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Abstract

In nature, arthropod-borne viruses (arboviruses) perpetuate through alternating replication in vertebrate and invertebrate
hosts. The trade-off hypothesis proposes that these viruses maintain adequate replicative fitness in two disparate hosts in
exchange for superior fitness in one host. Releasing the virus from the constraints of a two-host cycle should thus facilitate
adaptation to a single host. This theory has been addressed in a variety of systems, but remains poorly understood. We
sought to determine the fitness implications of alternating host replication for West Nile virus (WNV) using an in vivo model
system. Previously, WNV was serially or alternately passed 20 times in vivo in chicks or mosquitoes and resulting viruses were
characterized genetically. In this study, these test viruses were competed in vivo in fitness assays against an unpassed
marked reference virus. Fitness was assayed in chicks and in two important WNV vectors, Culex pipiens and Culex
quinquefasciatus. Chick-specialized virus displayed clear fitness gains in chicks and in Cx. pipiens but not in Cx.
quinquefasciatus. Cx. pipiens-specialized virus experienced reduced fitness in chicks and little change in either mosquito
species. These data suggest that when fitness is measured in birds the trade-off hypothesis is supported; but in mosquitoes
it is not. Overall, these results suggest that WNV evolution is driven by alternate cycles of genetic expansion in mosquitoes,
where purifying selection is weak and genetic diversity generated, and restriction in birds, where purifying selection is

strong.
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Introduction

West Nile virus (WNV, family Flaviwinidae: Flavivirus) is an
arthropod-borne virus (arbovirus) that has demonstrated remark-
able success since being introduced to North America in 1999.
Within three years after its introduction the virus had adapted to
local mosquito vectors and within 8 years had become fully
endemic [1,2,3]. Viruses with RNA genomes, like WNV, have
higher mutation rates than those of most DNA viruses due to
error-prone replication [4]. However, arboviruses seem to evolve
more slowly compared to single-host RNA viruses [5]. The trade-
off hypothesis is a commonly postulated theory suggesting that this
slower rate derives from the biological requirement for alternating
replication in two taxonomically divergent hosts (vertebrates and
arthropods). Under the trade-off hypothesis, virus fitness in both
hosts is reduced in comparison to single host viruses, which can
“specialize” on a single host environment [Recently reviewed by
Ciota and Kramer [6]]. Several studies have reported that
releasing arboviruses from host alternation and allowing sustained
replication in a single host results in rapid adaptation to the
specialized host, often with a corresponding fitness loss in the
bypassed host, providing support for the trade-off hypothesis
[7,8,9,10].
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Nonetheless, considerable ambiguity exists in the literature
concerning the impact of host alternation on arbovirus adaptation
and fitness. Importantly, neither the receptor-ligand interactions
most important for virus entry and tropism nor the intracellular
resources that might form the basis for host specialization in a
putative fitness “trade-off”” are well understood. Most studies of the
trade-oftf hypothesis have involved either flaviviruses or alpha-
viruses (family Togaviridae), two of largest, most medically relevant
families of arboviruses. Results of these studies are inconsistent and
seem to differ between virus families (alphaviruses vs. flaviviruses)
and experimental systems (cell-culture vs. animals). Among
flaviviruses, the trade-off hypothesis is often only partially
supported. Host specialization frequently results in fitness
increases; however, that these increases carry a fitness cost in the
bypassed host is less well supported. Work in cell-culture with
dengue virus (genus flavivirus) has shown that single-host-special-
ized virus replicated faster and reached higher titers in the
specialized cell-line but reciprocal fitness losses were less extreme
and inconsistent [10,11]. Another cell-culture study found that
mosquito cell-specialized WNV and St. Louis encephalitis virus
(SLEV, flavivirus) displayed improved fitness and more rapid
replication in mosquito cells with only modest and inconsistent
fitness losses in chicken cells [12]. In vivo studies with flaviviruses
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Author Summary

Arthropod-borne viruses, including West Nile virus (WNV)
have long been considered to be subject to a fitness
“trade-off” because they must replicate in at least two
taxonomically divergent hosts in order to perpetuate.
Results of studies testing this trade-off hypothesis have
been inconsistent and largely dependent on which virus
family is studied and which experimental system used.
Therefore, considerable ambiguity exists in the literature
regarding how host alternation influences virus population
biology. Accordingly, we allowed WNV to adapt to each of
its main hosts (mosquitoes and birds) for 20 sequential
passes in order to determine whether host alternation in
nature imparts a fitness compromise, as predicted by the
trade-off hypothesis. After host-specialization, passed
viruses were competed in vivo in mosquitoes and chicks
against an unpassed marked reference virus to determine
whether replicative fitness gains or losses had occurred.
Our results demonstrate that the trade-off hypothesis
accurately predicts WNV adaptation in the avian environ-
ment but not in mosquitoes. Overall, our results suggest
that WNV adaptation is controlled by alternating cycles of
genetic expansion in a permissive mosquito environment
and restriction in avians, where purifying selection is
dominant.

have also been difficult to reconcile with the trade-oft hypothesis.
For example, chick-specialized SLEV showed increased infectivity
in chicks but was unchanged in mosquitoes, while mosquito-
specialized virus was unchanged in both systems [13]. Conversely,
serial passage of WNV in mosquitoes resulted in faster replication
and higher peak titers in mosquitoes with no significant cost to
replication in live chicks [14]. The impact of extensive wn vivo serial
passage on fitness of WNV within biologically relevant hosts has
been difficult to resolve because the determinants of virus fitness in
either host (mosquitoes or birds) have been poorly understood.
Recent advances have provided a more complete mechanistic
understanding of in vivo fitness determinants that may shed light on
phenomena previously attributed to “trade-offs”. For example,
genetic diversification of WNV is driven by, and can circumvent,
mosquito immune mechanisms [15]. Additionally, the avian
environment applies purifying selection to virus populations, but
mosquitoes do not [16,17]. Observed fitness “trade-offs” may thus
be partially attributable to diversity-permissive and -restrictive
environments in mosquitoes and birds, respectively.

In light of this, we re-examined the trade-off hypothesis by
determining the impact of host specialization on WNV fitness, here
defined as the capacity for successful genome replication. In
particular, (a) bird-specialized WNV, (b) mosquito-specialized
WNYV, (c) alternately passed WNV and (d) unpassed WNV, were
competed against genetically marked WNV i viwo in mosquitoes
and chickens. In previous studies we passed WNV exclusively in
chicks or mosquitoes 20 times, or passed the virus alternately
between mosquitoes and chicks a total of 20 times (figure 1) [17,18].
In this study, the resulting WNV was competed against unpassed
marked reference virus (WNV-REF), derived from the same clone
used for passage initiation in order to determine whether host
specialization leads to fitness gains and/or losses in the WNV
system. Our studies, through the use of @ vivo model animals for
both passage and fitness determination, as well as triplicate
performance of each treatment and the use of a higher passage
number than typically used, provide a more representative model of
the effect of host specialization on WNV fitness and the trade-off
hypothesis, than has been possible with cell-culture models.
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Results

Fitness in chicks

When competitions were conducted in chickens, serially and
alternately passed WNV demonstrated clear fitness changes. Serial
passage in chicks resulted in fitness increases compared to
unpassed virus in the homologous host (table 1, figure 2, unpaired
t-test, P=0.0102). Conversely, after serial passage in mosquitoes
WNV displayed significantly decreased replicative fitness in chicks
(P=0.0056). WNV from the alternating passage series also
experienced significant fitness changes. Alternating passage that
concluded in chickens demonstrated fitness gains (P =0.0061) but
alternating passage that concluded in mosquitoes did not
(P>0.05). Unpassed WNV-WT (wild-type, unmarked WNV
derived from the same clone used to generate the marked
reference virus) had fitness similar to WNV-REF (table 1). Sera
and brain tissue from all chick cohorts were also collected on day 5
post-inoculation and showed no significant difference from day 2
sera (data not shown).

Fitness in mosquitoes

When competitions were conducted in Cx. pipiens, fitness
changes also were observed (figure 2). Chick-passed WNV
displayed significant replicative fitness increases over the unpassed
marked reference virus (P=0.0056). Additionally, after 20 serial
passes in mosquitoes replicative fitness increases were observed
(P=0.0291). Neither the viruses from the alternate passage series
nor the control WNV-WT exhibited significant changes in
replicative fitness (table 1). In contrast to the results from the
competition experiments in chicks and Cx. pipiens there were no
significant replicative fitness changes for any of the serially or
alternately passed viruses when competed against the unpassed
marked reference virus in Cx. quinguefasciatus mosquitoes (table 1,
figure 2).

Relationship between genetic diversity and fitness

To determine whether intrahost WNV genetic diversity was
associated with fitness in the three hosts in which measurements
were conducted, fitness was plotted as a function of viral genetic
diversity (figure 3) and dN/dS (data not shown). Fitness was
computed as the difference in proportion of test virus after
competition compared to its proportion at input. Sequence
diversity and dN/dS were computed as described previously
[17,18]. In mosquitoes, intrahost genetic diversity was not
correlated with fitness (for Cx. pipiens, Spearman r=—0.8117,
P>0.05, for Cx. quinquefasciatus, Spearman r = —0.05798, P>0.05).
In chickens, diversity was significantly negatively associated with
fitness (r=—0.9856, P=0.0028). Similar results were obtained
when the relationship between dN/dS and fitness was analyzed,
with increasing dN/dS associated with lower fitness in chickens,
but not mosquitoes (not shown).

Discussion

Because arboviruses replicate in both arthropod and vertebrate
hosts and seem to evolve more slowly than single-host RNA
viruses, it is often proposed that they “trade” optimal fitness in
either host in exchange for adequate fitness in both. Tests of this
“trade-off” hypothesis most often consist of releasing a virus from
host alternation and allowing it to specialize on one host or the
other, then comparing fitness or genetic sequence data to the
unpassed or alternately passed virus [9,10,13,18,19]. Due to the
complexity of arbovirus transmission cycles, and in many cases the
lack of appropriate i vivo models (for dengue virus, for example)
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Figure 1. Serial and alternate passage experimental design. Virus derived from a WNV infectious clone was passed 20 times through chicks,
20 times through Cx. pipiens mosquitoes or 20 times alternating between the two (10 cycles). Each passage series was performed in triplicate and the
final virus stocks were then used in in vivo competition assays to assess gains or losses in replicative fitness.
doi:10.1371/journal.ppat.1002335.g001

Table 1. Combined average proportions of total WNV RNA comprised of competitor RNA after competition against a marked
reference virus in chicks or mosquitoes.
WT unpassed Serial Chick Serial Mosquito Alternate Chick Alternate Mosquito
Input’ Output?® Input Output Input Output Input Output Input Output
Mean (Chicks) 0.68 0.55 0.52 0.89 0.53 0.09 0.42 0.82 0.49 0.41
SEM 0.00 0.01 0.04 0.03 0.04 0.02 0.06 0.02 0.05 0.03
n 1 8 3 25 3 25 3 24 3 26
p-value® na 0.0102 0.0056 0.0061 0.3707
Mean (Cx. pip.) 0.68 0.84 0.52 0.92 0.63 0.83 0.47 0.80 0.51 0.72
SEM 0.00 0.06 0.04 0.02 0.03 0.04 0.10 0.06 0.02 0.08
n 1 10 3 33 3 30 3 29 3 30
p-value na 0.0056 0.0291 0.0586 0.3998
Mean (Cx. quing.) 0.72 0.72 0.52 0.59 0.53 0.65 0.42 0.73 0.49 0.37
SEM 0.00 0.07 0.04 0.08 0.04 0.06 0.06 0.05 0.05 0.06
n 1 9 3 31 3 30 3 28 3 29
p-value na 0.7242 0.3975 0.0560 0.2702
"=input is the inoculum.
2=output is either day 2 chick serum or day 7 whole mosquito homogenate.
3 =p-value was determined in an unpaired t-test between input and output for each cohort (significance is defined as p=<0.05 and is noted in bold).
doi:10.1371/journal.ppat.1002335.t001
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Figure 2. The trade-off hypothesis is not supported by results from in vivo competitions. After serial or alternate passage WNV strains
were competed against a reference virus in chicks, Cx. pipiens mosquitoes (Pip.) and Cx. quinquefasciatus mosquitoes (Quing.). Each of four treatments
(serial passage in chicks, serial passage in mosquitoes, final chick passage of the alternate series, final mosquito passage of the alternate series) was
performed in triplicate (represented by light, medium and dark shades of each color). Inocula (squares) contained approximately equal parts passed
test virus and unpassed reference virus and were identical across cohorts except for 5 Pip. cohorts for which comparable inocula had to be re-created
(points with white centers). Each cohort comprised 7-10 chicks or 9-11 mosquitoes with each animal represented by a circle. Mean proportions of
test WNV for each cohort were compared with the inocula means in unpaired t-tests where P<0.05 was considered significant (astrices). Bars indicate
cohort mean and standard error of the mean. Dashed lines at 0.1 and 0.9 indicate the range of high accuracy for the quantitative sequencing assay

used as determined by Fitzpatrick et al [21].
doi:10.1371/journal.ppat.1002335.9002

these studies have largely been conducted i vitro in tissue culture,
with inconsistent results. This lack of consistency appears to be
related to differences in virus families, host species, passage
regimes and approaches to measuring virus fitness. In most cases,
the mechanistic basis for observed trade-offs have not been
identified. Moreover, the diversity of experimental systems has
made it difficult to identify the merits and defects of the trade-off
hypothesis. Here, we used a completely i vivo approach to test
whether or not WNV host alternation supports the trade-off
hypothesis. By conducting the passage series and the competitions
in relevant hosts in vivo, we sought to circumvent several of the
caveats required in interpreting many previous studies. In sum,
our data support the growing body of evidence that the trade-off
hypothesis does not accurately predict WNV population dynamics
[14,20]. Interestingly, our findings are somewhat at odds with a
similar literature developing in the field of alphavirus-host
interactions, which tend to support the trade-off hypothesis
[7,8,9,19]. The reasons for this are not entirely clear, but may be
related to differences in virus replication i vewo (i.e. differences in
host factors required for replication or host-cell receptor
utilization). Differences in replication and/or mutation rates could
also impact genetic diversity or population composition resulting
in fitness changes. Additional comparative studies are required to
develop a complete understanding of the underlying differences
between fitness trade-offs in flaviviruses compared to alphaviruses.

Serial passage in chickens resulted in fitness gains in both
chickens and Cx. pipiens mosquitoes, but fitness in a related
mosquito species (Cx. quinquefasciatus) was unchanged. These results
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are at odds with the trade-off hypothesis because although the
observed fitness increases in chickens would have been predicted,
expected losses in the bypassed host (mosquitoes) were not
observed. Notably, the WNV strains that had undergone
sequential passage exclusively in chickens had patterns of
nucleotide substitution suggesting that they were subject to strong
purifying selection during replication in chickens [17]. In addition,
intrahost genetic diversity in general was very low after passage in
chickens. Collectively these observations suggest that during WNV
replication in chickens, high overall fitness is maintained because
deleterious mutations are rapidly removed by selection.

Serial passage of WNV in mosquitoes resulted in slight fitness
gains in one species of mosquito (Cx. pipiens, the host in which the
virus was sequentially passed), no change in a related species (Ci.
quinguefasciatus), and extreme fitness losses in chickens. These
findings seem to support the trade-off hypothesis. Purifying
selection is relaxed in mosquitoes leading to high genetic diversity
[16,17]. It therefore seems likely that much of the genetic
diversity generated during mosquito infection consists of muta-
tions that are selectively neutral in mosquitoes but are slightly or
strongly deleterious in the chick environment, leading to chick-
specific fitness declines. This observation is supported by our
analysis of the relationship between virus fitness and the genetic
diversity within the WNV test population (figure 3). Moreover,
our results suggest that the mechanistic basis for the observed
fitness trade-off following mosquito passage is likely related to
intrahost genetic diversity and different selective environments in
each host type.
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Figure 3. Intrahost genetic diversity is associated with
decreased fitness in chickens but not mosquitoes. Fitness was
computed as the difference between the test:REF ratio at input and
after competition, such that numbers greater than zero indicate fitness
increases and numbers less than zero indicate fitness declines.
Sequence diversity was computed as the proportion of nucleotides in
the test virus population with mutation, as described by Jerzak et al
[18]. Fitness was measured in Cx. pipiens (blue circles) Cx. quinque-
fasciatus (red squares) and chickens (green triangles). Open symbols
indicate passage history in mosquitoes, closed symbols indicate
passage history in chickens. Sequence diversity was significantly
negatively correlated with fitness in chickens (Spearman r=—0.9856,
P=0.0028).

doi:10.1371/journal.ppat.1002335.g003

Alternating passage of WINV generally produced negligible
fitness changes, largely in accordance with the trade-off hypoth-
esis, although minor non-significant changes are apparent upon
visual inspection of the data in figure 2. Possible explanations for
adaptation in the absence of genetic coding change may include
post-transcriptional modification or codon usage differences
between the two environments (avian and mosquito) that may
influence replication efficiency in the subsequent heterologous
host. Concluding alternating passage in both mosquitoes and
chicks also permitted us to examine the impact of two serial passes
in each type of host. Interestingly, fitness gains were observed in
chicks when they were the final host for alternating passage. These
cohorts essentially represent two serial passes in chicks — the final
pass of this series was in chicks and the subsequent competition
was in chicks. After 20 alternate passes, two serial passes produced
fitness gains comparable in magnitude to those observed after 20
serial passages. This finding underscores our understanding that
purifying selection is extremely strong in these hosts.

Importantly, our passage regimen of 20 passes may not be
robust enough to allow establishment of equilibrium for the virus
populations being examined. Passage was terminated after 20
rounds because the logistics of serial passage become more
restrictive when working with an & vivo model compared to an
vitro model. It is possible that with additional passage, the
predictions of the trade-off hypothesis may be better satisfied in
the invertebrate host. However, most data thus far indicates that
mosquitoes are a diversity-permissive environment for WNV
[17,21]. Therefore, it is not clear how many additional passages
would be required to achieve equilibrium in these hosts.

The trade-off hypothesis is only partially supported, and in a
host-dependent manner, by our findings. When competed in
chickens both single-host-specialized virus cohorts conformed to
the predictions of the trade-off hypothesis; chick-specialized virus
showed increased fitness and Cx. pipiens -specialized virus showed
decreased fitness. Most of the data from this study, however, do
not conform to the predictions of the trade-oft hypothesis. When
competed in mosquitoes, all chick-specialized as well as Cx. piprens-
specialized viruses displayed significant fitness gains. Whereas all
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passage series resulted in at least moderately improved fitness in
Cx. pipeens, no passage series resulted in significant fitness changes
in the Cx. quinquefasciatus environment. A similar study looking only
at mosquito-specialized WNV also reports replicative fitness
increases in mosquitoes without a corresponding cost in chicks
[14].

Overall, these data suggest that the trade-off' hypothesis, as
conventionally stated, does not accurately predict WNV transmis-
sion dynamics because it fails to incorporate the mechanistic basis
underlying fitness differences. Specifically, high mutational
diversity of WNV increases fitness in mosquitoes by facilitating
escape from their dominant RNAi-based antivirus response [15].
This fitness advantage in mosquitoes carries a selective cost in
chickens because putative mosquito RNAi-escape mutations likely
negatively impact virus replication.

Higher fitness gains for all four passage regimes were observed
in Cx. pipiens compared to Cx. quinquefasciatus. These sibling species
are primary vectors of WNV in the northern and southern United
States, respectively [22]. Despite their close taxonomic relation-
ship, differences have been noted previously in vector competence
between the two species following feeding on WNV [1,23,24].
Mosquito passage of WNV was conducted in Cx. pipiens, which
may account for the larger fitness increases observed during
competitions in Cx. pipiens. However, this does not explain the
puzzling extreme fitness gains for chick-specialized virus when
competed in Cx. pipiens. We think it likely that after undergoing
continuous purifying selection in the bird environment the virus
replication is very efficient when it is then placed in the relatively
permissive  Cx. pipiens environment. It is possible that RNAi
responses of differing magnitudes may contribute to the disparity
observed for chick-specialized virus in the two mosquito species
examined. It has been shown that the RNAi pathway in Cx.
quinquefasciatus promotes genetic diversification [15], however no
data for Ch. pipiens are available and the relative magnitudes of the
RNAI have not yet been examined. Overall, our divergent results
in Cx. pipiens and Cx. quinguefasciatus suggest that fitness determi-
nants may be mosquito species-dependent.

In our studies, mosquito infection for passage and competition
was achieved through intrathoracic (IT) -inoculation, which
bypasses the mosquito midgut. This method was chosen because
achieving adequately high virus titers for oral blood-feeding would
require further passage of the virus in cell-culture and would
potentially confound any effects of serial passage. Midgut infection
and/or escape 1s considered a major bottleneck to vector infection
by arboviruses [25].This restriction is likely specific to infection in
general and not one that necessarily affects the genetic
composition of the virus population achieving infection. Recently
we have shown that genetic bottlenecks within Cx. quinquefasciatus
do not significantly reduce WINV population diversity during
horizontal transmission [26]. However, midgut infection and
escape barriers cannot be entirely ruled out as influencing virus
population genetics through, for example, selective constraints (i.e.
as opposed to stocahstic effects). Because our infections were done
by I'T-inoculation, any selective constraints such as those imposed
by transmission “barriers” in the natural transmission cycle were
overcome. Nonetheless, the methods and approaches used to
accomplish the passages described here allowed us to examine the
impact of replication in divergent hosts in the absence of several
factors (such as barriers and co-infections, for example) that would
likely be present in nature.

The complete genome sequences for the endpoint viruses from
all serially or alternately passed WNV lineages used in the current
study have been previously published [17,18]. Numerous synon-
ymous and non-synonymous mutations were found in both
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structural and non-structural coding regions, but no signature
mutations were found to be associated with any passage series and
there was no data to suggest that adaptation had occurred.
Importantly, individual virus isolates are known to comprise a
mutant swarm that may contain minority genotypes not detectable
in the consensus sequence that may exhibit dominant phenotypes
[27]. Recent developments in deep sequencing technology will
greatly facilitate future efforts at understanding the contributions
of individual quasispecies to the overall fitness of arboviruses [28].
In conclusion, when released from the obligate cycling between
avian and mosquito hosts, WNV experienced symmetrical fitness
gains in specialized hosts but fitness losses in bypassed hosts were
asymmetrical. In the avian environment fitness trade-offs are
apparent and robust; however, in the mosquito environment no
obvious fitness trade-offs were observed. These data are consistent
with previously published work showing that the mosquito
environment permits a much higher level of viral genetic diversity
than the avian environment [16,17]. Our results add to a growing
amount of evidence that arboviruses in general do not fall into an
intuitive pattern represented by the host trade-off assumption.
WNYV adaptation and evolution therefore seem likely to be driven
by alternating between diversity-permissive and diversity-restric-
tive environments in the invertebrate and vertebrate hosts.
Mosquito infection enables the development of genetic diversity
and novel variants of WNV, while infection of birds applies
purifying selection that maintains high replicative fitness.

Materials and Methods

Ethics statement

Experiments involving animals were conducted in accordance
with protocols approved by the University of New Mexico
Institutional Animal Care and Use Committee in strict adherence
to recommendations set forth in the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health
(Assurance No. A3350-01), and approved by the University of
New Mexico IACUC (protocol # 100450).

Viruses and passage series

The wild-type virus (WNV-WT) that was used to initiate all
passage series was derived from a WNV infectious clone as
previously described [29]. The genetically marked reference virus
(WNV-REF) was also derived from a WNV infectious clone and
has been previously characterized [21]. This reference virus is
identical to WNV-WT except for five sequential non-coding
changes in the NS5 region of the genome from nucleotide
positions 8313-8317. These changes were engineered using site-
directed mutagenesis as described previously [30] and changed the
parental sequence CTC TCA CGG to CTa agc aGG without
altering the amino acid sequence or the replication kinetics and
infectivity of the virus [21]. Viral RNA for WNV-WT and WNV-
REF was electroporated into baby hamster kidney (BHK) cells and
progeny virus was harvested directly and used without further cell-
culture passage.

Serial and alternate passage of WNV-WT in chicks and
mosquitoes has been previously described [17,18] (figure 1).
Briefly, 1-3 day old chicks [Charles River Specific Pathogen I'ree
Avian Services (Franklin, CT) or Sunrise Farms (Catskill, NY)]
were inoculated with 100 times the ID50 in three replicate
concurrent lineages. At day 2 post-inoculation, serum was
harvested, titrated to determine the correct dilution for re-
inoculation and used to inoculate 100 times the ID50 into the
next round of 1-3 day old chicks. After 20 such serial passes, the
end-point sera for each of the three replicate concurrent lineages
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were harvested, titered and stored at —80°C until competition
experiments were conducted. Adult, female Cx. pipiens mosquitoes
(colony derived from larvae collected in Pennsylvania and
maintained at the Wadsworth Center Arbovirus Laboratories
since 2002) were IT-inoculated with 100 times the ID50. Three
concurrent replicate lineages were maintained, with approximately
ten individual mosquitoes per replicate inoculated. At day 7 post-
inoculation, individual mosquitoes were triturated and homoge-
nates were clarified by centrifugation, titrated to determine the
correct dilution for re-inoculation, and used to inoculate 100 times
the ID50 into the next cohort of mosquitoes. A single mosquito
with the median viral load was selected for further passage. After
20 such serial passes, the end-point homogenates were titrated and
stored at —80°C: until competition experiments were conducted.

Alternating passage was also conducted in three concurrent
replicate lineages and was begun with Cx. pipiens IT-inoculation as
described above. After trituration, clarified homogenates were
used to inoculate 100 times the ID50 into chicks as described
above. Day 2 chick serum was then used to inoculate 100 times the
ID50 into the next cohort of Cx. pipiens and alternate passage
continued for 10 complete cycles or 20 total virus passes.
Alternating passage was concluded in each host type to evaluate
the possibility that a single round of replication in one or the other
host might influence virus fitness.

After passage, the resulting viruses were characterized with
respect to both complete genome sequence and population
diversity. Results of these studies are described in detail in
previous publications [17,18]. Briefly, complete genome sequences
were unremarkable, with no consistent changes noted at the
genome level. However, purifying selection was associated with
exclusive passage in chickens or alternating passage, with
mosquito-passed WINV lacking evidence of purifying selection.
Intrahost genetic diversity was related to passage history, with
higher diversity associated with exclusive passage in mosquitoes, or
alternating passage, but not with exclusive passage in chickens.
These genetically characterized, passed viruses constitute the
“test” viruses for competition studies. The inocula for competitions
were created by mixing equal number of plaque forming units
(pfu) of WNV-REF and passed “test” WNV. In most cases the
inocula were prepared in advance, aliquoted and stored at —80°C
with a fresh aliquot used for each competition. In 5 of the 13 Cx.
pipiens competitions the inocula were re-created and are compa-
rable to those used in the corresponding chick and Cx.
quinquefasciatus competitions.

Fitness competitions in chicks

Chicks were reared and competitions were performed in the
University of New Mexico’s animal biosafety level-3 (ABSL-3)
laboratory. Specific-pathogen-free eggs were incubated and
chickens hatched and maintained as described above and
elsewhere [17,18,21]. At approximately 24 h post hatching, chicks
were subcutaneously inoculated in the cervical region with 100 pL.
(2.5x10%-2.5x10° total pfu) of mixed 1:1 testREF WNV in
animal inoculation medium (endotoxin- and cation-free phosphate
buffered saline with 1% FBS) then returned to their brooders. At
48 h post-inoculation approximately 50 pL blood was collected in
heparinized capillary tubes after brachial venipuncture. Serum
was separated and used for viral RNA isolation. Experiments
mvolving animals were conducted in accordance with protocols
approved by the University of New Mexico Institutional Animal
Care and Use Committee in strict adherence to recommendations
set for in the Guide for the Care and Use of laboratory Animals of
the National Institutes of Health (Assurance No. A3350-01), and
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approved by the University of New Mexico IACUC (protocol #
100450).

Competitions in mosquitoes

Mosquitoes were reared and competitions were performed in
the University of New Mexico’s bio-safety level-3 (BSL-3)
insectary. Culex mosquitoes were obtained from colonies at the
University of New Mexico and the Wadsworth Center, New York
State Department of Health. Mosquitoes were maintained at 27°C
with a 16:8 L:D photoperiod and were used in competitions at 3—7
days post-emergence. Mosquitoes were anesthetized with CO4 and
were I'T-inoculated with 70-840 nl (2-18 total pfu) of mixed 1:1
testREF WNV in animal inoculation medium using a Nanoject II
(Drummond  Scientific Company, Boomall PA). Inoculated
mosquitoes were incubated in quart-sized cardboard containers
with water and 10% sucrose provided ad lbitum. At 7-days post
moculation whole individual mosquitoes were triturated using a
TissueLyser (Qiagen Inc., Valencia, CA) and homogenates were
clarified by centrifugation then used for viral RNA isolation.

Genotype proportion determination

Total viral RNA was isolated from chick sera or mosquito
homogenates using the RNeasy RNA Purification Kit (Qiagen
Inc., Valencia, CA). Reverse-transcriptase polymerase chain
reaction (RT-PCR) was then performed as previously described
[21]. Briefly, one-step RT-PCR was performed using the Super-
Scriptlll system (Invitrogen Corporation, Carlsbad, CA) and
primers designed to amplify an 853 base-pair region containing
the 5-nucleotide genetic marker. Amplicon DNA was then purified
using the QIAquick PCR Purification Kit (Qiagen Inc., Valencia,
CA) and sequenced by the Sanger sequencing method (Genewiz
Inc., South Plainfield, NJ). Sequence chromatograms were
analyzed using the polySNP program (http://staging.nybg.org/
polySNP.html) as described elsewhere [21,31]. The proportion of
each genotype was then computed for each of the 5 nucleotide
positions and the mean proportion of all 5 is reported as the
overall proportion of each genotype in the DNA sample.
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