Noninvasive k_{3} estimation method for slow dissociation PET ligands: application to $\left[{ }^{11} \mathrm{C}\right]$ Pittsburgh compound B

Koichi Sato ${ }^{1,2}$, Kiyoshi Fukushi ${ }^{1}$, Hitoshi Shinotoh ${ }^{1,3}$, Hitoshi Shimada ${ }^{1,4}$, Shigeki Hirano ${ }^{1,5}$, Noriko Tanaka ${ }^{6}$, Tetsuya Suhara ${ }^{1}$, Toshiaki Irie ${ }^{1}$ and Hiroshi Ito ${ }^{1 *}$

Abstract

Background: Recently, we reported an information density theory and an analysis of three-parameter plus shorter scan than conventional method ($3 P+$) for the amyloid-binding ligand $\left[{ }^{11} C\right]$ Pittsburgh compound B (PIB) as an example of a non-highly reversible positron emission tomography (PET) ligand. This article describes an extension of $3 P+$ analysis to noninvasive ' $3 P++$ ' analysis ($3 P+$ plus use of a reference tissue for input function). Methods: In 3P++ analysis for $\left.{ }^{[11} \mathrm{C}\right]$ PIB, the cerebellum was used as a reference tissue (negligible specific binding). Fifteen healthy subjects (NC) and fifteen Alzheimer's disease (AD) patients participated. The k_{3} (index of receptor density) values were estimated with 40-min PET data and three-parameter reference tissue model and were compared with that in 40-min 3P + analysis as well as standard 90-min four-parameter (4P) analysis with arterial input function. Simulation studies were performed to explain k_{3} biases observed in 3P++ analysis. Results: Good model fits of 40-min PET data were observed in both reference and target regions-of-interest (ROIs). High linear intra-subject (inter-15 ROI) correlations of k_{3} between $3 P++(Y$-axis) and 3P $+(X$-axis) analyses were shown in one NC ($r^{2}=0.972$ and slope $=0.845$) and in one AD ($r^{2}=0.982$, slope $\left.=0.655\right)$, whereas inter-subject k_{3} correlations in a target region (left lateral temporal cortex) from 30 subjects ($15 \mathrm{NC}+15 \mathrm{AD}$) were somewhat lower $\left(r^{2}=0.739\right.$ and slope $=0.461$). Similar results were shown between $3 P++$ and $4 P$ analyses: $r^{2}=0.953$ for intra-subject k_{3} in NC, $r^{2}=0.907$ for that in AD and $r^{2}=0.711$ for inter-30 subject k_{3}. Simulation studies showed that such lower inter-subject k_{3} correlations and significant negative k_{3} biases were not due to unstableness of $3 P++$ analysis but rather to inter-subject variation of both k_{2} (index of brain-to-blood transport) and k_{3} (not completely negligible) in the reference region. Conclusions: In $\left[{ }^{11} \mathrm{C}\right]$ PIB, the applicability of $3 \mathrm{P}++$ analysis may be restricted to intra-subject comparison such as follow-up studies. The 3P++ method itself is thought to be robust and may be more applicable to other non-highly reversible PET ligands with ideal reference tissue.

Keywords: $\left[{ }^{11} \mathrm{C}\right]$ Pittsburgh compound B; Alzheimer's disease; Kinetic modeling; PET quantification; Reference tissue; Slow dissociation ligand

[^0]
Background

Various reversible-type radioligands have been developed for in vivo neuroreceptor study with positron emission tomography (PET). Both arterial blood sampling and long dynamic PET scan, up to 120 min , are required for standard nonlinear least-squares (NLS) analysis to estimate K_{1} to k_{4} in the two-tissue compartment four-parameter model (4P model): K_{1} represents the blood-to-brain transport constant, k_{2} represents the brain-to-blood transport constant, k_{3} represents the first-order association rate constant for specific binding, and k_{4} represents the dissociation rate constant for specific binding. The k_{3} represents $B_{\text {max }} \cdot k_{\text {on }}$, where $B_{\text {max }}$ is maximum receptor density and $k_{\text {on }}$ is the in vivo association rate constant. Since k_{3} represents available receptors for the PET ligand, it is the target parameter of major interest in most PET studies. However, quantification of k_{3} in the 4 P model is often difficult because of uncertainty of the k_{4} estimate and high correlation between the k_{3} and k_{4} estimates. As surrogate parameters for $B_{\max }$, binding potential and distribution volume have been widely used [1-4]. Several reference tissue methods have also been developed [5-10].
Irreversible (enzyme-substrate type) radiotracers [${ }^{11} \mathrm{C}$] methylpiperidin-4-yl acetate and propionate have been developed for the measurement of cerebral acetylcholine esterase activity using PET [11,12]. In this case the twotissue compartment three-parameter (K_{1} to k_{3}) model (3P model) was used to estimate k_{3}, which is an index of acetylcholine esterase activity. In the 3P model, the precision of k_{3} estimate is usually higher than in the 4 P model, in spite of shorter PET scan time (40 to 60 min), since there is no need of k_{4} estimation in the 3P model.
We have previously defined two mathematical functions, the information density function and information function, which are useful for model selection and optimization of scan time in PET [13]. Based on simulations using both functions, we proposed a new method (3P + method) for quantification of k_{3} for moderately reversible ligands. '3P+' means three-parameter model plus short PET scan. In this method, the 3P model ($k_{4}=0$ model) was applied to the early-phase PET data (up to 30 to 40 min) from reversible ligands with moderate k_{4} (moderately reversible ligands). Although the $3 \mathrm{P}+$ method was not always developed for a specific ligand, the amyloid-binding radiotracer $\left[{ }^{11} \mathrm{C}\right]$ Pittsburgh compound B (PIB) was used as an example for the moderately reversible ligands $\left(k_{4}=\right.$ $0.018 / \mathrm{min})$. The $3 \mathrm{P}+$ method afforded a more stable k_{3} estimate than the standard $90-\mathrm{min} 4 \mathrm{P}$ analysis. However, there is still the drawback of the necessity for arterial blood sampling and radiometabolite analysis, which may restrict the widespread use of this method in daily clinical practice.
In this article, we propose a noninvasive $3 \mathrm{P}++$ analysis using $\left[{ }^{11} \mathrm{C}\right]$ PIB. $3 \mathrm{P}++$ means $3 \mathrm{P}+$ analysis plus use of a reference tissue for input function. To validate the
proposed method, the linear correlations of k_{3} estimates were evaluated between $40-\mathrm{min} 3 \mathrm{P}++$ and $3 \mathrm{P}+$ analyses, as well as between $3 \mathrm{P}++$ and $90-$ min 4 P analyses in clinical PET studies. In addition, simulation studies were performed to explain k_{3} biases observed in the $3 \mathrm{P}++$ analysis.

Methods

Theory

Assumptions in 3P++ analysis

The following are assumptions used in 3P++ analysis:

- Assumption 1 (on the nature of radioligand used): We apply $3 \mathrm{P}++$ analysis only to moderately reversible or nearly irreversible radioligands ($k_{4} \leq 0.03 / \mathrm{min}$), but exclude highly reversible ligands. [$\left.{ }^{11} \mathrm{C}\right]$ PIB is an example of moderately reversible ligands $\left(k_{4}=0.018 / \mathrm{min}\right)$.
- Assumption 2 (on the duration time of PET scan): We use early-phase PET data in the curve fitting. In [$\left.{ }^{11} \mathrm{C}\right]$ PIB, dynamic PET data during 0 to 40 min was described well with the 3P model, since the effect of the k_{4} process on PET data was negligible within these early-phase kinetics [13].
- Assumption 3 (on the specific binding in the reference tissue, $k_{3 r}$): Specific binding of radioligand is negligible in the reference tissue ($k_{3 \mathrm{r}}=0$). In $\left[{ }^{11} \mathrm{C}\right]$ PIB, the gray matter of the cerebellum is usually used as a reference tissue for input function [14]. We apply the one-tissue compartment two-parameter $\left(K_{1}, k_{2}\right)$ model (2 P model) to the reference tissue.

Working equation for $3 P++$ analysis

The working equation for the $3 \mathrm{P}++$ analysis has been reported [15]:

$$
\begin{align*}
C_{t}(t)= & R_{1}\left[\delta(t)+\frac{k_{2 \mathrm{r}} k_{3}}{k_{2}+k_{3}}+\left(k_{2 \mathrm{r}}-k_{2}-\frac{k_{2 \mathrm{r}} k_{3}}{k_{2}+k_{3}}\right) e^{-\left(k_{2}+k_{3}\right) t}\right] \otimes C_{r}(t) \\
= & R_{1} C_{r}(t)+\frac{R_{1} k_{2 \mathrm{r}} k_{3}}{k_{2}+k_{3}} \int_{0}^{t} C_{r}(\tau) d \tau-\frac{R_{1} k_{2}\left(k_{2}+k_{3}-k_{2 \mathrm{r}}\right)}{k_{2}+k_{3}} \\
& \times \int_{0}^{t} e^{-\left(k_{2}+k_{3}\right)(t-\tau)} C_{r}(\tau) d \tau, \tag{1}
\end{align*}
$$

where $C_{t}(t)$ is the radioactivity concentration in the target tissue and $C_{r}(t)$ is that in the reference tissue; $k_{2 \mathrm{r}}$ is the k_{2} in the reference tissue and \otimes is the convolution integral. The rate of tracer penetration into the target tissue is obtained as the relative value R_{1}, which is the ratio of target K_{1} to reference K_{1}.

Clinical PET study

Human subjects

Two groups of subjects, a normal control (NC) group and an Alzheimer's disease (AD) group, participated in
the current study with written informed consent. The NC group consisted of 15 healthy subjects (age ranging from 48 to 90 years, 66.7 ± 11.5 years (mean \pm SD); eight males and seven females) without a history of central nervous system diseases or psychiatric disorders, and the AD group consisted of 15 patients (ages 55 to 85, 68.9 \pm 9.6 years; four males and 11 females) diagnosed as probable AD according to the criteria of the National Institute of Neurological and Communication Disorders, Alzheimer's Disease and Related Disorders Association [16]. The study was approved by the Institutional Review Board of the National Institute of Radiological Sciences.

Radiochemical synthesis

$\left[{ }^{11} \mathrm{C}\right]$ PIB was synthesized by the reaction of 2-(4'-ami-nophenyl)-6-hydroxy-benzothiazole and $\left[{ }^{11} \mathrm{C}\right]$ methyl triflate [17]. The product had radiochemical purity greater than 95.4%. Specific activity was in the range of 56.3 to $285.3 \mathrm{GBq} / \mu \mathrm{mol}$.

PET scan protocol

PET images were acquired with a Siemens ECAT EXACT HR + scanner (CTI PET systems, Inc., Knoxville, TN, USA) with an axial field of view of 155 mm , providing 63 contiguous $2.46-\mathrm{mm}$ slices with $5.6-\mathrm{mm}$ transaxial and $5.4-\mathrm{mm}$ axial resolution. After a $10-\mathrm{min}$ transmission scan for tissue attenuation correction, infusion of [$\left.{ }^{11} \mathrm{C}\right]$ PIB (about 370 MBq in 5 mL for 1 min) began. A PET scan in 3D mode was started after the arrival of tracer to the brain (approximately 30 s after the beginning of tracer infusion). The dynamic scans consisted of 19 frames $(3 \times 20 \mathrm{~s}, 3 \times 40 \mathrm{~s}, 1 \times 1 \mathrm{~min}, 2 \times 3 \mathrm{~min}, 5 \times 6 \mathrm{~min}$, and $5 \times 10 \mathrm{~min}$) with the total scan duration of 90 min . All data processing and image reconstruction were performed using standard Siemens software, which included scatter correction, randoms, and dead time correction.

Region-of-interest delineation

Region-of-interest (ROI) analysis was performed using the PMOD software package (PMOD version 3.2; Technologies Ltd., Adliswil, Switzerland). The [$\left.{ }^{11} \mathrm{C}\right]$ PIB PET images were co-registered to T_{1} weighted images in each subject. The following 15 ROIs were drawn manually on T_{1} weighted images: frontal, mesial temporal, lateral temporal, parietal, occipital, anterior cingulate, and posterior cingulate cortices in both hemispheres as well as the reference tissue (gray matter of cerebellum). ROIs were transferred to co-registered [$\left.{ }^{11} \mathrm{C}\right]$ PIB PET images, and time-activity curves (TACs) were obtained in those brain regions.

Input function measurement

During PET scan, arterial blood was collected from radial artery, starting 6 s (transit delay at the blood sampling site) after the beginning of PET scan to 85 min post injection
$(10 \times 10 \mathrm{~s}, 1 \times 30 \mathrm{~s}, 9 \times 2 \mathrm{~min}, 6 \times 10 \mathrm{~min}$, and $1 \times 5 \mathrm{~min}$; 27 samples). Radioactive metabolites were analyzed by a radio-thin layer chromatography (TLC) method [12], with a TLC-developing solvent (ethyl acetate $/ n$-hexane $=2: 1$ vols). The metabolite-corrected radioactivity as well as total radioactivity in blood plasma was fitted to a monoexponential saturation function during infusion (0 to 1 min) and the sum of three-exponential functions after the end of infusion (1 to 85 min) [12].

$4 P$ and $3 P+$ analyses (arterial-plasma input)

Brain regional TACs were analyzed by the weighted NLS method under positive constraint of all k_{i} with metabolitecorrected input function to afford K_{1} to k_{4} estimates in 4 P analysis (scan time of 90 min) and K_{1} to k_{3} estimates in $3 P+$ analysis (40 min). Correction was made for bloodpool (5\%) radioactivity in brain tissue [14]. Custom software operating in IDL software (version 6.0; Jicoux Datasystems, Inc., Tokyo, Japan) environment was used for the compartment model analysis.

$3 P++$ analysis (reference tissue input)

For successful convergence in NLS optimization using Equation 1, we fixed $k_{2 \mathrm{r}}$ to $0.178 / \mathrm{min}$ (mean cerebellar k_{2} value by $40-$ min $3 \mathrm{P}+$ analysis; $N=30 ; \mathrm{SD}=0.034$). Based on Equation 1 and cerebellar TAC with a fixed $k_{2 \mathrm{r}}$ value, the time-integral of $C_{r}(t)$ (the second term on the right side of Equation 1) and the convolution integral (the third term) were calculated numerically without data interpolation for each scan mid-times during 0 to 40 min , and the three parameters R_{1}, k_{2}, and k_{3} were estimated.

Simulation study

Generation of error-added TACs for Monte Carlo simulation The error-free, baseline TACs (19 frames/90 min) simulating the target ROI of the NC and AD subjects were generated by using the 4P model with parameter set $\left(K_{1}=0.180\right.$ $\mathrm{mL} / \mathrm{g} / \mathrm{min}, k_{2}=0.180 / \mathrm{min}, k_{3}=0.018$ and $0.036 / \mathrm{min}$ for the NC and AD subjects, respectively, and $k_{4}=0.018 / \mathrm{min}$; typical values for $\left[{ }^{11} \mathrm{C}\right]$ PIB $)$ and averaged $(N=20)$ input function of $\left[{ }^{11} \mathrm{C}\right]$ PIB. The reference ROI was the same between NC and AD subjects and was generated by using the 2P model with parameter set ($K_{1}=0.180 \mathrm{~mL} / \mathrm{g} / \mathrm{min}$, $k_{2}=0.180 / \mathrm{min}$) and the same input function as above. The error-added TACs for simulation were generated according to the following formula [18]:

$$
\begin{align*}
\text { Error-added } C_{i} & =C_{i}+\text { Rand } \times \sigma\left(C_{i}\right) \\
\sigma\left(C_{i}\right) & =\varepsilon \sqrt{\frac{C_{i}}{\Delta t_{i} \times \exp \left(-\lambda t_{i}\right)}}, \tag{2}
\end{align*}
$$

where C_{i} is noise-free simulated radioactivity concentration at frame number i, Rand is a random number from a Gaussian distribution with a mean 0 and variance $1, \varepsilon$ is a
scaling factor that determines the noise level, Δt_{i} is scan duration of frame number i, t_{i} is mid-scan time of frame number i, and λ is ${ }^{11} \mathrm{C}$ decay constant. In all Monte Carlo simulations, a data set of 100 noise-added TACs was analyzed with weighted NLS, using a relative weight w_{i} :

$$
\begin{equation*}
w_{i}=\text { constant } \times \frac{\Delta t_{i} \times \exp \left(-\lambda t_{i}\right)}{C_{i}} . \tag{3}
\end{equation*}
$$

Effects of PET noise on $4 P, 3 P+$, and $3 P++$ analyses

Five levels of PET noise ($0.025,0.05,0.1,0.2$, and $0.3 ; \varepsilon$ in Equation 2, relative values empirically determined) were added to the baseline TACs of the target ROI of the NC subjects. From 100 error-added TACs for each PET noise level, $100 k_{3}$ values were estimated using $90-\mathrm{min} 4 \mathrm{P}, 40-$ $\min 3 \mathrm{P}+$, and $3 \mathrm{P}++$ analyses. Coefficient-of-variation (CV) of k_{3} was calculated as $\mathrm{CV}(\%)=(\mathrm{SD} /$ mean $) \times 100$. In the following simulations, the PET noise was fixed at 0.1.

Effects of K_{1} change in target ROI on $4 P, 3 P+$, and $3 P++$ analyses

Simulated target TACs were generated by 4P model with five different K_{1} values $(0.12,0.15,0.18,0.21$, and 0.24 $\mathrm{mL} / \mathrm{g} / \mathrm{min})$ and fixed $k_{3}(0.018 / \mathrm{min})$ and $k_{4}(0.018 / \mathrm{min})$. The value of K_{1} / k_{2} was fixed at 1 . The range of K_{1} was determined with clinically measured K_{1} for $\left[{ }^{11} \mathrm{C}\right]$ PIB (0.177 ± 0.31 in NC group and 0.168 ± 0.30 in AD group; $90-\mathrm{min} 4 \mathrm{P}$ analysis). Reference TAC was the same as baseline reference TAC. The k_{3} bias in $90-\mathrm{min} 4 \mathrm{P}, 40-$ $\min 3 \mathrm{P}+$, and $3 \mathrm{P}++$ analyses relative to the true k_{3} $(0.018 / \mathrm{min})$ was calculated as bias $(\%)=\left(\right.$ estimated $k_{3} /$ true $\left.k_{3}-1\right) \times 100$.

Effects of k_{2} or k_{3} change in reference ROI on $3 \mathrm{P}++$ analysis In 3P++ analysis, $k_{3 \mathrm{r}}$ was assumed to be 0 and $k_{2 \mathrm{r}}$ was fixed as an empirical constant. The effects of $k_{2 r}$ or $k_{3 r}$ change were investigated as follows. The error-added target TACs were generated by 4P model with two different k_{3} values ($0.018 / \mathrm{min}$ for NC and $0.036 / \mathrm{min}$ for AD); other parameters were the same as the baseline target TAC. The error-added reference TACs were generated by 2 P model with five different $k_{2}(0.12,0.15,0.18,0.21$, and $0.24 / \mathrm{min})$ and fixed K_{1} values ($0.18 \mathrm{~mL} / \mathrm{g} / \mathrm{min}$). Another set of simulated reference TACs was generated by 3P model (not 2P model) with five different $k_{3}(0,0.002,0.004,0.006$, and $0.008 / \mathrm{min})$ and fixed $K_{1}(0.18 \mathrm{~mL} / \mathrm{g} / \mathrm{min})$ and $k_{2}(0.18 /$ $\mathrm{min})$. The k_{3} bias in $3 \mathrm{P}++$ analysis was expressed relative to $3 \mathrm{P}+$ analysis as bias $(\%)=\left(3 \mathrm{P}++k_{3} / 3 \mathrm{P}+k_{3}-1\right) \times 100$.
Although $k_{3 \mathrm{r}}$ was assumed to be 0 in Equation 1, each subject may have different $k_{3 r}$ values that deviated from 0 . In simulations to investigate the effect of the individual $k_{3 r}$ variation on $3 \mathrm{P}++$ analysis, we defined the k_{3} value empirically corrected for nonzero $k_{3 \mathrm{r}}$ as follows:
$k_{3}{ }^{\prime}=k_{3}+k_{3 \mathrm{p}}$ where k_{3} is the k_{3} estimate of target ROI by $3 \mathrm{P}++$ analysis and $k_{3 \mathrm{r}}$ is the k_{3} estimate of reference ROI by $3 \mathrm{P}+$ analysis (true reference k_{3}). Bias in $3 \mathrm{P}++k_{3}{ }^{\prime}$ relative to $3 \mathrm{P}+k_{3}$ was compared with the bias in $3 \mathrm{P}++$ k_{3} to $3 \mathrm{P}+k_{3}$.

Results

Goodness of model fits in 3P++ analysis

Figure 1A shows an example of the curve fitting of [$\left.{ }^{11} \mathrm{C}\right]$ PIB cerebellar TAC data to the 2P model, where a good fit is seen during 0 to 40 min after tracer injection. Figure 1B shows the fits of cerebral cortical TAC data (0 to 40 min) to the 3P + and 3P++ models. The goodness-of-fit by 3P++ model (reference tissue input) is almost indistinguishable from that by 3P + model (arterial-plasma input). Kinetic parameters $\left(K_{1}=0.161 \mathrm{~mL} / \mathrm{g} / \mathrm{min}, k_{2}=0.167 / \mathrm{min}\right.$ and

Figure 1 Reference and target tissue TACs in [$\left.{ }^{11} \mathrm{C}\right]$ PIB PET. (A) Cerebellar (reference tissue) data (open circle) up to 90 min in one AD subject and the fit of 40-min data to the 2P model (solid line). (B) Cerebral cortical (target tissue) data (open circle) in the same subject and the fits of $40-\mathrm{min}$ data to the 3 P model with arterial-plasma input (3P + analysis; solid line) or reference tissue input (3P++ analysis; dashed line). The dotted lines in (A) and (B) indicate the extension of the solid line from 40 to 90 min .
$k_{3}=0.015 / \mathrm{min}$) were estimated in 3P + analysis and $R_{1}=$ $0.897, k_{2}=0.158 / \mathrm{min}$ and $k_{3}=0.011 / \mathrm{min}$ in $3 \mathrm{P}++$ analysis.

Intra-subject k_{3} correlation

Figure 2A is an example of the intra-subject k_{3} correlation between $40-\mathrm{min} 3 \mathrm{P}+(X$-axis $)$ and $3 \mathrm{P}++$ (Y-axis) analyses, where the k_{3} values of 15 ROIs, including the cerebellum (reference tissue in 3P++ analysis) from one particular NC subject or one particular AD subject, are shown. The regression lines and the coefficients of determination are $Y=0.845 X-0.006\left(r^{2}=0.972\right)$ for the NC subject and $Y=0.655 X-0.004\left(r^{2}=0.982\right)$ for the AD subject. Cerebellar k_{3} values for both subjects are naturally calculated to be 0 in the $3 \mathrm{P}++$ analysis. The slopes of the regression lines indicate the presence of negative bias in the $3 \mathrm{P}++$ against the $3 \mathrm{P}+$ analysis.
Figure 2 B shows the k_{3} correlation between $90-\mathrm{min} 4 \mathrm{P}$ (X-axis) and 40 -min 3P++ (Y-axis) analyses in the same subjects. The regression lines are $Y=0.590 X-0.005\left(r^{2}=\right.$ 0.953) for the NC subject and $Y=0.338 X+0.000\left(r^{2}=\right.$ 0.907) for the AD subject. When the cerebellar data ($X=0.008, Y=0.000$) was removed from calculation for the AD subject, the regression line became $Y=0.295 X-$ 0.002 with slightly larger r^{2} (0.935 ; not shown in the figure). The slopes of the regression lines show that k_{3} bias in $3 \mathrm{P}++$ against 4 P analysis is larger than that against 3P + analysis.

Inter-subject k_{3} correlation

Figure 3A shows an example of the inter-subject k_{3} correlation, where k_{3} values for the left lateral temporal cortex from 30 subjects ($15 \mathrm{NC}+15 \mathrm{AD}$) are compared between $40-$ min $3 \mathrm{P}+(X$-axis $)$ and $3 \mathrm{P}++(Y$-axis $)$ analyses. The regression lines are $Y=0.461 X-0.001\left(r^{2}=\right.$ $0.739)$ for all 30 subjects, $Y=0.178 X+0.000\left(r^{2}=0.151\right)$
for the NC group alone, and $Y=0.286 X+0.003\left(r^{2}=\right.$ 0.411) for the AD group alone; the latter two lines are not shown in the figure. The slopes of the regression lines also indicate the presence of negative biases in $3 \mathrm{P}++$ against 3P + analysis.

Figure 3B shows the inter-subject correlation of left lateral temporal k_{3} between $90-\min 4 \mathrm{P}$ (X-axis) and 40$\min 3 \mathrm{P}++(Y$-axis) analyses, where the regression line is $Y=0.225 X+0.000\left(r^{2}=0.711\right)$ for all subjects. The lines of $Y=0.090 X+0.001\left(r^{2}=0.122\right)$ for the NC group alone and $Y=0.135 X+0.005\left(r^{2}=0.513\right)$ for the AD group alone were also calculated. The slopes of the regression lines show larger negative k_{3} biases in $3 \mathrm{P}++$ against 4 P analysis than that shown in Figure 3A. The results in other cerebral regions were essentially the same as those in the left lateral temporal cortex.

Simulation on the effects of PET noise on $\mathrm{k}_{3} \mathrm{CV}$

Figure 4 compares the noise sensitivity of k_{3} estimates among the $90-\mathrm{min} 4 \mathrm{P}, 40-\mathrm{min} 3 \mathrm{P}+$, and $3 \mathrm{P}++$ analyses. In all three analyses, the $k_{3} \mathrm{CVs}$ increased as the PET error became larger. The $k_{3} \mathrm{CV}$ in $3 \mathrm{P}++$ analysis was comparable to that in $3 \mathrm{P}+$ analysis and lower than that in 4 P analysis; for example, k_{3} CVs at 0.1 of noise level were 6.6% in $3 \mathrm{P}++, 7.0 \%$ in $3 \mathrm{P}+$, and 11.4% in 4 P analyses.

Simulation on the effects of target K_{1} change on k_{3} bias

Figure 5 shows the effects of K_{1} change in the target ROI on the k_{3} biases in the $90-\mathrm{min} 4 \mathrm{P}, 40-\mathrm{min} 3 \mathrm{P}+$, and $3 \mathrm{P}++$ analyses. The 4 P analysis remained almost biasfree ($+0.6 \%$) within K_{1} from 0.12 to $0.24 \mathrm{~mL} / \mathrm{g} / \mathrm{min}$. 3P + and 3P++ analyses showed larger negative biases (-33% to -34% bias in $3 \mathrm{P}+$ and -33% to -35% bias in $3 \mathrm{P}++$) compared with 4 P analysis. Although $3 \mathrm{P}++$ analysis showed slightly larger k_{3} bias than $3 \mathrm{P}+$ analysis

Figure 2 Intra-subject correlation of $\boldsymbol{k}_{\mathbf{3}}$ for $\mathbf{1 5}$ ROIs in [$\left.{ }^{11} \mathbf{C}\right]$ PIB PET. The results in 40-min $3 P++(Y$-axis) vs. $3 P+(X$-axis) analyses (A) and 40-min 3P++ vs. 90-min 4P analyses (B) with one NC subject (open circle) and one AD subject (closed circle) are shown.

Figure $\mathbf{3}$ Inter-subject correlations of left lateral temporal \boldsymbol{k}_{3} in $\left[{ }^{11} \mathrm{C}\right]$ PIB PET. The results in $40-\mathrm{min} 3 \mathrm{P}++(Y$-axis $)$ vs. $3 \mathrm{P}+(X$-axis $)$ analyses (A) and 40-min 3P++ vs. 90-min 4P analyses (B) with 30 subjects (15 NC , open circle; 15 AD, closed circle) are shown.
when K_{1} was low ($0.12 \mathrm{~mL} / \mathrm{g} / \mathrm{min}$), k_{3} bias in $3 \mathrm{P}++$ analysis was almost the same as $3 \mathrm{P}+$ analysis.

Simulation on the effects of $\mathbf{k}_{2 \mathrm{r}}$ change on 3P++ analysis

 In $3 \mathrm{P}++$ analysis (Equation 1), $k_{2 r}$ was fixed at $0.178 /$ min, though $k_{2 \mathrm{r}}$ was not always the same among subjects (CV $=19 \%$). Figure 6 shows the effects of individual $k_{2 r}$ change in $40-\min 3 \mathrm{P}++$ analysis. When $k_{2 r}$ was equal to the fixed value $(0.18 / \mathrm{min}), 3 \mathrm{P}++$ analysis was bias-free, relative to $3 \mathrm{P}+$ analysis. However, when $k_{2 r}$ was different from the fixed value, $3 \mathrm{P}++$ analysis showed a negative k_{3} bias relative to $3 \mathrm{P}+k_{3}$. The $k_{2 r}$ effects were similar

PET error level
Figure 4 Effects of PET noise on CV of $\boldsymbol{k}_{\mathbf{3}}$. The results in 40 -min $3 \mathrm{P}++$ (open triangle), $40-\mathrm{min} 3 \mathrm{P}+$ (open square), and $90-\mathrm{min} 4 \mathrm{P}$ (open circle) analyses are shown. Five different PET noises (0.025 to 0.3) were added to the [$\left.{ }^{11} \mathrm{C}\right]$ PIB baseline TACs of the target ROI of the NC subjects. CV of k_{3} was calculated from $100 k_{3}$ estimates as $C V(\%)=(S D /$ mean $) \times 100$.
between NC ROI ($k_{3}=0.018 / \mathrm{min}$) and AD ROI ($k_{3}=$ $0.036 / \mathrm{min}$); for example, the biases were -14.1% for NC and -12.1% for AD at $k_{2 \mathrm{r}}=0.12 / \mathrm{min}$ and -14.1% for NC and -11.3% for AD at $k_{2 \mathrm{r}}=0.24 / \mathrm{min}$.

Simulation on the effects of $\mathbf{k}_{3 \mathrm{r}}$ change on $3 \mathrm{P}++$ analysis

In $3 \mathrm{P}++$ analysis we assume that $k_{3 \mathrm{r}}=0$, that is, specific binding is negligible in the reference tissue. However, in all subjects examined, this assumption did not hold: the $k_{3 \mathrm{r}}$ values in $40-\mathrm{min} 3 \mathrm{P}+$ analysis were $0.008 \pm 0.004 / \mathrm{min}$ in the AD group, $0.007 \pm 0.002 / \mathrm{min}$ in the NC group, and $0.007 \pm 0.003 / \mathrm{min}$ in the $\mathrm{AD}+\mathrm{NC}$ group.

Figure 5 Effects of K_{1} change in the target region on k_{3} bias.
The results in $40-\mathrm{min} 3 \mathrm{P}++$ (open triangle), $40-\mathrm{min} 3 \mathrm{P}+$
(open square) and $90-\mathrm{min} 4 \mathrm{P}$ (open circle) analyses are shown. Simulated target TACs were generated by 4P model with five different K_{1} values (0.12 to $0.24 \mathrm{~mL} / \mathrm{g} / \mathrm{min}$). The k_{3} bias was calculated as bias $(\%)=\left(\right.$ estimated $k_{3} /$ true $\left.k_{3}-1\right) \times 100$.

Figure 6 Effects of k_{2} change in the reference region on k_{3} bias in 40-min 3P++ analysis. Simulated target TACs were generated by 4 P model with two different k_{3} values ($0.018 / \mathrm{min}$ for $N C$, open circle; $0.036 / \mathrm{min}$ for AD, closed circle). Simulated reference TACs were generated by 2P model with five different k_{2} values (0.12 to $0.24 /$ min). The k_{3} bias in $3 \mathrm{P}++$ analysis was expressed relative to $3 \mathrm{P}+$ analysis as bias $(\%)=\left(3 P++k_{3} / 3 P+k_{3}-1\right) \times 100$.

Figure 7 shows the effects of individual $k_{3 \mathrm{r}}$ change (0 to $0.008 / \mathrm{min}$) on $40-\mathrm{min} 3 \mathrm{P}++$ analysis. When $k_{3 \mathrm{r}}$ was 0 , $3 \mathrm{P}++$ analysis was bias-free, relative to $3 \mathrm{P}+$ analysis. The k_{3} biases (negative biases) increased as $k_{3 \mathrm{r}}$ increased: -38% for NC and -27% for AD at $k_{3 \mathrm{r}}=0.004 / \mathrm{min}$ and -70% for NC and -48% for AD at $k_{3 \mathrm{r}}=0.008 / \mathrm{min}$. The NC ROI $\left(k_{3}=0.018 / \mathrm{min}\right)$ showed larger biases than the AD ROI $\left(k_{3}=0.036 / \mathrm{min}\right)$. Figure 7 also shows the results of the simulation study on the relationship between $3 \mathrm{P}++k_{3}{ }^{\prime}$ and $3 \mathrm{P}+k_{3}$, where $3 \mathrm{P}++k_{3}$ was empirically corrected with individual $k_{3 r}$. In this case, negative bias in $3 \mathrm{P}++k_{3}{ }^{\prime}$ was significantly decreased compared to that in $3 \mathrm{P}++k_{3}$; for example, bias was decreased from -70% to -7% for NC, and from -48% to -15% for AD at $k_{3 \mathrm{r}}=0.008 / \mathrm{min}$.
Figure 8 shows the correlation between $3 \mathrm{P}++k_{3}{ }^{\prime}$ and $3 \mathrm{P}+k_{3}$ using the same data as in Figure 3A, where 3P++ k_{3} in Figure 3A was replaced by $3 \mathrm{P}++k_{3}{ }^{\prime}$. The regression line was $Y=0.678 X+0.003\left(r^{2}=0.975\right)$ for all subjects, where $X=3 \mathrm{P}+k_{3}$ and $Y=3 \mathrm{P}++k_{3}{ }^{\prime}$. The lines of Y $=0.798 X+0.002\left(r^{2}=0.897\right)$ for the NC group alone and $Y=0.620 X+0.004\left(r^{2}=0.960\right)$ for the AD group alone were also calculated. The determination coefficient was increased by this correction from 0.739 to 0.975 . The slope of the regression line was also increased from 0.461 (Figure 3A) to 0.678 (Figure 8), which showed the reduction of negative bias in 3P++ analysis.

Discussion

Theoretical basis and merits of 3P++ analysis

The previous $3 \mathrm{P}+$ analysis allowed for estimating k_{3} of moderately reversible ligands, where the 3P model was

Figure 7 Effects of k_{3} change in the reference region on k_{3} bias in $40-\mathrm{min} 3 \mathrm{P}++$ analysis. Simulated target TACs were generated by 4 P model with two different k_{3} values ($0.018 / \mathrm{min}$ for $N C$, open circle; $0.036 / \mathrm{min}$ for AD, closed circle). Simulated reference TACs were generated by 3P model with five different k_{3} values (0 to $0.008 / \mathrm{min}$). The k_{3} bias in $3 \mathrm{P}++$ analysis was expressed relative to $3 \mathrm{P}+$ analysis as bias $(\%)=\left(3 P++k_{3} / 3 P+k_{3}-1\right) \times 100$. Effects on bias in $3 P++k_{3}^{\prime}$ relative to $3 P+k_{3}$ are also shown (NC , open triangle; AD , closed triangle), where $3 \mathrm{P}++k_{3}{ }^{\prime}$ was calculated as $\left(3 \mathrm{P}++k_{3}{ }^{\prime}\right)=(3 \mathrm{P}++$ $\left.k_{3}\right)+$ reference k_{3}.
applied to early-phase (up to 30 to 40 min) PET data with arterial input function [13]. It was reported that when the 3P model was applied to 60-min PET scan data from [$\left.{ }^{11} \mathrm{C}\right]$ PIB $\left(k_{4}=0.018 / \mathrm{min}\right)$ as a moderately reversible ligand, only a poor model fit was obtained [19]. Previous simulation studies on $\left[{ }^{11} \mathrm{C}\right]$ PIB using information

Figure 8 Inter-subject correlation of left lateral temporal $\boldsymbol{k}_{\mathbf{3}}$ in [$\left.{ }^{11} \mathrm{C}\right]$ PIB PET. The result in $40-$ min $3 P++$ (Y-axis) vs. $3 P+(X$-axis $)$ analyses with 30 subjects (15 NC , open circle; 15 AD , closed circle) is shown. The k_{3} estimates were empirically corrected as $\left(3 P++k_{3}{ }^{\prime}\right)=$ $\left(3 P++k_{3}\right)+$ (individual cerebellar k_{3} by $3 P+$).
density theory suggested that scan time reduction to 40 min would be necessary to obtain a good fit to the 3P model [13].
When 3P + or 3P++ analysis can be applied to a ligand, such ligand is specified as a moderately reversible ligand. This applicability is determined by the information function curves of k_{3} and k_{4} [13], and thus is dependent on the scan time as well as k_{3} and k_{4} values of the ligand in a ROI. Differentiation of a moderately reversible ligand from general reversible ligands is somewhat arbitrary, though we conveniently defined this with the k_{4} value $(\leq 0.03 / \mathrm{min})$ in this study.

In the present study, the $3 \mathrm{P}+$ plasma input model was extended to the $3 \mathrm{P}++$ reference tissue input model. The $3 \mathrm{P}++$ analysis has three merits over previous methods. First, the PET scan time is short, usually less than 40 min , which may be important in PET studies with elderly or demented subjects. Secondly, the target parameter k_{3} can be isolated from the other model parameters. Thirdly, neither arterial cannulation nor labor-intensive measurements of labeled metabolites are required.

One of the conventional models for the estimation of binding of $\left[{ }^{11} \mathrm{C}\right]$ PIB is the Logan plot analysis [2], which employs data of long duration (more than 60 min). Noninvasive Logan analysis (distribution volume ratio) [6] requires late-phase (equilibrium-phase) PET data, whereas late-phase data are not necessary for $3 \mathrm{P}++$ analysis. In the noninvasive Logan model or simplified reference tissue model [8], the K_{1}-to- k_{2} ratio in the target and reference tissues is assumed to be equal. $3 \mathrm{P}++$ analysis does not require such an assumption. Since $3 P++$ analysis is a kind of irreversible-model analysis, $K_{1}\left(R_{1}\right)$ and k_{3} can be independently estimated (k_{2} must be fixed to a certain constant).

Noise sensitivity of 3P++ analysis

Loss of PET data in short-scan 3P++ and 3P + analyses might be considered to deteriorate the precision of the k_{3} estimate. In the present simulation for noise sensitivity, $k_{3} \mathrm{CV}$ values in $40-\mathrm{min} 3 \mathrm{P}++$ and $3 \mathrm{P}+$ analyses were lower than (almost three fifths of) that in $90-$ min 4 P analysis (Figure 4), which was in accordance with the previous report [13]. It is considered that the loss of PET data may be compensated for by the reduction in the number of free parameters from four in the 4 P model to three in the $3 \mathrm{P}+$ and $3 \mathrm{P}++$ models.

K_{1} effect on 3P++ analysis

In the K_{1} simulation, the stableness of k_{3} estimation in changes of cerebral blood flow was investigated. The magnitudes of k_{3} bias were independent of the K_{1} change, ranging from 0.12 to $0.24 \mathrm{~mL} / \mathrm{g} / \mathrm{min}$, in $3 \mathrm{P}++$, $3 \mathrm{P}+$, and 4 P analyses (Figure 5). The $3 \mathrm{P}++$ as well as $3 \mathrm{P}+$ and 4 P analyses were less affected by K_{1}, which is owing to the capability of isolating the k_{3} estimation. The $40-\mathrm{min} 3 \mathrm{P}+$
analysis showed $-33 \% k_{3}$ bias relative to $90-\mathrm{min} 4 \mathrm{P}$ analysis, which is in accordance with the previous report [13]. In this K_{1} simulation, $3 \mathrm{P}++k_{3}$ showed negligible bias relative to $3 \mathrm{P}+k_{3}$. These results suggested that in $3 \mathrm{P}++$ analysis, the effects of ignoring vascular volume as well as numerical integration error due to discrete time points were not significant.

Causes of negative \mathbf{k}_{3} bias in 3P++ analysis

Firstly, the k_{3} bias in $3 \mathrm{P}++$ analysis originates from 3P model approximation. Our previous simulation study [13] showed that the $3 P$ + analysis with $28-$ min scan had large negative k_{3} bias relative to 4 P analysis with $90-\mathrm{min}$ scan; for example, there was about -22% to -24% bias to true $k_{3}\left(4 \mathrm{P} k_{3}\right)$ ranging from 0.01 to $0.04 / \mathrm{min}$ including NC and $\mathrm{AD} k_{3}$. $3 \mathrm{P}++$ analysis showed further negative k_{3} bias relative to $3 \mathrm{P}+$ analysis due to the following two reasons.
Secondly, the bias is due to individual $k_{2 r}$ change from the fixed value in Equation 1. In 3P++ analysis, we also assumed that k_{2} in the reference tissue was constant and was fixed at $0.178 / \mathrm{min}$, which was the average k_{2} value with the $3 \mathrm{P}+$ model. In simulation, negative k_{3} bias was predicted when $k_{2 \mathrm{r}}$ was larger or smaller than fixed k_{2} (Figure 6). Each subject in the NC and AD groups had different k_{2} values in the reference tissue, and it is considered that such biological variance as for reference tissue may result in a negative k_{3} bias in 3P++ analysis, relative to $3 \mathrm{P}+$ analysis for $\left[{ }^{11} \mathrm{C}\right]$ PIB.

Thirdly, the bias is due to the discrepancy between the model assumption and the actual reference ROI. The basic assumption (assumption 3) in 3P++ analysis is $k_{3 \mathrm{r}}=0$. The working equation of $3 \mathrm{P}++$ analysis (Equation 1) is derived under this assumption, and reference k_{3} is naturally calculated to be 0 . However, in $3 \mathrm{P}+$ analysis with $\left[{ }^{11} \mathrm{C}\right]$ PIB, the cerebellum showed nonzero $k_{3}(0.007 \pm 0.003 / \mathrm{min}$ in all 30 subjects). Thus, $3 \mathrm{P}++k_{3}$ is expected to be underestimated. Simulation studies showed that 3P++ analysis was bias-free for ideal reference with zero k_{3} and that k_{3} bias became larger as $k_{3 r}$ increased (Figure 7). When k_{3} was replaced by $k_{3}{ }^{\prime}$, negative bias was significantly decreased in the simulation (Figure 7), as well as the slope of the regression line between $3 \mathrm{P}++$ and $3 \mathrm{P}+$ analyses being increased from 0.461 (Figure 3A) to 0.678 (Figure 8), which also suggested that nonzero $k_{3 \mathrm{r}}$ caused underestimation of $3 \mathrm{P}++k_{3}$.

Correlation of k_{3} between $3 \mathrm{P}++$ and $3 \mathrm{P}+$ analyses

Strong intra-subject k_{3} correlation was shown between $3 \mathrm{P}++$ and $3 \mathrm{P}+$ analyses, and the rank-order of k_{3} was almost the same between the two analyses (Figure 2A), suggesting the stability of both $3 \mathrm{P}++$ and $3 \mathrm{P}+$ analyses.
The inter-subject k_{3} correlation (r^{2}; Figure 3A) was significantly lower than the intra-subject correlation (Figure 2A). Such a lower inter-subject k_{3} correlation
can be partly explained by the sample variance of cerebellar k_{3}. In order to explain this, $k_{3}{ }^{\prime}$ was calculated for each subject. When k_{3} was replaced by $k_{3}{ }^{\prime}$, the determination coefficient between $3 \mathrm{P}++$ and $3 \mathrm{P}+$ analyses was increased from 0.739 (Figure 3A) to 0.975 (Figure 8); the latter is comparable to r^{2} of the intra-subject k_{3} correlation (0.982; Figure 2A).
Such an estimation of parameter $k_{3}{ }^{\prime}$ is not always practical, as 3P + analysis with arterial input function is necessary for individual cerebellar k_{3} estimation. However, these results suggest that the lower r^{2} in the inter-subject correlation compared with the intra-subject correlation is due to the sample variance of cerebellar k_{3} and that $3 \mathrm{P}++$ analysis itself is robust, as far as the reference is ideal.
Practically, the use of mean $k_{3 \mathrm{r}}$ may be meaningful. When target k_{3} is empirically corrected as corrected $k_{3}=$ estimated $k_{3}+$ mean cerebellar k_{3}, the absolute bias in target k_{3} would decrease. However, the precision of target k_{3} would not necessarily be improved owing to the variance of individual $k_{3 \mathrm{r}}$.
In addition to the nonzero effect of $k_{3 \mathrm{p}}$ inter-subject variation of $k_{2 \text { r }}$ from the fixed value ($k_{2}=0.178 / \mathrm{min}$) may also produce individually different k_{3} bias in $3 \mathrm{P}++$ analysis, resulting in lower inter-subject k_{3} correlation between 3P + and 3P++ analyses.

Limitations of 3P++ analysis

When $3 \mathrm{P}++$ analysis was applied to $\left[{ }^{11} \mathrm{C}\right]$ PIB as an example of moderately reversible ligands, a somewhat lower inter-subject k_{3} correlation ($r^{2}=0.739$ or 0.711 ; Figure 3A or Figure 3 B) was shown between the $3 \mathrm{P}++$ and $3 \mathrm{P}+$ or 4 P analyses, respectively, across a k_{3} range including NC and $\mathrm{AD}\left(3 \mathrm{P}+k_{3}, 0.004\right.$ to $\left.0.040 / \mathrm{min}\right)$. The rank order of $3 \mathrm{P}++k_{3}$ also differed considerably from $3 \mathrm{P}+k_{3}$ or $4 \mathrm{P} k_{3}$. These results were mainly due to nonzero $k_{3 r}$ and the sample variance of both $k_{2 \mathrm{r}}$ and $k_{3 \mathrm{r}}$ as described above. The negative k_{3} bias ($3 \mathrm{P}++$ vs. $3 \mathrm{P}+$) was larger in NC ROI (-70%) than in AD ROI (-48%) when $k_{3 \mathrm{r}}=0.008 / \mathrm{min}$ (Figure 7). The previous report showed that the difference in k_{3} bias ($28-\mathrm{min} 3 \mathrm{P}+$ vs. $90-\mathrm{min} 4 \mathrm{P}$) was small between NC ROI (-23%) and AD ROI (-24%) [13]. Therefore, the k_{3} value in $3 \mathrm{P}++$ analysis may be somewhat underestimated in the ROI with lower amyloid deposition compared to $3 \mathrm{P}+$ or 4 P analysis.
In $\left[{ }^{11} \mathrm{C}\right]$ PIB PET, $3 \mathrm{P}++$ analysis may be inadequate for inter-subject k_{3} comparison and useful only for intra-subject (inter-ROI) comparison or pre- vs. postcomparison in the same subject. $3 \mathrm{P}++$ analysis would be more suitable for such reversible ligands that have moderate k_{4} and reference tissue without specific binding.

Conclusions

The $3 \mathrm{P}++$ analysis is a k_{3} estimation method for moderately reversible PET ligands with a short scan time
such as 40 min and without arterial blood sampling. Although the applicability of $3 \mathrm{P}++$ method to $\left[{ }^{11} \mathrm{C}\right]$ PIB PET may be restricted to intra-subject comparison, $3 \mathrm{P}++$ analysis itself is robust. The $3 \mathrm{P}++$ method would be useful for PET study with non-highly reversible ligands, as far as the reference tissue without specific binding is available.

Competing interests

The authors declare that they have no competing interests

Authors' contributions

KS participated in clinical PET study and the simulation study, and drafted the manuscript. KF conceived of the study, participated in the simulation study, and helped to draft the manuscript. HS (Shinotoh), HS (Shimada), SH, and NT participated in clinical PET study and contributed to the discussion. TS, TI, and HI supervised the design and coordination of the study. All authors read and approved the final manuscript.

Acknowledgements

The authors thank the production team staff for the production of isotopes and the PET operation staff for the acquisition of PET images.

Author details

${ }^{1}$ Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 260-8555, Japan. ${ }^{2}$ Department of Psychiatry, Teikyo University Chiba Medical Center, 3426-3 Anesaki, Ichihara-shi, Chiba 299-0111, Japan. ${ }^{3}$ Neurology Chiba Clinic, 1-2-12 Benten, Chuo-ku, Chiba 260-0045, Japan. ${ }^{4}$ Section for Human Neurophysiology, Research Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan. ${ }^{5}$ Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan. ${ }^{6}$ Bureau of Social Welfare and Public Health, Tokyo Metropolitan Government, 2-8-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 163-8001, Japan.

Received: 4 October 2013 Accepted: 6 November 2013
Published: 16 November 2013

References

1. Mintun MA, Raichle ME, Kilbourn MR, Wooten GF, Welch MJ: A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol 1984, 15:217-227.
2. Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, MacGregor RR Hitzemann R, Bendriem B, Gatley SF, Christman DR: Graphical analysis of reversible radioligand binding from time-activity measurements applied to [$\mathrm{N}-{ }^{11} \mathrm{C}$-methyl]-(-)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 1990, 10:740-747.
3. Hume SP, Myers R, Bloomfield PM, Opacka-Juffry J, Cremer JE, Ahier RG, Luthra SK, Brooks DJ, Lammertsma AA: Quantification of carbon-11-labeled racropride in rat striatum using positron emission tomography. Synapse 1992, 12:47-54
4. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, Holden J, Houle S, Huang SC, Ichise M, lida H, Ito H, Kimura Y, Koeppe RA, Knudsen GM, Knuuti J, Lammertsma AA, Laruelle M, Logan J, Maguire RP, Mintun MA, Morris ED, Parsey R, Price JC, Slifstein M, Sossi V, Suhara T, Votaw JR, Wong DF, Carson RE: Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 2007, 27:1533-1539.
5. Ichise M, Ballinger JR, Golan H, Vines D, Luong A, Tsai S, Kung HF: Noninvasive quantification of dopamine D2 receptors with iodine-123-IBF SPECT. J Nucl Med 1996, 37:513-520.
6. Lammertsma AA, Hume SP: Simplified reference tissue model for PET receptor studies. Neuroimage 1996, 4:153-158.
7. Lammertsma AA, Bench CJ, Hume SP, Osman S, Gunn K, Brooks DJ, Frackowiak RSJ: Comparison of methods for analysis of clinical [$\left.{ }^{11} \mathrm{C}\right]$ raclopride studies. J Cereb Blood Flow Metab 1996, 16:42-52
8. Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL: Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 1996, 16:834-840.
9. Watabe H, Carson RE, lida H: The reference tissue model: three compartments for the reference region [abstract]. Neuroimage 2000, 11:S12.
10. Wu Y, Carson RE: Noise reduction in the simplified reference tissue model for neuroreceptor functional imaging. J Cereb Blood Flow Metab 2002, 22:1440-1452
11. Koeppe RA, Frey KA, Snyder SE, Meyer P, Kilbourn MR, Kuhl DE: Kinetic modeling of $\mathrm{N}-\left[{ }^{11} \mathrm{C}\right]$ methylpiperidin-4-yl propionate: alternatives for analysis of an irreversible positron emission tomography tracer for measurement of acetylcholinesterase activity in human brain. J Cereb Blood Flow Metab 1999, 19:1150-1163.
12. Namba H, Iyo M, Fukushi K, Shinotoh H, Nagatsuka S, Suhara T, Sudo Y, Suzuki K, Irie T: Human cerebral acetylcholinesterase activity measured with positron emission tomography: procedure, normal values and effect of age. Eur J Nucl Med 1999, 26:135-143.
13. Sato K, Fukushi K, Shinotoh H, Shimada H, Tanaka N, Hirano S, Irie T: A short-scan method for k_{3} estimation with moderately reversible PET ligands: application of irreversible model to early-phase PET data. Neuroimage 2012, 59:3149-3158.
14. Price JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, Holt DP, Meltzer CC, DeKosky ST, Mathis CA: Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab 2005, 25:1528-1547.
15. Gunn RN, Gunn SR, Cunningham VJ: Positron emission tomography compartmental models. J Cereb Blood Flow Metab 2001, 21:635-652.
16. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM: Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984, 34:939-944.
17. Mathis CA, Wang Y, Holt DP, Huang G-F, Debnath ML: Synthesis and evaluation of ${ }^{11} \mathrm{C}$-labeled 6 -substituted 2-aryl benzothiazoles as amyloid imaging agents. J Med Chem 2003, 46:2740-2754.
18. Logan J, Fowler JS, Volkow ND, Ding YS, Wang GJ, Alexoff D: A strategy for removing the bias in the graphical analysis method. J Cereb Blood Flow Metab 2001, 21:307-320.
19. Blomquist G, Englar H, Nordberg A, Ringheim A, Wall A, Forsberg A, Estrada M, Franberg P, Antoni G, Langstrom B: Unidirectional influx and net accumulation of PIB. Open Neuroimag J 2008, 2:114-125.

doi:10.1186/2191-219X-3-76

Cite this article as: Sato et al.: Noninvasive k_{3} estimation method for slow dissociation PET ligands: application to $\left[{ }^{11} \mathrm{C}\right]$ Pittsburgh compound B. EJNMMI Research 2013 3:76

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

[^0]: * Correspondence: hito@nirs.go.jp
 ${ }^{1}$ Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1
 Anagawa, Inage-ku, Chiba 260-8555, Japan
 Full list of author information is available at the end of the article

