
that require distinguishable biological data in the near future. Moreover, the findings can be
a strong foundation for further applications, e.g., eye fatigue, cognitive or mental workload,
and emotional state detection for computer users. These states are affecting factors for
human health conditions [7,49,50].

However, the relation between each eye-movement complexity feature to the different
computer activities is not discussed yet in this study. The information related to this issue
needs to be dug. It is recommended to find the statistical correlation between them in
future works in order to find more precise predictors for specific computer activity, as was
done on eye-movement conventional features [8,13]. Once it is done, the AI modeling
experts in the healthcare field will have more understanding of human complexity changes
in responding to the different computer activities. Regarding the experiment procedure,
we suggest that the placement of two computer screens should be rearranged to minimize
participant distraction in future works.

5. Conclusions

This follow-up study from previous work [8] shows the eye-movement complexity
features potency to build AI models for detecting computer activities. By involving enough
participants, the AI models that were built using eye-movement complexity features were
able to detect three kinds of computer activities (reading, watching a video, and typing)
with significantly better results than in the conventional eye-movement features group.
The usage of ANOVA to select the important eye-movement features was also helpful
in strengthening the AI models’ detection ability. However, the study had not explained
the statistical relation between the humans’ complexity represented by their visions of
the computer activities yet. Future works need to be performed to explore the correlation
between them as the foundation for choosing more features correlated with the specific
computer activities (e.g., reading, typing, watching, drawing, etc.) or any other occasion
(e.g., emotion, fatigue, cognitive workload states).
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