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Abstract

Nephronophthisis-related ciliopathies (NPHP-RC) are recessive disorders featuring dysplasia or 

degeneration preferentially in kidney, retina, and cerebellum. Here we combine homozygosity 

mapping with candidate gene analysis by performing “ciliopathy candidate exome capture” 

followed by massively-parallel sequencing. We detect 12 different truncating mutations of 

SDCCAG8 in 10 NPHP-RC families. We demonstrate that SDCCAG8 is localized at both 

centrioles and directly interacts with NPHP-RC-associated OFD1. Depletion of sdccag8 causes 

kidney cysts and a body axis defect in zebrafish and induces cell polarity defects in 3D renal cell 

cultures. This work identifies SDCCAG8 loss of function as a novel cause of a retinal-renal 

ciliopathy and validates exome capture analysis for broadly heterogeneous single-gene disorders.

INTRODUCTION

Nephronophthisis (NPHP) is a recessive cystic kidney disease that represents the most 

frequent genetic cause of end-stage kidney disease in the first three decades of life. NPHP-

related ciliopathies (NPHP-RC) are single-gene recessive disorders, which cause retinal-

renal ciliopathies that affect kidney, retina, brain and liver by prenatal-onset dysplasia or by 

childhood-onset tissue degeneration. So far 9 different NPHP genes have been identified as 

causing NPHP-RC (NPHP1-NPHP9)1-11. The finding that proteins mutated in cystic 

kidney diseases are located at the primary cilium-centrosome complex provided a unifying 

disease mechanism for NPHP-RC characterizing them as ciliopathies. Many of the NPHP-
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RC gene products interact at the cilium-centrosome complex throughout the cell cycle. We 

recently demonstrated in a large cohort of 1,167 families with NPHP-RC that in more than 

70% of cases the causative gene is unknown12. Furthermore, in families with severe forms 

of NPHP-RC we did not detect a mutation in any of the nine known NPHP-RC causing 

genes in 90 of 120 families (75%) (Otto et al., unpublished). Upon homozygosity mapping, 

50 of these families exhibited putative homozygous disease loci, of which more than 30 

showed no positional overlap, strongly indicating that many additional recessive NPHP-RC 

genes must exist.

RESULTS

Homozygosity mapping focuses exome capture

The finding that recently discovered NPHP-RC genes caused the disorder only in a small 

number of cases (<1%)9 necessitated the ability to map and identify disease genes in single 

families. We therefore developed a strategy that combines homozygosity mapping in single 

families13 with exon capture and consecutive massively parallel (MP) sequencing.14 Using 

the NimbleGen™ 385k platform we designed a ciliopathy candidate exon capture (CEC) 

array”, which contains oligonucleotides that interrogate ~13,000 exons from the “UCSC 

Gene” annotation (genome.ucsc.edu) of 828 NPHP-RC candidate genes. Candidates were 

derived from ciliopathy animal models, from the photoreceptor sensory cilia proteome15 

and other candidate sources16 (Supplementary Table 1 Online).

Because exon capture with consecutive MP sequencing bears the problem of yielding too 

many variants from normal reference sequence (VRS) for making a safe call regarding the 

disease-causing mutation14, we devised a strategy of a priori reduction of VRS 

(Supplementary Table 1). These a priori restriction criteria consisted of, i) capturing only 

~13,000 ciliopathy candidate exons instead of all ~180,000 CCDS exons (~15-fold 

reduction) (Supplementary Table 1), ii) evaluation of coding SNPs, splice variants and 

indels only (as other variants will be difficult to interpret), iii) absence of VRSs from a 

database of innocuous single nucleotide polymorphisms (dbSNP130) (2.3-fold reduction), 

iv) evaluation only within the mapped homozygous candidate region of an individual or 

family (~20-fold reduction), and v) preferential evaluation of truncating mutations (~4-fold 

reduction). This approach allowed a mean reduction of VRS by ~2,760-fold and led to the 

identification of the disease-causing gene in 3 out of 5 attempts (Supplementary Table 1). 

Homozygous mutations were discovered in the known NPHP-RC genes AHI1 (family 

A2045) and INVS (family A128) (Supplementary Table 1 Online). More importantly, a 

homozygous mutation was discovered in SDCCAG8 as a novel cause of NPHP-RC.

Null-mutations of SDCCAG8 cause retinal-renal degeneration

Specifically, in consanguineous family SS23/A1365 two siblings had Senior-Loken 

syndrome (SLSN), the association of nephronophthisis with retinal degeneration. 

Homozygosity mapping using the Affymetrix 250k StyI SNP platform yielded four segments 

of homozygosity (Fig. 1a).13 Because none of the 4 homozygous segments (red circles in 

Fig. 1a) coincided with any of the 9 known gene loci for NPHP-RC (dashed lines in Fig. 1a) 

we hypothesized that SLSN in SS23/A1365 must be caused by recessive mutations of a 
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novel NPHP-RC causing gene. Exon capture and MP sequencing (Fig. 1b) led to the 

identification of a homozygous truncation mutation (p.E474fsX493) in SDCCAG8 (Fig. 1c-

f, Table 1).

When investigating 11 families with NPHP-RC, in whom we had demonstrated 

homozygosity at the SDCCAG8 locus13 we detected four additional homozygous mutations 

(Fig. 1f). These were, (i) a deletion of exons 5-7 in F159, (ii) an obligatory splice site 

mutation (c.1068+1G>A) in A2290, (iii) a homozygous 1-bp insertion (resulting in 

p.E447fsX463) in SS-F336, and (iv) a homozygous nonsense mutation (p.L599X) in F1054. 

Direct exon sequencing of 118 families with SLSN yielded a 4-bp deletion resulting in a 

reading frame shift of the deduced amino acid sequence (p.C649fsX658) in F195 (Fig. 1f 

and Table 1). No mutations were detected by direct exon sequencing in 54 families with 

Joubert syndrome who had renal involvement with NPHP. All mutations were absent from 

>270 healthy control individuals and from healthy controls of the “1,000 genomes project” 

(http://www.1000genomes.org/page.php) (Table 1).

Furthermore, an independent homozygosity mapping study (using the Affymetrix 6.0 SNP) 

was carried out on 22 consanguineous families diagnosed as having Bardet-Biedl syndrome 

and for which no mutation was detected on genomic sequencing of 12 known BBS genes. A 

unique segment of homozygosity was identified for a large family (FI.2) on chromosome 1 

(240 - 242.38 Mb) encompassing 5 genes (PLD5, CEP170, SDCCAG8, AKT3, ZNF238), for 

which sequencing of all coding exons was normal. Subsequently, RT-PCR with overlapping 

primer sets for the five genes was performed on RNA from fibroblast cell lines derived from 

the four affected family members. Abnormal fragments were obtained when amplifying 

exons 7 and 8 of SDCCAG8 (Supplementary Fig. 1 Online A,B). Sequencing of the products 

revealed various complex aberrant intron 7 insertions with a homozygous deep intronic 

mutation, c.740+356c>t, predicted to cause loss of an Exonic Splice Enhancer (ESE) site 

with the result of aberrant splicing introducing an in-frame stop codon (Supplementary Fig. 

1 Online C-E).17 This leads to almost complete absence of the full-length SDCCAG8 

product as confirmed by RT-PCR and immunoblotting (Supplementary Fig. 1 Online F-H). 

The finding that some residual full-length splice product and protein product remains 

(Supplementary Fig. 1 Online A,B and F-H) may explain the relatively late onset of renal 

failure and retinal degeneration observed in this kindred (Table 1).

Quantitative PCR analysis performed with primers bordering exons 8 and 9 amplified a 

significantly lower level of RNA compared to the control and Western blot confirmed trace 

amounts of protein (data not shown). The mutation was absent from >270 healthy control 

individuals and segregated with the disease in the family. In the same study, another 

consanguineous family (FII.22) with two siblings diagnosed with BBS (on the basis of 

obesity and mild mental retardation) showed overlapping homozygosity for the same 

chromosome 1 region. Exon sequencing of SDCCAG8 revealed a homozygous nonsense 

mutation (p.K227X). Because of these data, we initiated an unbiased (with regard to 

mutations at other loci) sequencing of SDCCAG8 in 96 unrelated BBS patients and found 

two families in which compound heterozygous loss of function mutations appeared 

sufficient to cause the disorder. Family NK-F1063 carried two deletions, causing frame 

shifts (p.T482fsX493 and p.D543fsX566), whereas in AR37, we found a nonsense allele and 
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a frame shifting deletion (p.Y232X and p.R247fsX250) (Table 1). Both families had some 

of the six primary features of BBS (retinal degeneration, postaxial polydactyly, truncal 

obesity, learning disabilities, hypogonadism and renal anomalies).18 However, none of the 

patients had polydactyly (Table 1). We also detected two unique heterozygous alleles in two 

additional families, a p.E520G change in Northern European family AR605, and an 

p.E531K in middle-Eastern family KK11 (data not shown). No SDCCAG8 mutation was 

identified in 40 other BBS families, who did not carry a known BBS gene mutation. 

Likewise, no mutations were detected upon direct exon sequencing of 90 unrelated famlies 

with isolated juvenile-onset retinitis pigmentosa. All individuals from 10 families with 12 

different homozygous or compound heterozygous truncating mutations in SDCCAG8 had 

nephronophthisis and retinal degeneration (Senior-Loken syndrome) (Table 1). Some had 

mild mental retardation, and two had signs of Bardet-Biedl syndrome (obesity and 

hypogenitalism).19 We thus identified recessive mutations of SDCCAG8 as a new cause of 

SLSN with some additional BBS-related features. Interestingly, all 10 families had two 

truncating mutations and exhibited a degenerative phenotype of kidney and eye only. 

Recessive mutations in SDCCAG8 explain 3.3 % (6/182) of cases in our worldwide SLSN 

cohort. To indicate the phenotypic relation of SDCCAG8 loss of function to other NPHP-RC 

we gave the related protein the aliases “SLSN7” and “NPHP10.

SDCCAG8 spans 244 kb on chromosome 1q44 (Fig. 1c). Up to 22 different putative 

alternatively spliced SDCCAG8 transcripts encoding different proteins have been proposed 

(www.aceview.org). To identify the relevant transcripts we designed primers 

complementary to the different potential splice variants and confirmed by sequencing the 

existence of 3 SDCCAG8 isoforms in retinal hTERT-RPE1 cells (Supplementary Fig. 3A). 

The full-length cDNA of SDCCAG8 (isoform-a; NM_006642) encodes an 82.7-kDa protein 

(713 amino acids) (Fig. 1d). Isoform-b lacks exon 6 compared to isoform-a, and isoform-e is 

C-terminally truncated beyond exon 9 (Supplementary Fig. 2I). Northern blot analysis had 

described a single 3.3 kb band expressed at low levels in mouse liver, spleen, kidney, brain, 

heart and muscle, consistent with the full-length (isoform-a) of 3,267 nt.20 The full-length 

cDNA of SDCCAG8 encodes an 82.7-kDa protein (713 amino acids) (Fig. 1e). Northern blot 

data and the finding that homozygous truncating mutations are found in most exons of full-

length isoform-a (Fig. 1d-f) support the notion that this full-length isoform is the relevant 

one for the retinal-renal phenotype of this disease. Analysis of the deduced SDCCAG8 

amino acid sequence yielded an N-terminal globular domain, a nuclear localization signal, 

and eight putative coiled-coil domains (Fig. 1e).20 Coiled coil domains represent a feature 

that is shared by most proteins mutated in NPHP-RC. Nuclear localization signals are also 

found in INVS and CEP290.21 In addition to being part of the photoreceptor sensory cilium 

proteome, SDCCAG8 (“serologically defined colon cancer antigen 8”; also known as 

CCCAP) is part of the human centrosomal proteome.22 The predicted SDCCAG8 protein 

sequence is highly conserved including Ciona intestinalis (sea squirt) (XP_002120666.1, 

20% identity), and D. melanogaster (NP_732086.1; 16% aa identity), suggesting a 

conserved function of the domain assembly (Data available from the authors). By yeast-2-

hybrid interaction the SDCCAG8 protein had been shown to homodimerize.20
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SDCCAG8 colocalizes with other NPHP-RC proteins at centrosomes

Because SDCCAG8 has been described as part of the human centrosomal proteome20,23, 

and since a defining feature of NPHP-RC proteins is their expression at centrosomes12,24, 

we evaluated SDCCAG8 subcellular localization using immunofluorescence studies in the 

renal epithelial cell line MDCK-II (Fig. 2).

For this purpose we generated antibodies against N-terminal and C-terminal peptides of 

human SDCCAG8 (Fig. 1e). Antibodies α-SDCCAG8-NR, α-SDCCAG8-NG (raised 

against N-terminal peptides in rabbit and guinea pig, respectively) and α-SDCCAG8-CG 

(raised against C-terminal peptide in guinea pig) recognized upon immunoblotting 

endogenous and stably overexpressed SDCCAG8 full-length isoform-a of human and mouse 

SDCCAG8 (Supplementary Fig. 2A). α-SDCCAG8-NR also recognized isoform-a of 

zebrafish (Supplementary Fig. 2B). Upon coimmunoprecipitation of human retinal epithelial 

cell (hTERT-RPE) lysates with antibody α-SDCCAG8-PR (Proteintech, rabbit) 

immunoblotting recognized the SDCCAG8 full-length isoform-a (83 kDa) and isoform-b 

(78 kDa) when antibodies α-SDCCAG8-PR, α-SDCCAG8-NR, α-SDCCAG8-NG or α-

SDCCAG8-CG were used. In contrast to antibodies α-SDCCAG8-PR and α-SDCCAG8-

NR, α-SDCCAG8-CG did not recognize the short isoform-e at 41 kDa (Supplementary Fig. 

2C-F), as the respective peptide is not part of short isoform-e (Fig. 1e). Immunofluorescence 

studies confirmed that these antibodies recognize overexpressed SDCCAG8 upon indirect 

immunofluorescence (Supplementary Fig. 3A-C) and that α-SDCCAG8-PR and α-

SDCCAG8-NG colocalize in connecting cilia of mouse photoreceptors (Supplementary Fig. 

3C). Taken together, these data demonstrate that these antibodies are specific for the full-

length SDCCAG8 isoform-a and antibodies -PR and -NR also recognize C-terminal short 

isoform-e. We confirmed the presence of SDCCAG8 isoforms-a, -b and -e (Supplementary 

Fig. 3A) by RT-PCR in hTERT-RPE cells and direct sequencing (data not shown).

When we evaluated SDCCAG8 subcellular localization by immunofluorescence studies in 

the MDCK-II renal epithelial cell line, we found that SDCCAG8 localizes to centrosomes, 

however in a location set apart from the γ-tubulin signal that marks centrioles (Fig. 2a), and 

set apart from the signal of Cep164 that marks distal centrosomal appendages (Fig. 2b)22. In 

contrast, there was tight colocalization with ninein, a marker of centrosomal appendages 

(Fig. 2c)22. Colocalization was found between SDCCAG8 and NPHP5/IQCB1 (Fig. 2d) as 

well as OFD1 (Fig. 2e), which are mutated in NPHP-RC. By expression of human 

SDCCAG8 in mIMCD3 mouse renal epithelial cells we demonstrated expression of full-

length isoform-a at centrosomes, whereas the N-terminal short isoform-e was primarily 

located in the cytoplasm (Supplementary Figure 2D). In addition, there was localization of 

SDCCAG8 at cell-cell junctions (Fig. 2a-e)25 similar to what has been described for NPHP1 

and NPHP4.

SDCCAG8 occurs at centrosomes throughout the cell cycle

Because proteins mutated in NPHP-RC localize to cilia and centrosomes, which become the 

mitotic spindle poles bodies24, we examined subcellular SDCCAG8 localization in relation 

to cell cycle in MDCK-II cells using γ-tubulin as a centrosomal marker (Supplementary Fig. 

4) and α-tubulin as a cytoplasmic microtubule marker (Supplementary Fig. 5). We 

Otto et al. Page 5

Nat Genet. Author manuscript; available in PMC 2011 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



demonstrate in cells stably transfected with C-terminally GFP-labelled SDCCAG8, that 

SDCCAG8 localizes to the centrosomes throughout the cell cycle, as shown by its co-

localization with γ-tubulin (Supplementary Fig. 4) and α-tubulin (Supplementary Fig. 5), 

respectively. Additionaly, in both hTERT-RPE1 (ciliated; Supplementary Fig. 6A-B) and 

U2OS osteosarcoma cells (non ciliated; Supplementary Fig. 6C-D), SDCCAG8 localizes to 

each centriole on a centrosome. Similar to what has been described for OFD1,25 SDCCAG8 

is present in all cell cycle phases at the distal part of both centrioles as shown by its co-

localization with centrin, a distal centriolar marker (Supplementary Fig. 6A and C). The 

finding that SDCCAG8 is present even in non-ciliated cells and occurs at both centrioles 

may indicate a more general role in centrosomal function. We conclude that SDCCAG8 is 

located at the distal ends of both centrioles and that it colocalizes to centrosomes throughout 

the cell cycle together with other proteins that are mutated in NPHP-RC.

SDCCAG8 directly interacts with OFD1

To further characterize the protein complex in which SDCCAG8 participates, we performed 

yeast two-hybrid screening of a human retinal cDNA library, using SDCCAG8 as bait. Both, 

with full-length SDCCAG8 as well as with a C-terminal fragment (aa 533-713) (Fig. 3 a and 

b), we identified OFD1 as a direct interaction partner of SDCCAG8. The C-terminal OFD1 

region containing the last two out of six predicted coiled-coil motifs (aa 615-1012) was 

found to bind to the C-terminal region of SDCCAG8 (aa 533-713) that also carried two 

predicted coiled-coil motifs (Fig. 3c). The identified interaction was validated by GST pull-

down experiments (Fig. 3d) and co-immunoprecipitation (Fig. 3e).

Dominant mutations of OFD1 cause oral-facial-digital syndrome type 1, a male-lethal X-

linked dominant condition, and recessive OFD1 mutations cause the NPHP-RC Joubert 

syndrome and X-linked recessive Simpson-Golabi-Behmel syndrome type 2 (SGBS2)26. 

Whereas dominant mutations in OFD1 abolish its interaction and its pericentriolar 

localization, recessive mutations only weaken OFD1 interaction with lebercilin (LCA5)26. 

To explore the hypothesis that a loss of binding to OFD1 as result of mutations in 

SDCCAG8 underlies the disease mechanism for SLSN in patients carrying SDCCAG8 

mutations, we tested whether the SDCCAG8 mutations, p.C649fsX658 or p.E474fsX493, 

affect interaction with OFD1. In a liquid β-galactosidase assay, demonstrating activation of 

the LacZ reporter, we identified that only the SDCCAG8 p.E474fsX493 mutation that 

affects the OFD1 interacting domain completely disrupts the interaction, whereas no 

difference in binding affinity for OFD1 was observed for the C-terminal p.C649fsX658 

mutation (Fig. 3f). Similarly, we also assessed the effects on SDCCAG8 binding affinity of 

six previously published OFD1 mutations, p.K948fs and p.E923fs26, p.I784fs27, 

p.E709fs28, p.N630fs29, and p.S586fs30. All dominant OFD1 mutations disrupted the 

binding, while only the p.E709fs mutation did not affect the affinity for SDCCAG8 (Fig. 

3g).

SDCCAG8 colocalizes with other NPHP-RC proteins to photoreceptors

To elucidate the role of SDCCAG8 in the pathogenesis of NPHP-RC we examined 

expression of SDCCAG8 and other proteins mutated in NPHP-RC for potential 

colocalization in mouse retina using indirect immunofluorescence studies (Fig. 4). We detect 
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a strong signal for SDCCAG8 with antibody α-SDCCAG8-CG in transition zone and a 

weaker signal in inner segments of mouse photoreceptors (Fig. 4a). This localization was 

confirmed at high resolution-3D fluorescence imaging following electroporation of two 

different human SDCCAG8 constructs into rat retina (Fig. 4b-c). Specifically, human full-

length SDCCAG8 isoform-a localizes to transition zone of photoreceptor cells (Fig. 4b), 

whereas the short N-terminal isoform-e exhibits expression in connecting cilia, inner 

segments, and the cytoplasm (Fig. 4c). This confirms the finding in mIMCD3 renal 

epithelial cells that full-length SDCCAG8 isoform-a localizes to the vicinity of centrosomes 

whereas the short N-terminal isoform-e shows diffuse cytoplasmic expression 

(Supplementary Fig. 3D).

We then examined SDCCAG8 localization in mouse photoreceptors at high resolution. We 

demonstrate that SDCCAG8 is located in the transition zone, distal to basal body marker γ-

tubulin in a contiguous but not overlapping position (Fig. 4d), and distal to, but clearly set 

apart from the pericentriolar marker CEP290 (Fig. 4e). This subcellular localization at fine 

resolution mirrors the findings of centrosomal localization in MDCK-II cell lines, where 

SDCCAG8 located just distal to the centrosomal marker γ-tubulin (Fig. 2a). We tested for 

colocalization with NPHP5, because NPHP5 is located in photoreceptor transition zone6 and 

shares a similar genotype-phenotype correlation with SDCCAG8, in that homozygous 

truncating mutations cause the retinal-renal ciliopathy Senior-Loken syndrome. As 

demonstrated in MDCK-II cells (Fig. 2a-d) we detect tight colocalization of SDCCAG8 with 

NPHP5 in photoreceptor transition zone (Fig. 4f), compatible with the notion of a shared 

function of both proteins in photoreceptors. A similar result was obtained with antibody α-

SDCCAG8-PR (data not shown). Immunogold labeling of antibody α-SDCCAG8-PR 

confirmed upon ultrathin sectioning of mouse retina that SDCCAG8 expression is 

particularly prominent at the distal basal body and the transition zone of mouse 

photoreceptors (Fig. 4g). Immunofluorescence studies also demonstrated colocalization of 

SDCCAG8 with the retinitis pigmentosa proteins RPGRIP and RP1 (Supplementary Fig. 7).

Sdccag8 knockdown causes multiple developmental defects in zebrafish

Morpholino oligonucleotide (MO)-mediated gene knockdown in zebrafish has been 

successfully employed in disease models of human NPHP-RC, yielding phenotypes of 

kidney cysts, brain defects and phenotypes of body axis development.2,7 To utilize the 

zebrafish model we demonstrated cross-reactivity of the antibody α-SDCCAG8-NR against 

zebrafish SDCCAG8 (Supplementary Fig. 2B). We examined for sdccag8 knockdown 

zebrafish phenotypes using an MO directed against the start codon (AUGMO1) as well as 

against the donor splice site of exon 6 (SPMO2), both of which efficiently abrogated 

expression of SDCCAG8 protein (Fig. 5a). Compared to standard control morpholino (Fig. 

5b), sdccag8 knockdown using both MOs resulted in a developmental phenotype of body 

axis curvature and shortened and broadened tails (Fig. 5c-e). In addition, AUGMO 

knockdown caused kidney cysts at 72 hpf in 34% (n=243) of zebrafish (Fig. 5f,h) compared 

to standard MO negative control (3%, n=158) (Fig. 5g,i). Furthermore, hydrocephalus 

resulted in 36% (n=128) of knockdown zebrafish (Fig. 5f,j) compared to standard MO 

negative control (7%, n=158) (Fig. 5g,k). These findings demonstrate loss of sdccag8 

function results in multiple developmental phenotypes that have been described in related 
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NPHP-RC genes including invs, cep290, and nek8 pointing to possible shared disease 

mechanisms.

Loss of Sdccag8 function disturbs renal epithelial lumen formation

Formation of lumen-containing spheroids by renal epithelial cells in 3D culture is an 

established test for cell polarity defects31,32, which are central to the pathogenesis of 

NPHP-RC33. For the proteins NPHP1 and NPHP4 it was shown that their knockdown leads 

to abnormal lumen formation in the 3D culture spheroid assay.25 To investigate the role of 

SDCCAG8 in 3D kidney architecture, we transfected mIMCD3 cells with siRNA 

oligonucleotides against murine Sdccag8, random sequences (negative control), or murine 

Ift88, which causes a very severe NPHP-RC phenotype if mutated (positive control).34 

Using quantitative RT-PCR, we determined that Sdccag8 transcript levels were depleted by 

80% and Ift88 was depleted by 89% (data not shown).

We next examined whether Sdccag8 depletion would affect 3D spheroid growth in matrigel. 

After 3 days of culture, cells transfected with control random oligonucleotides formed 

spheroid structures with a clear lumen, apical cilia, defined tight junctions and clear 

basolateral structure. Cells transfected with siIft88 developed virtually no spheroids, or grew 

as clumps of cells with few cilia evident. Cells transfected with siSdccag8 developed 

spheroids with architectural defects characterized by disturbed localization of β-catenin at 

the basolateral membrane, fewer tight junctions, and an irregular lumen. Abnormal lumina 

were clearly seen upon siSdccag8 knockdown (in 75.8% spheroids with siSdccag8 

knockdown, versus 19.5% for control siRNA; p=0.0055). To exclude the possibility that the 

effect observed was due to off-target effects, we stably transfected mIMCD3 cells with full-

length human SDCCAG8. We confirmed that these stable lines are still capable of forming 

spheroids with only occasional irregular lumina (16.7%; data not shown). We then repeated 

the siRNA of the endogenous murine Sdccag8 ortholog and observed no significant change 

in lumen irregularities (16.7%) compared to negative control siRNA (19.5%). The 

phenotypic rescue of Sdccag8 knock-down by co-expression of human SDCCAG8, supports 

the conclusion that lack of SDCCAG8 induces a defect in cell polarity and lumen formation 

which may reflect renal tubular defects present in individuals with a congenital SDCCAG8 

mutation.

SDCCAG8 abandons cell-cell junctions in response to increased intracellular cAMP

Increased levels of intracellular cAMP have been strongly associated with the renal cystic 

phenotype of NPHP-RC35. Pharmacologic reduction of intracellular cAMP levels by use of 

the vasopressin-2-receptor antagonist tolvaptan or the somatostatin analog octreotide 

reduced renal cystic disease in mouse models of NPHP-RC including the mouse model 

(Pcy) of Nphp3 loss of function36. These drugs are currently tested in phase II trials in 

humans with polycystic kidney disease37. We therefore studied whether localization of 

SDCCAG8 at cell-cell junctions (Fig. 2a-e) would be altered upon changes of intracellular 

cAMP.

We demonstrate that upon increasing doses of the analog 8Br-cAMP there is dose-

dependent loss of SDCCAG8 from cell-cell junctions in relation to three controls, i.e. 
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peripheral E-cadherin, centrosomal γ-tubulin, and centrosomal SDCCAG8 (Fig. 6) (see also 

Supplementary Fig. 8 Online). The same effect was seen upon treatment of serum starved 

cells with forskolin and IBMX, which increase endogenous intracellular cAMP via 

stimulation of adenylyl cyclase and inhibition of phosphodiesterase, respectively, and it was 

reversible with the adenylyl cyclase inhibitor tolvaptan (Supplementary Fig. 9 Online). We 

conclude that SDCCAG8 translocates away from cell-cell junctions in response to increased 

intracellular cAMP. Treatment of spheroids with 8Br-cAMP did not result in an effect 

similar to SDCCAG8 knockdown in spheroids, suggesting that redistribution of SDCCAG8 

from the cell periphery in response to 8Br-cAMP and disruption of lumen formation in 

spheroids may be independent phenomena (data not shown).

DISCUSSION

The discovery of single-gene causes of retinal-renal ciliopathies has generated novel insights 

into the role of the cilia/centrosome/mitotic spindle complex (CCC) for disease mechanisms 

of dysplasia and degeneration of kidney, retina, liver, cerebellum and many other organs.12 

In addition, it revealed that multiple signaling mechanisms including Wnt signaling and 

sonic hedgehog signaling are closely connected to ciliary and centrosomal function. 

However, dozens of essential CCC components within this pathogenesis are still unknown.

18 Their identification has been limited by the fact that additional monogenic causes of 

ciliopathies are very rare, often occurring only in single families of large international 

cohorts9. This necessitates the ability of identifying ciliopathy-causing genes in single 

families. The utility of the emerging techniques of exon capture and MP sequencing, 

however, is limited by the high number of variants form normal reference sequence that they 

generate. We here demonstrate the efficiency of an a priori approach to restricting the yield 

of not disease-causing variants by combining homozygosity mapping and a candidate gene 

approach with exon capture and MP sequencing. This approach has the potential of greatly 

advancing disease gene identification in a multitude of single-gene disorders, thereby 

allowing assembly of the related pathogenic pathways.

Particularly in the degenerative variants of NPHP-RC there is a theoretical time window for 

prevention or treatment before degeneration of renal and retinal tissue develops in late 

childhood. However, no treatment is currently available for any of these disorders. In the 

“Pcy” mouse model of Nphp3 loss of function, reduction of the intracellular cAMP level 

using a vasopressin-2-receptor antagonist resulted in successful delay or even abrogation of 

renal cystic disease36. It will therefore be important to delineate the role of intracellular 

cAMP for disease mechanisms of NPHP-RC. In this context, both the spheroid assay and the 

cell culture assay described here provide useful models for the study of the relation between 

intracellular cAMP levels and the function of genes mutated in NPHP-RC. These in vitro 

models as well as the zebrafish model of sdccag8 loss of function lend themselves to high-

throughput testing of small molecules that may halt disease mechanisms of NPHP-RC.

Otto et al. Page 9

Nat Genet. Author manuscript; available in PMC 2011 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ONLINE METHODS

Research subjects

We obtained blood samples and pedigrees following informed consent from individuals with 

NPHP-RC and/or their parents. Approval for human subjects research was obtained from the 

University of Michigan Institutional Review Board, McGill University Health Centre and 

the other institutions involved. The diagnosis of NPHP-RC was based on published clinical 

criteria.

Linkage analysis

For genome-wide homozygosity mapping the GeneChip® Human Mapping 250k StyI Array 

from Affymetrix was used. Non-parametric LOD scores were calculated using a modified 

version of the program GENEHUNTER 2.138,39 through stepwise use of a sliding window 

with sets of 110 SNPs and the program ALLEGRO40 in order to identify regions of 

homozygosity as described7,13 using a disease allele frequency of 0.0001 and Caucasian 

marker allele frequencies.

Exon capture array design

We custom designed an exon sequence capture hybridization 385K array (NimbleGen™) to 

capture 13,221 exons of 828 selected ciliopathy candidate genes. Candidate genes were 

derived from ciliopathy animal models, from the photoreceptor sensory cilia proteome15, 

the human centrosomal proteome23, and from the cilia proteome database16 

(Supplementary Table 3). DNA capture resulted in an average 200-fold enrichment of 

targeted exons. Captured DNA fragment size was reduced by exo- and endonuclease 

treatment to be suitable for high throughput sequencing on a Solexa/Illumina™ GA2 

platform. In order to generate random start position for MP sequencing, ablate NimbleGen 

linker sequences and to reduce fragment sizes, we digested the captured DNA fragments 

with exonuclease Bal-31 (New England Biolabs) and endonuclease DNase I (Roche). 5 μg 

DNA was digested with 2 units of Bal-31 exonuclease for 5 min at 30°C in a 200 μl 

reaction. The reaction was stopped by adding EGTA to a final concentration of 20 mM and 

immediate heat inactivation at 65°C for 10 min, followed by Qiaquick PCR column 

purification (Qiagen). DNA (about 2 μg) was further digested by incubating with 1 unit 

DNAse I (Roche) and freshly prepared reaction buffer [2× reaction buffer contains 20 mM 

Tris-Cl (pH 7.5), 2 mM CaCl2, and 20 mM MnCl2] for 3 min at 16°C. The reaction was 

stopped by adding 2 μl EDTA (500 mM) and immediate heat inactivation at 65°C for 10 

min.

Massively parallel sequencing

Library construction (adapter ligation) of the modified captured fragments was performed 

using “Genomic DNA Sample Prep Kit” according to the manufactures instructions 

(Illumina, San Diego, CA) and fragments separated on a 1.5% agarose gel and excised in the 

150-200 bp range. Fragments were purified and subjected to 10 rounds of PCR amplification 

using complementary linker specific primers. Amount and size distribution of each sample 

was analyzed on a Bioanalyzer 2100 (Agilent Technologies, Inc). Single-stranded DNA 
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fragments were annealed to a flow cell surface in a cluster station (Illumina) and 46 cycles 

of bridge amplification were applied. Fragments were run on a single lane of a Solexa/

Illumina Genome Analyzer II platform, generating about 6-14 million single-end sequence 

reads of 36-39 bases each. Image analysis and base calling was generated by the Genome 

Analyzer Pipeline 1.5 with default parameters. Illumina specific FASTQ file containing 

sequence information and quality scores for each base call were exported for further 

analysis. Sequence evaluation was performed with the CLC™ Genomics Workbench 

software. On average we obtained about 10 million single short reads (5.8-14 million) per 

lane with 68% of reads on target (range 51%-81%). The median sequencing depth per 

coding nucleotide was 49 with 99% of the targeted exons covered at least 5-fold.

Bioinformatics

Genetic location is according to the March 2006 Human Genome Browser data (http://

www.genome.ucsc.edu).

cDNA cloning

To generate inducible SDCCAG8-EGFP the SDCCAG8 open reading frame was subcloned 

by PCR from full length human ESTs (SDCCAG8 human EST Clone ID: 5174799) into the 

vector pRetroX-Tight-Puro (Clontech). RT-PCR was performed to identify SDCCAG8 

isoforms in hTERT-RPE1 cell line. For in vivo photoreceptor localization studies, the wild-

type and mutant human SDCCAG8 cDNAs were cloned into a custom-made pCAG-V5-

cDNA-IRES-EGFP-pA Gateway destination expression vector using LR clonase II 

(Invitrogen) mediated recombination.

Yeast two-hybrid assays

The GAL4-based yeast two-hybrid system (HybriZAP, Stratagene, La Jolla, USA) was used 

for identifying protein-interaction partners of SDCCAG8. The SDCCAG8 full-length and 

fragments (amino acids 1-294, 286-541, 533-713) fused to a DNA-binding domain (GAL4-

BD), were used as baits for screening a human oligo-dT primed retinal cDNA library. The 

yeast strain PJ69-4A, which carried the HIS3 (histidine), ADE2 (adenine), MEL1 (alpha-

galactosidase) and LacZ (beta-galactosidase) reporter genes, was used as a host. Interactions 

were analyzed by assessment of reporter gene activation via growth on selective media 

(HIS3 and ADE2 reporter genes), alpha-galactosidase colorimetric plate assays (MEL1 

reporter gene), and beta-galactosidase colorimetric filter lift assays (LacZ reporter gene). For 

analysis of the binding capacities of SDCCAG8 mutant proteins to OFD1, expression 

constructs encoding SDCCAG8 as a GAL4-BD fusion protein, either wild-type or 

containing the p.C649fsX658 or p.E474fsX493 mutation were cotransformed in PJ694a with 

a construct pAD-OFD1 isoform-3, encoding OFD1 as a GAL4-AD fusion protein. For 

analysis of the binding capacities of OFD1 mutant proteins to SDCCCAG8, expression 

constructs encoding amino acids 356–1012 of OFD1 as a GAL4-AD-fusion protein, either 

wild-type or containing the p.K948fs, p.K923fs, p.I784fs, p.E709fs, p.N630fs, or p.S586fs 

mutation, were cotransformed with a construct encoding the full-length SDCCAG8 fused to 

GAL4-BD (pBD-SDCCAG8) in PJ69-4a. As a negative control, the empty pAD vector was 
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cotransformed with pBD-SDCCAG8. Detailed protocols for evaluation of the protein 

interactions are available from the authors.

GST Pull-Down Assay

SDCCAG8 full-length and fragments (amino acids 1-294, 286-541, and 533-713) were 

cloned into pDEST15 (Gateway cloning system, Invitrogen). For the creation of GST-fusion 

proteins, BL21-DE3 cells were transformed with pDEST15 constructs. Detailed protocols 

for GST pull down are available from the authors.

Coimmunoprecipitation

HA-SDCCAG8 (full-length) and 3xFLAG-OFD1 (both splice variants and the fragments 

encompassing amino acids 356–1012) were coexpressed in HEK293T cells. As a negative 

control, HA-SDCCAG8 was coexpressed with the functionally unrelated 3xFLAG-dN-p63 

protein. After 48 hr of expression, cells were lysed on ice in lysis buffer (50 mM Tris–HCl 

[pH 7.5], 150 mM NaCl, 0.5% Triton X-100) supplemented with complete protease inhibitor 

cocktail. Lysates were incubated with anti- FLAG M2-agarose from mouse (Sigma-

Aldrich), for 5 hr at 4 degrees Celsius. After incubation, beads with bound protein 

complexes were washed in lysis buffer. Then beads were taken up in NuPage Sample Buffer 

and heated for 10 min at 70 degrees Celsius. Beads were precipitated by centrifugation, and 

supernatant was run on a NuPAGE Novex 4%–12% Bis-Tris SDS-PAGE gel. The 

interaction of HA-SDCCAG8 with 3xFLAG-OFD1 was assessed by immunoblotting, 

followed by staining with either monoclonal mouse anti-FLAG or monoclonal mouse anti-

HA (Sigma-Aldrich) as a primary antibody and goat anti-mouse RDye800 as a secondary 

antibody. Fluorescence was analyzed on a Li-Cor Odyssey 2.1 infrared scanner.

Antibodies

Antipeptide antibodies were raised against the following targets: α-SDCCAG8-NG (raised 

against human N-terminal peptide PN (Fig. 1e) in guinea pig, aa 119-138), α-SDCCAG8-

CG (raised against C-terminal peptide PC (Fig. 1e) in guinea pig, aa 483-502) and α-

SDCCAG8-NR (raised against N-terminal peptide PN (Fig. 1e) in rabbit, aa 119-138). 

Cystein was added to the N-terminus of peptides to facilitate the coupling to maleimide 

activated mcKLH (Thermo Fisher Scientific, Rockford, IL). Rabbits or Guinea Pigs were 

then immunized with KLH-coupled peptides (Cocalico Biologicals Inc, Reamstown, PA). 

To affinity purify peptide antibodies, appropriate peptides were coupled to Sulfolink resin 

according to manufacturers recommendation (Thermo Fisher Scientific).The following 

primary antibodies were used: mouse anti-GFP (Clontech); mouse anti-γ-tubulin (Sigma), 

mouse anti-acetylated-α-tubulin (Sigma), rabbit anti-γ-tubulin (Sigma), mouse anti-β actin 

(BD Biosciences), mouse-anti-glutamylated tubulin (Sigma), mouse anti-Centrin (M. Dias), 

mouse anti-GT335 (C. Janke); rabbit anti-ninein (Biolegend); rabbit anti-SDCCAG8 

(Proteintech), rabbit anti-Nphp5 (E. Otto), rabbit anti-OFD1 (E. Nigg), anti-OFD1-GR 

(GenTex), rabbit anti-Cep164 (E. Nigg), rabbit ant-CEP290 (B. Chang), rabbit anti-γ-catenin 

(BD Biosciences), rabbit anti-ZO1 (P. Jackson), rabbit anti-Ecadherin (BD Biosciences), 

anti-FLAG (Sigma), anti-HA (Sigma). Alexa-488, Alexa-594 and Alexa-647 conjugated 

secondary antibodies were obtained from Invitrogen.
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mIMCD3 spheroid growth assay

Mouse kidney collecting duct mIMCD3 cells were cultured in DMEM:F12 1:1 in 10% FBS. 

25,000 cells were seeded per well in 24-well dishes (plastic and glass bottom) in triplicate 

24 hours prior to being transfected with 50 nM Dharmacon OTP siRNA against mouse 

Sdccag8 (smartpool, L-045871-01-0005), mouse Ift88 (J-050417-06), or control (Ctrl; 

D001206-14-05, SiGenome) random oligos. One plate was harvested to determine knock-

down efficiency by quantitative real-time PCR three days later, another was fixed in 4% 

PFA and immunostained for acetylated tubulin (T7451, Sigma, 1:2,000) and pericentrin 

(PRB-432C, Covance, 1:500), and scored for % nuclei with cilia (n=300-700 nuclei 

counted). The third plate was used to examine the effect of Sdccag8 on spheroid growth in 

3D culture conditions. The detailed protocol is available from the authors.

For quantitative real-time PCR, total RNA was prepared using the RNeasy Mini kit 

(QIAGEN). 100 ng of the total RNA was added to a master mix with One-step RT-PCR 

reagents (Applied Biosystems 4309169) and Taqman Gene Expression Assays (Applied 

Biosystems) for each individual gene: Sdccag8 (Mm00659616_m1), Ift88 

(Mm00493675_m1), Rpl19 (Mm02601633_g1). Triplicate reactions were run and analyzed 

on an ABI 7500 thermocycler. The mRNA levels of Ift88 and Sdccag8 were normalized to 

the endogenous Rpl19.

Immunofluorescence and confocal microscopy in cell lines and mouse retina

For immuno-staining MDCK-II cells, cells were seeded onto 0.4 μm Transwell filters 

(Corning, Lowell, MA) and grown for 7 days post-confluency. For immuno-staining 

centrosomes and basal body, filters were incubated in ice cold acetone:methanol (1:1) for 10 

minutes. Filters were then rehydrated in PBS prior to blocking in 2% goat serum/PBS. For 

all other immuno-staining, filters were fixed for 20 minutes in 4%PFA/PBS followed by a 

10 minutes permeabilization step in 0.1%Triton-X100/PBS. Filters were then blocked as 

above. Primary antibody incubations were performed overnight in 2% goat serum/PBS. 

Secondary antibody and DAPI incubations were performed for 1 hour. Filters were mounted 

in Prolong Gold antifade reagent (Invitrogen). For immunostaining hTERT-RPE cells, cells 

were grown on #1 coverslips and fixed and stained as above. Confocal imaging was 

performed using Leica SP5X system with an upright DM6000 compound microscope and 

images were processed with the Leica AF software suite. Immunofluorescence of mouse 

retina was performed essentially as described41. The dilutions of various antibodies used are 

as follows: SDCCAG8-PR (Proteintech, 1:1000), SDCCAG8-CG (guinea pig 1:800), Ninein 

(1:500), NPHP5 (1:1000), OFD1 (Nigg, 1:200), Cep164 (1:1000), Cep170 (1:500), CEP290 

(Chang et al., 2006, 1:500), RPGRIP1L (Khanna et al., 2009; 1:1000), VHL, SCBT 

(1:1000), Acetylated α-tubulin (Sigma 1:1000).

Electronmicroscopy studies

For immunogold labeling studies of mouse retina mouse eyecups were fixed in 0.25% 

glutaraldehyde + 4% formaldehyde in 0.1 M cacodylate buffer, pH 7.4, and processed for 

embedment in LR White. Ultrathin sections (70 nm) were labeled with primary antibody, 

followed by secondary antibody conjugated to 12 nm gold.
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In vivo electroporation of rat retinas

We used the in vivo electroporation technique to express human SDCCAG8 proteins in rat 

photoreceptor cells. Injected plasmids were electroporated into retinal cells using tweezer-

type electrodes in the right eyes of neonatal rats (n=6-8 rats/injection) as described.42 

Animals were sacrificed 4 weeks following transfection, and 60 μm thick sections of the 

transfected portions of retinas were then prepared from the portions of the eyecups with 

EGFP signal. Sections were stained with anti-V5 antibodies (Invitrogen), followed by 

Alexa-555 conjugated secondary antibodies (Invitrogen), and imaging using a Zeiss 

LSM510 confocal microscope. Three-dimensional reconstructions of the confocal image 

stacks were generated and analyzed using Volocity 3D imaging software (Improvision, 

Waltham, MA).

Zebrafish morpholino oligo-mediated knockdown

Morpholino oligonucleotides (MOs) were obtained from Gene Tools, LLC (Philomath, OR). 

The sequences of the morpholino oligonucleotides used are given in Supplementary Table 1 

Online. Fertilized eggs were microinjected with the specified amount of MO dissolved in 

0.1M KCl. JB4-embedded sections were prepared as described previously. 6 μm sections 

were stained with methylene-blue and imaged with a compound microscope. To examine the 

zebrafish sdccag8 protein, 24 hpf embryos were lysed with RIPA buffer containing protease 

inhibitor.

Statistical analysis

Student’s two-tailed nonpaired t-tests and normal distribution two-tailed z-tests were carried 

out using pooled standard error and s.d. values to determine the statistical significance of 

differences between samples. The significance level was set at P < 0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Homozygosity mapping, exon capture, and massively parallel sequencing identifies 
SDCCAG8 mutations as causing nephronophthisis with retinal degeneration
(a) Non-parametric LOD (NPL) scores across the human genome in 2 sibs with 

nephronophthisis and retinal degeneration of consanguineous family SS23/A1365. X-axis 

gives Affymetrix 250k StyI array SNP positions on human chromosomes concatenated from 

p-ter (left) to q-ter (right). Genetic distance is given in cM. Four maximum NPL peaks (red 

circles) indicate candidate regions of homozygosity by descent.

(b) Exon capture of 828 ciliopathy candidate genes with consecutive massively parallel 

sequencing and sequence evaluation within the 4 mapped homozygous candidate regions 

(red circles in “a”) yields mutation of SDCCAG8 in SS23/A1365.

(c) The SDCCAG8 gene extends over 244 kb and contains 18 exons (vertical hatches).

(d) Exon structure of human SDCCAG8 cDNA. Positions of start codon (ATG) and of stop 

codon (TGA) are indicated. For mutations detected (see f ) arrows indicate positions relative 

to exons and protein domains (see e).

(e) Domain structure of the SDCCAG8 protein. N-terminal globular domain (NGD), nuclear 

localization (NLS) domain, coiled-coil domains (CC), and glutamine-rich region (Gln_rich). 

PN and PC denote peptides used for antibody generation.

(f) Eight homozygous SDCCAG8 mutations detected in 8 families with nephronophthisis 

and retinal degeneration. Family number, mutation and predicted translational changes are 

indicated (see Table 1). A homozygous deletion covering exons 5-7 is demonstrated by 
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agarose gel electrophoresis. Sequence traces are shown for mutations above normal controls. 

Mutated nucleotides are indicated by arrow heads in traces of normal controls.
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Figure 2. Indirect immunofluorescence detects SDCCAG8 at centrosomes together with other 
proteins mutated in NPHP-RC
(a) Centrosomal SDCCAG8 is at centrosomes but slightly set apart from the signal of γ-

tubulin, which marks the centrioles and from CEP164 (b), which marks distal centrosomal 

appendages22. (c) In contrast, there is tight colocalization with ninein, a marker of 

centrosomal appendages22. There is also colocalization at centrosomes with NPHP5 (d) and 

OFD1 (e) previously found to be mutated in NPHP-RC6,26. Size bars represent 5 μm. Insets 

show enlargement of representative results at 5-fold higher magnification. Nuclei are stained 

with DAPI. Antibody α-SDCCAG8-CG was used to detect SDCCAG8.
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Figure 3. SDCCAG8 Interaction with OFD1
(a, b) Schematic of SDCCAG8 and OFD1 clones and protein domains. Full-length 

SDCCAG8 (Q86SQ7) and three cloned fragments are shown (a) as well as OFD1 fragments 

identified by yeast two-hybrid screening and isoforms O75665-1 and O75665-3.

(c) Yeast two-hybrid interaction assays confirmed binding of full-length SDCCAG8 and C-

terminal fragment (533-713) to all cloned OFD1 fragments, except isoform-3. HIS3 and 

ADE2 reporter genes activation is indicated.

(d) Both GST-SDCCAG8 full-length and the GST-SDCCAG8 C-terminal fragment 

efficiently pulled down 3xFLAG-tagged OFD1 isoform-3, contrary to GST alone.

(e) 3xHA-tagged full-length SDDCAG8 coimmunoprecipitated with 3xFLAG-tagged OFD1 

isoform 3, and fragment 356-1012, contrary to unrelated 3xFLAG-tagged ΔN-p63. Panel 2 

shows 5% of cell lysate input.

(f) Interaction of wild-type (WT) and SDCCAG8 mutants with ODF1 isoform-1 in beta-

galactosidase assay. Constructs encoding SDCCAG8 as GAL4-BD fusion protein, WT or 

indicated mutants, were cotransformed with pAD-OFD1 isoform-3 constructs in yeast. 

Cotransformation of pBD-SDCCAG8 and pAD-MUT vector served as negative control. 

Remaining LacZ reporter gene activity, corrected for background activity, is indicated.

(g) Interaction of WT isoform-3 and OFD1 mutants with SDCCAG8 in yeast two-hybrid 

assay. Constructs encoding WT SDCCAG8 as GAL4-BD fusion protein were cotransformed 

in PJ694a with pAD-OFD1 isoform-3 constructs, WT or indicated mutations. Interaction of 
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SDCCAG8 with OFD1 mutant p.E709fs and WT was detected as described above. Beta-

galactosidase assays revealed decreased LacZ reporter gene activity for OFD1 all mutations 

except E709fs, indicating significantly reduced interaction with SDCCAG8. Error bars 

represent standard error of the mean in f and g.
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Figure 4. SDCCAG8 is located in mouse photoreceptor basal bodies and connecting cilia 
transition zone
(a) Immunofluorescence using the α-SDCCAG8-CG antibody demonstrates strong 

SDCCAG8 expression in transition zone of connecting cilia (cc) and weak expression in 

inner segments (IS) of mouse photoreceptors.

(b-c) Upon in vivo electroporation into rat retinae, human full-length SDCCAG8 isoform-a 

(red) (b) localizes to transition zone of photoreceptor cells (level of arrow), whereas the 

short N-terminal isoform-e (red) (c) exhibits expression in transition zone (level of arrow), 

inner segments (level of bracket) and cytoplasm (level of arrow head). Photoreceptor 

cytoplasms are counterstained by GFP overexpression (green).

(d) In mouse photoreceptors SDCCAG8 is located in transition zone of connecting cilia, 

distal to basal body marker γ-tubulin in a contiguous but non-overlapping location.

(e) SDCCAG8 is located in the transition zone, distal to, and clearly set apart from the 

pericentriolar marker CEP290.

(f) SDCCAG8 tightly colocalizes with NPHP5. Scale bars are 10 μm. Insets in d-f show 

enlargement of representative results at 3-fold higher magnification.

(g) Upon ultrathin sectioning of mouse retina SDCCAG8 expression is particularly 

prominent at distal basal body (bracket) and the transition zone (winged bracket) connecting 

cilium of mouse photoreceptors (antibody α-SDCCAG8-PR). The bar graph represents the 
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density of immunogold labeling over the photoreceptor transition zone (TZ), basal bodies 

(BB) and inner segments (IS) after subtracting background labeling. Scale bar = 100 nm.
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Figure 5. sdccag8 knockdown results in multiple developmental defects
(a) Injection of both sdccag8-targeting MOs abrogates sdccag8 protein from MO injected 

embryo morphant lysates. sdccag8 protein is detected by the α-SDCCAG8-NR antibody as a 

single band in uninjected embryos, compatible with the sdccag8 full-length product at ~83 

kDa (arrow head). Anti-α-tubulin antibody was used to demonstrate equal loading.

(b-d) In comparison to embryos injected at the 2-cell stage with standard negative control 

MO (b) embryos injected with AUG-targeting MO (c) or splice site targeting MO (d,e) 

exhibit a dose-dependent phenotype of body axis curvature and shortened and broadened 

tails at 24 hpf.

(f-k) Knockdown of sdccag8 in zebrafish embryos at 72 hpf caused pronephric cysts as 

evidenced by a rounded structure (arrow in f) and hollow spaces (asterisk in h) compared to 

control morpholino injected control (g,j) , which shows slender pronephric tubular lumina 

(arrows in i). It also caused hydrocephalus (asterisk in j) compared to control morpholino 

injected control (g,k). Scale bars represent 1 mm in b-g and 100 μm in h-k.
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Figure 6. siRNA knockdown of siSdccag8 perturbs lumen formation of renal epithelial cells in 
3D spheroid culture
(a) IMCD3 murine renal epithelial cells, when grown in 3D matrigel culture for 3 days, 

polarize as demonstrated by staining for β-catenin (green) and tight junction marker ZO1 

(red). They ciliate apically as shown by acetylated α-tubulin (white) and form a spheroid 

containing a central lumen (asterisk). Nuclei are stained blue with DAPI.

(b) Upon siSdccag8 knockdown cells develop spheroids that have architectural defects 

characterized by disturbed localization of β-catenin (green) away from the basolateral 

membrane, fewer tight junctions (red), and an irregular lumen (asterisk). Abnormal lumina 

were seen in 19.5% of siRNA controls versus 75.8% in siSdccag8 knockdown (p=0.0055).

(c) When siSdccag8 knockdown was performed in mIMCD3 cells that were stably 

transfected with human full-length SDCCAG8, the knockdown phenotype was fully rescued 

leading to no significant reduction in irregular lumina (16.7%) compared to negative control 

siRNA (19.5%).

(d-g) SDCCAG8 abandons cell-cell junctions in response to increased intracellular cAMP.

(d) In the renal epithelial cell line MCDK-II SDCCAG8 stained with antibody α-

SDCCAG8-CG (green) is located at centrosomes and cell-cell junctions, which are marked 

with an α-E-cadherin antibody (red). (e) Upon treatment with 8-Br-cAMP [100 μM], there is 

dose-dependent loss of SDCCAG8 signal from cell-cell junctions relative to E-cadherin (f-
g). When 100 linear segments of the pentagonal cell-cell junctions of non-neighboring cells 

were evaluated for the ratio of relative fluorescence signals for SDCCAG8 versus E-

cadherin there was a redistribution depending on cAMP concentration [μM] away from cell 
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junction staining for SDCCAG8 relative to peripheral E-cadherin, centrosomal γ-tubulin (f) 
and relative to centrosomal SDCCAG8 (g) (see also Supplementary Figure 6 ). Error bars 

represent standard error of the mean.

Otto et al. Page 28

Nat Genet. Author manuscript; available in PMC 2011 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Otto et al. Page 29

T
ab

le
 1

T
w

el
ve

 d
if

fe
re

nt
 tr

un
ca

tin
g 

m
ut

at
io

ns
 o

f 
SD

C
C

A
G

8 
in

 1
0 

fa
m

ili
es

 w
ith

 N
PH

P-
R

C
.

F
am

ily
-I

nd
iv

id
ua

l
E

th
ni

c
or

ig
in

N
uc

le
ot

id
e

ch
an

ge
a,

b
D

ed
uc

ed
pr

ot
ei

n 
ch

an
ge

E
xo

n
(s

ta
te

)
P

ar
en

ta
l

co
ns

an
-

gu
in

it
y

K
id

ne
y

(a
ge

 a
t 

E
SK

F
)

E
ye

(R
D

 a
t 

ag
e)

O
th

er
c

F1
59

 
-2

1
 

-2
2

E
ur

op
e

c.
42

1-
?_

74
0+

?d
el

p.
E

14
1_

R
24

7
de

l1
07

fs
Δ

 e
xo

n 
5-

7
(h

om
)

Y
es

N
PH

P,
 B

x
-2

1:
 (

11
 y

r)
-2

2:
 (

7 
yr

)

R
D

-2
1:

 (
7 

yr
)

-2
2:

 (
no

rm
al

 a
t 6

 y
r)

-2
2:

 g
en

er
al

iz
ed

se
iz

ur
es

FI
I.

22
 

 
-2

1
 

 
-2

2

N
D

c.
67

9A
>

T
p.

K
22

7X
7 

(h
om

)
Y

es
N

PH
P

-2
1:

 (
13

 y
r)

-2
2:

 (
13

 y
r)

R
D

-2
1:

 (
14

 y
r)

-2
2:

 (
1 

yr
)

M
ild

 M
R

, H
G

, O
B

A
R

37
 

 
-0

5
 

 
-0

7
 

 
-0

2

N
or

th
er

n
E

ur
op

ea
n

c.
69

6T
>

G
c.

74
0+

1d
el

G
p.

Y
23

2X
p.

R
24

7f
sX

25
0

7 
(h

et
)

IV
S7

 (
he

t)
N

o
N

PH
P,

 B
x

-0
5:

 (
22

 y
r)

-0
7:

 n
o 

E
SK

F
-0

2:
 (

28
 y

r)

R
D

-0
5:

 (
13

 y
r)

-0
7:

 (
11

 y
r)

, S
N

B
-0

2:
 R

D
 (

2 
yr

)

-0
5:

 O
B

, H
G

, P
N

-0
7:

 M
R

-0
2:

 O
B

, C
D

FI
.2

 
 

-2
1

 
 

-2
2

 
 

-2
3

 
 

-2
4

G
yp

sy
c.

74
0+

35
6C

>
T

lo
ss

 o
f 

E
SE

 s
ite

(a
be

rr
an

t i
ns

 I
V

S7
)

IV
S 

7
(h

om
)

Y
es

N
PH

P
-2

1:
 (

23
 y

r)
-2

2:
 (

13
 y

r)
-2

3:
 (

10
 y

r)
-2

4:
 (

6 
yr

)

R
D

-2
1:

 (
29

 y
r)

-2
2:

 (
13

 y
r)

-2
3:

 (
10

 y
r)

-2
4:

 (
6 

yr
)

M
ild

 M
R

, O
B

M
ild

 M
R

, O
B

M
ild

 M
R

A
22

90
T

ur
ke

y
c.

10
68

+
1G

>
A

ob
lig

at
or

y
sp

lic
e 

si
te

IV
S 

9
(h

om
)

Y
es

N
PH

P,
 B

x
(1

4 
yr

)
R

D
B

ra
in

: a
ra

ch
no

id
cy

st
, m

ild
 M

R

SS
-F

33
6

 
-2

1
 

-2
2

A
lg

er
ia

c.
13

39
-

13
40

in
sG

p.
E

44
7f

sX
46

3
11

 (
ho

m
)

Y
es

N
PH

P,
 B

x
-2

1:
 (

7 
yr

)
-2

2:
 (

4 
yr

)

R
D

-2
1:

 f
la

t E
R

G
 (

13
 y

r)
-2

2:
 f

la
t E

R
G

 (
6 

yr
)

-2
1:

 m
ild

 M
R

,
N

o 
liv

er
 o

r 
bo

ne
di

se
as

e

SS
23

/A
13

65
 

-2
1

 
-2

2

L
a 

R
éu

ni
on

c.
14

20
de

lG
p.

E
47

4f
sX

49
3

12
 (

ho
m

)
Y

es
N

PH
P,

 B
x

-2
1:

 (
4 

yr
)

-2
2:

 (
14

 y
r)

R
D

-2
1:

 3
0%

 v
is

io
n 

(1
4 

yr
)

-2
2:

 b
lin

d 
(7

 y
r)

-2
1:

 B
ra

in
 s

ca
n

no
rm

al

N
K

-F
10

63
In

di
a

c.
14

44
de

lA
c.

16
27

_1
63

0d
el

G
A

T
A

p.
T

48
2f

sX
49

3
p.

D
54

3f
sX

56
6

12
 (

he
t)

14
 (

he
t)

N
o

N
PH

P,
 E

SK
F

R
D

O
B

, m
ild

 M
R

F1
05

4
 

-2
1

 
-2

2

Pa
ki

st
an

c.
17

96
T

>
G

p.
L

59
9X

15
 (

ho
m

)
Y

es
N

PH
P

-2
1:

 (
<

10
 y

r)
-2

2:
 (

<
9 

yr
)

N
D

-2
1:

 P
ol

yc
ys

tic
ov

ar
y 

sy
nd

ro
m

e

F1
95

G
er

m
an

y
c.

19
46

-1
94

9
de

lG
T

G
T

p.
C

64
9f

sX
65

8
16

 (
ho

m
)

N
D

N
PH

P,
 B

x
(2

2 
yr

)
R

D
N

D

a cD
N

A
 m

ut
at

io
n 

nu
m

be
ri

ng
 is

 b
as

ed
 o

n 
hu

m
an

 r
ef

er
en

ce
 s

eq
ue

nc
e 

N
M

_0
06

64
2.

2 
fo

r 
SD

C
C

A
G

8,
 w

he
re

 +
1 

co
rr

es
po

nd
s 

to
 th

e 
A

 o
f 

A
T

G
 s

ta
rt

 tr
an

sl
at

io
n 

co
do

n.

b A
ll 

m
ut

at
io

ns
 w

er
e 

ab
se

nt
 f

ro
m

 >
27

0 
he

al
th

y 
co

nt
ro

l i
nd

iv
id

ua
ls

. B
x,

 K
id

ne
y 

bi
op

sy
 d

em
on

st
ra

te
s 

ne
ph

ro
no

ph
th

is
is

.

c Po
ly

da
ct

yl
y 

w
as

 a
bs

en
t f

ro
m

 a
ll 

in
di

vi
du

al
s.

Nat Genet. Author manuscript; available in PMC 2011 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Otto et al. Page 30
C

D
, c

lin
od

ac
ty

ly
 o

f 
5t

h  
fi

ng
er

 b
ila

te
ra

lly
; E

R
G

, e
le

ct
ro

re
tin

og
ra

m
; E

SK
F,

 e
nd

-s
ta

ge
 k

id
ne

y 
fa

ilu
re

; h
et

, h
et

er
oz

yg
ou

s;
 H

G
, h

yp
og

en
ita

lis
m

; h
om

, h
om

oz
yg

ou
s;

 I
V

S,
 in

te
rv

en
in

g 
se

qu
en

ce
; M

R
, m

en
ta

l 
re

ta
rd

at
io

n;
 N

D
, n

o 
da

ta
; N

PH
P,

 n
ep

hr
on

op
ht

hi
si

s;
 O

B
, o

be
si

ty
; P

N
, p

er
ip

he
ra

l n
eu

ro
pa

th
y;

 R
D

, r
et

in
al

 d
eg

en
er

at
io

n;
 S

N
B

, s
ta

tio
na

ry
 n

ig
ht

 b
lin

dn
es

s;
 y

r,
 y

ea
r(

s

Nat Genet. Author manuscript; available in PMC 2011 April 01.


