
Identification and validation of a combined hypoxia and
immune index for triple-negative breast cancer
Shaoquan Zheng1,2 , Yutian Zou1,2, Jie-ying Liang2,3, Weikai Xiao4, Anli Yang1,2, Tiebao Meng5,
Shilin Lu6, Zhongbing Luo7 and Xiaoming Xie1,2

1 Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China

2 State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer

Center, Guangdong, China

3 Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China

4 Department of Breast Cancer, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences,

Guangzhou, China

5 Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China

6 Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China

7 Department of Breast Surgery, First Affiliated Hospital of Gannan Medical College, Ganzhou City, China

Keywords

hypoxia; immune; immunotherapy; triple-

negative breast cancer

Correspondence

X. Xie, Department of Breast Oncology, Sun

Yat-sen University Cancer Center, 651 East

Dongfeng Road, Guangzhou, 510060, China

Email: xiexm@sysucc.org.cn

and

Z. Luo, Department of Breast Surgery, First

Affiliated Hospital of Gannan Medical

College, Zhanggong District, Ganzhou City,

Jiangxi Province. China

Email: lzbluo.luo@163.com

Shaoquan Zheng, Yutian Zou and Jie-ying

Liang contributed equally to this work

(Received 5 May 2020, accepted 25 May

2020, available online 1 July 2020)

doi:10.1002/1878-0261.12747

The interaction between hypoxia and immune status has been confirmed in

various cancer settings, and corresponding treatments have been investi-

gated. However, reliable biomarkers are needed for individual treatment,

so we sought to develop a novel scoring system based on hypoxia and

immune status. Prognostic hypoxia–immune status-related signatures of

patients with triple-negative breast cancer (TNBC) were identified in The

Cancer Genome Atlas (TCGA) (N = 158), Molecular Taxonomy of Breast

Cancer International Consortium (METABRIC) (N = 297), and

GSE58812 (N = 107). LASSO Cox regression was used for model con-

struction. Hypoxia and immune status expression profiles were analyzed,

and infiltrating immune cells were compared. Quantitative real-time PCR

(qRT-PCR) was used for validation in the Sun Yat-sen University Cancer

Center (SYSUCC) cohort, and immunofluorescence was applied for the

detection of hypoxia and immune markers in cancer tissues. Ten cross-co-

hort prognostic hypoxia–immune signatures were included to construct the

comprehensive index of hypoxia and immune (CIHI) in the METABRIC

cohort. Two subgroups of patients with distinct hypoxia–immune status

conditions were identified using CIHI: hypoxiahigh/immunelow and hypox-

ialow/immunehigh, with a significantly better overall survival (OS) rate in the

latter (P < 0.01). The prognostic value of CIHI was further validated

in the TCGA, GSE58812, and SYSUCC cohorts (P < 0.01).
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Hypoxia–immune signatures were significantly differentially expressed

between the two groups, and more active immune responses were observed

in the hypoxialow/immunehigh group. Cytotoxic lymphocytes were inversely

correlated with CIHI in silico. Differentially expressed CA-IX and stromal

PD-L1 were detected between subgroups of the SYSUCC cohort. A hypox-

ia–immune-based cross-cohort classifier for predicting prognosis was devel-

oped and validated, which may guide hypoxia modifier treatment and

immunotherapy for TNBC.

1. Introduction

Breast cancer is the most common cancer in women

worldwide, with an estimated annual death of 41760

cases in women [1,2]. Triple-negative breast cancer

(TNBC), a special subtype that represents 10–20% of

patients with breast cancer, exhibits the most malig-

nant biological behaviors and worst clinical outcomes

[3]. Surgery and chemotherapy are considered the first-

line regimens for TNBC. Neither targeted therapy for

Her2 (human epidermal growth factor receptor 2) nor

endocrine therapy is applied for patients with TNBC

in clinical practice [4]. The treatment for TNBC is so

limited that it is urgent to develop effective therapies.

In previous studies, TNBC has been clustered into

six different molecular subtypes according to genome-

wide profiling [5]. Lehmann et al. classified patients

with TNBC into immunomodulatory (IM), basal-like 1

(BL1), basal-like 2 (BL2), mesenchymal (M), luminal

androgen receptor (LAR), and mesenchymal stem-like

(MSL) groups. Moreover, Bareche et al. [6] found a

higher level of immune features, including checkpoint

molecules in the IM subtype. These results indicated

that immunotherapies might be effective in particular

subtypes of TNBC. Recently, several clinical trials

have addressed the effect of immunotherapies on both

early-stage and metastatic TNBC, and there have been

advances in our understanding of the biological and

immunological characteristics of TNBC [7,8]. Further-

more, the addition of immune checkpoint inhibitors

could increase the pathologic complete response (pCR)

rate of neoadjuvant chemotherapy in early-stage

TNBC [9]. Hence, immunotherapies have become

novel promising candidates for TNBC treatment, and

reliable indicators for treatment effect evaluation are

indispensable. Although many different prognostic

biomarkers and models have been developed to

describe and quantify the immunological characteris-

tics of TNBC, few have considered the effect of the

extracellular microenvironment, such as hypoxia and

pH, on cancer cells [10,11].

The hypoxia-related mechanism has long been con-

sidered one of the hallmarks in the cancer signaling

pathway [12–14]. Hypoxia is a typical event in solid

tumors and is associated with cancer metabolic repro-

gramming, stem cell signatures, angiogenesis, extracel-

lular matrix (ECM) organization, and cancer cell

metastasis [15–17]. Recent studies revealed novel roles

of hypoxia in tumor progression and metastasis,

including the induction of rapid methylation changes

to histone and chromatin reprogramming, the develop-

ment of an reactive oxygen species (ROS)-resistant

phenotype, and the induction of epithelial–mesenchy-

mal transition (EMT) through macrophages [18–20].
Previous studies have investigated the association

between hypoxia and the tumor microenvironment

(TME). The hypoxia response in T lymphocytes

enhances the expression of CD137 for immunotherapy

[21]. The aerobic glycolysis of breast cancer cells could

be regulated by lncRNAs from macrophages in the

microenvironment [22]. Moreover, under hypoxic con-

ditions, the dampening of NRF1 degradation could

impair tumor-associated macrophages (TAM) polar-

ization [23]. However, hypoxia also drives CD8 + T-

cell migration and effector function, which indicates

that hypoxia plays different roles in immune cells and

tumor cells [24]. Although there are explicit links

between hypoxia and the immune microenvironment,

few studies have focused on the comprehensive status

of hypoxia and the immune response in the TME.

Here, we aimed to develop and validate a comprehen-

sive index of hypoxia and immune (CIHI) to reflect and

quantify the microenvironment of TNBC based on these

results. In this study, hypoxia-related genes (HRGs) and

immune-related genes (IRGs) were screened for prog-

nostic relevance and applied to model construction

in silico. We confirmed that the CIHI was significantly

correlated with hypoxia and immune status using bioin-

formatics analysis. We further evaluated the CIHI in tis-

sue samples using quantitative reverse transcription

polymerase chain reaction (qRT-PCR) and immunoflu-

orescence (IF) to further facilitate clinical application.
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2. Materials and Methods

2.1. Study population and data acquisition

The workflow is displayed in Fig. 1 and Fig. S1. For

TNBC datasets from the Molecular Taxonomy of

Breast Cancer International Consortium (METAB-

RIC), The Cancer Genome Atlas (TCGA), and the

Gene Expression Omnibus (GEO), patients who met

the following selection criteria were included: (a) histo-

logically diagnosed with malignant breast cancer; (b)

available RNA expression data; and (c) available OS

(overall survival) data. Patients without active follow-

up were excluded. In this study, 297 patients from

METABRIC, 158 patients from TCGA, and 107

patients from GSE58812 were included. For CIBER-

SORT analysis, 293 patients from METABRIC, 137

Fig. 1. The work flow of this study. A panel of integrated prognostically relevant hypoxia-related and immune-related genes was identified in

the METABRIC, TCGA, and GSE58812 datasets. A novel quantified index, the CIHI, was estimated using the LASSO Cox regression model,

and its crucial roles in hypoxia and immune status were further validated in multiple cohorts.

2816 Molecular Oncology 14 (2020) 2814–2833 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Comprehensive hypoxia-immune index for TNBC S. Zheng et al.

http://GSE58812
http://GSE58812


patients from TCGA, and 103 patients from

GSE58812 were included after screening. For TNBC

RNA sequencing data from FUSCCTNBC cohort,

360 patients were included without overall survival

information.

The METABRIC data were obtained from cBiopor-

tal (http://www.cbioportal.org/) [25]. The

FUSCCTNBC data were downloaded from the

Sequence Read Archive (SRA) (SRP157974, https://

www.ncbi.nlm.nih.gov/sra) [26]. In addition, the

expression profiles of the TCGA cohort were down-

loaded from the TCGA data portal (https://portal.

gdc.cancer.gov/repository). The ensemble IDs were

mapped to gene symbols according to the annotation

of Homo_sapiens.GRCh38.91.chr.gtf from the

ENSEMBLE website. The ‘limma’ package in R was

used for gene expression normalization using the scale

method [27]. The average RNA expression was calcu-

lated for duplicates, and genes with low abundance

were discarded.

The GSE58812 expression profile was based on the

GPL570 platform, and the expression matrix was

obtained from the GEO database (https://www.ncbi.

nlm.nih.gov/geo/) [28]. The probes were mapped

according to the GPL570 annotation file (https://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL570), and

the average RNA expression was calculated for

duplicates.

We complied with the access policies of the TCGA,

METABRIC, SRA, and GEO databases in this study.

For the Sun Yat-sen University Cancer Center

(SYSUCC) cohort, the inclusion criteria were as fol-

lows: (a) histologically diagnosed as malignant breast

cancer; (b) samples were available after surgery; (c)

the molecular subtypes were confirmed by immuno-

histochemistry (IHC), and Her2 status was further

validated using fluorescence in situ hybridization

(FISH) if indecipherable in IHC; (d) AJCC 7th TNM

stage; (e) free from any other malignant tumors; and

(f) no immunotherapies administered. Patients with-

out active follow-up records were excluded. Thirty

patients with triple-negative breast cancer between

2008 and 2011 were included in the SYSUCC study

cohort. Overall survival was calculated from the date

of diagnosis to the date of the last follow-up or

death. Disease-free survival (DFS) was defined as the

time from the date of diagnosis to the date of the

first recurrence, including local recurrence and distant

metastasis. Written informed consent was required for

all patients, and this study was approved by the insti-

tutional review board of Sun Yat-sen University Can-

cer Center and followed the guidance of the

Declaration of Helsinki.

2.2. Generation of hypoxia and immune profiling

The HRGs were extracted from the hallmark gene sets

in the Molecular Signature Database (MSigDB)

(https://www.gsea-msigdb.org/gsea/msigdb/), and IRGs

were obtained from ImmPort (https://www.immport.

org). The available HRGs and IRGs in METABRIC,

TCGA, and GSE58812 were included in this study.

The functional protein–protein interaction network

analysis was conducted by STRING (v11.0) (https://

string-db.org). The position in chromosomes, expres-

sion, and interactions of these genes were exhibited in

Circos plots by the ‘circlize’ package in R [29]. In total,

200 HRGs and 1811 IRGs were identified in all these

cohorts and analyzed by univariate Cox regression for

prognostic relevance. For analysis of previously

reported hypoxia scores, the scores of the TCGA

cohort were obtained from previous studies [30–34].

2.3. Development of the CIHI

The prognostically relevant HRGs and IRGs were

identified using univariate Cox regression. The least

absolute shrinkage and selection operator (LASSO)

Cox regression model was further applied to determine

the crucial signatures and the corresponding coeffi-

cients for model construction [35]. LASSO Cox regres-

sion was conducted using the ‘glmnet’ package in R

software, and the ideal coefficients were estimated

according to the partial likelihood deviance with ten-

fold cross validation [36]. The optimal log λ was deter-

mined at −3.37. To quantify the comprehensive effects

of hypoxia and immune status, a novel score was cal-

culated from the signatures selected by the LASSO

model. The following formula was used:

Score ¼ ∑
n

i¼1

ðGenei�CoefiÞ

For clinical utility, the comparative value (2−Ct) was

calculated from qRT-PCR results and used for score

calculation in the SYSUCC cohort. The score was fur-

ther standardized and simplified to generate a compre-

hensive index of hypoxia and immune. The score was

subsequently mapped by subtracting the minimum and

dividing by the maximum. Mapping was conducted to

facilitate the interpretation of results from different

platforms. The CIHI was calculated as follows:

CIHI¼ Score�Minð Þ=Max:

2.4. Tumor microenvironment analysis

For Cell-type Identification By Estimating Relative

Subsets Of RNA Transcripts (CIBERSORT) analysis,
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the expression matrices were uploaded to the online

analytical platform (https://cibersort.stanford.edu), and

the proportions of infiltrating immune cells were esti-

mated according to LM22 signatures with 1000 permu-

tations [37]. The qualified samples were then selected

using a criterion of P < 0.05. xCell analysis was per-

formed according to the guidance of the website

https://xcell.ucsf.edu [38]. Immune and stromal scores

were further estimated to quantify the immune and

stromal components by the ESTIMATE algorithm

using the ‘estimate’ package in R [39]. MCP-counter

scores regarding immune-related activity and fibrob-

lasts were evaluated using the ‘MCPcounter’ package

in R [40]. ssGSEA was performed to calculate the

enrichment score of specific immune signatures in sam-

ples using the ‘GSVA’ package in R according to a

previous study [41]. For comparison of the hypoxia

and immune status between the low-risk and high-risk

groups, the key expression profiles were compared.

2.5. Functional study and heterogeneity

The GSEA was conducted to explore the pathway

enrichment between low-risk and high-risk groups using

GSEA 3.0. The annotated gene set was downloaded for

reference (http://software.broadinstitue.org). The tumor

mutation burden (TMB) and the mutant-allele tumor

heterogeneity score (MATH) for the TCGA cohort

were estimated by the ‘maftools’ package in R software

[42]. PCA was used to examine the clustering efficacy of

the selected signatures in the LASSO model.

2.6. RNA isolation and quantitative real-time

PCR

The total RNA of breast cancer tissues was extracted

using TRIzol reagent (Invitrogen, Carlsbad, California,

USA). Reverse transcription was performed according

to the manufacturer’s instructions (Takara, Kusatsu,

Japan). The expression levels of the target genes were

further examined in triplicate using the SYBR Green

method (Takara). The primers involved in this study

are provided in Table S1. The expression levels were

normalized to that of β-actin with the comparative Ct

method.

2.7. Immunofluorescence

Immunofluorescence (IF) was performed as previously

described [43]. The formalin-fixed paraffin-embedded

(FFPE) sections were deparaffinized, and we per-

formed the antigen-retrieval procedure at 98°C in

citrate buffer (pH 6.0) for 10 min. The endogenous

peroxidase blocking procedure was then carried out

using 3% hydrogen peroxide for 10 min at room tem-

perature. The sections were further incubated with

anti-carbonic anhydrase 9 (CA9) (Proteintech, Chi-

cago, Illinois, USA) or programmed death-ligand 1

(PD-L1) (Proteintech) at 4°C overnight. IgG (CST,

Danvers, Massachusetts, USA) was used as a negative

control. Then, the samples were washed with PBS

three times and incubated with anti-mouse or anti-rab-

bit secondary antibodies, namely, Alexa Fluor-594 or

Alexa Fluor-488 (1 : 1000, Invitrogen). A Zeiss LSM

880 confocal microscope was used to observe the

results, and images were acquired. The reagents are

shown in Table S2.

2.8. Statistical analysis

Univariate Cox regression was used to identify the

prognostically relevant HRGs and IRGs in the

METABRIC, TCGA, and GSE58812 cohorts with a

cutoff value of P < 0.1. Crucial signatures involved in

hypoxia and immune status were identified by the

LASSO Cox regression model. The multivariate Cox

regression model was constructed using the ‘survival’

package to include the CIHI and clinical predictors.

The optimal cutoff value of survival analysis was

determined using the ‘survminer’ package in R, and

the OS and DFS of different subgroups were com-

pared using the Kaplan–Meier method with the log-

rank test. Time-dependent receiver operator character-

istic (ROC) analyses were performed using the ‘time-

ROC’ package in R [44]. Decision curve analysis

(DCA) was performed in R software using a previ-

ously reported method [45]. The significance of the dif-

ference between immune cell fractions was assessed by

the Wilcoxon test. Spearman’s correlation test was

used for CIHI-related analysis. Statistical analyses

were performed using R software (Version 3.6.0). A P

value of < 0.05 was considered statistically significant,

and all P values were two-tailed.

3. Results

3.1. Overview of hypoxia and immune

signatures

A population of 297 patients from METABRIC, 158

patients from TCGA, and 107 patients from

GSE58812 were identified and included in this study.

The transcriptome data were used to construct a com-

prehensive indicator from hypoxia and immune profil-

ing (Fig. 2A,B). Two hundred hypoxia-related genes
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Fig. 2. Identification of prognostic HRGs and IRGs in TNBC. (A, B) Circos plots of the annotation and interaction of HRGs and IRGs in the

genome. The outer circle shows the positions of individual genes on chromosomes. The scatters in the second circle represent the

identified genes in all three cohorts. The third to fifth circles indicate the relative expression levels of the identified genes in the METABRIC,

TCGA, and GSE58812 cohorts. The central lines represent the potential interactions between genes predicted by the STRING database. (C)

Venn diagram indicating 1265 genes identified in all three cohorts. (D) Venn diagram indicating 32 prognostic genes identified in all three

cohorts. (E) Barplot showing the hazard ratio of the HRGs and IRGs in the METABRIC cohort. The bars represent the 95% CI. Univariate

Cox regression was used for data analysis.
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and 1811 immune-related genes were used for model

construction. A total of 715 genes were not identified

in all datasets and were excluded from the survival

analysis (Fig. 2C). A univariate Cox regression model

was applied to determine the prognostic relevance of

these signatures, and 32 prognostically relevant genes

in the METABRIC, TCGA, and GSE58812 cohorts

were identified (Fig. 2D,E).

3.2. Construction of a comprehensive index of

hypoxia and immune status in TNBC

Given that a hypoxic microenvironment might affect

the activation status of infiltrating immune cells and

the immune response of tumor cells, an integrated

analysis of both hypoxia and immune response might

have potential prognostic value and quantify the

TME. Hence, 32 prognostically relevant signature

genes were applied to the LASSO Cox regression

model to construct a predictive model for the overall

survival of patients with TNBC in the METABRIC

dataset (N = 297). Ten genes were selected according

to the partial likelihood deviance method, and the cor-

responding coefficients were generated at the optimal

log λ of −3.37. The results are shown in Fig. 3A,B.

Among the 10 signature genes, PFKL, SLC25A1, and

SERPINE1 were hypoxia-related genes, while the

others were immune-related genes (TAPBPL,

CXCL11, HLA-A, TCF7L2, TANK, IL12B, and

IL18RAP). Kaplan–Meier analysis further confirmed

the prognostic value of the individual genes (Fig. S2).

The selected signature genes were applied to the for-

mula above, and the CIHI was calculated. Moreover,

the CIHI was also estimated in the TCGA and

GSE58812 cohorts using this method.

To further facilitate the application of the CIHI in

TNBC, the patients were divided into low-risk and

high-risk groups according to the median value of the

CIHI. PCA showed that patients in different groups

could be distinctively clustered according to the

selected signatures in all datasets (Fig. 3C–E). In addi-

tion, Spearman’s correlation test indicated that the

standardized CIHI was significantly correlated with

the selected genes. The correlations among these signa-

tures are shown in Fig. 3F.

Previous studies suggested that a high level of

hypoxia could lead to immune suppression in the

TME [46,47]. These results demonstrated that hypoxia

was associated with the immune response in the

microenvironment. Thus, this novel scoring method,

the CIHI, might be indicative of the hypoxia–immune

status of patients and has importance in clinical guid-

ance.

3.3. Validation of hypoxia profiling in CIHI

The analysis above was used to construct a compre-

hensive indicator and identify two distinctive sub-

groups of patients with TNBC. Correlation analysis in

the METABRIC cohort showed a correlation between

the CIHI and hypoxia-related genes, indicating that

the CIHI might reflect hypoxia in the TME (Fig. 3G).

Hence, we further sought to validate the correlation of

the CIHI and hypoxia. A previous study addressed the

key hypoxia-related expression profiles in cancer [48].

We first compared the key hypoxia-related signatures

in the high-risk and low-risk groups.

Subsequent analyses mapped the expression level of

genes in the two phenotypes of the METABRIC

cohort to reflect the distinct hypoxia status. Sixteen

genes showed a statistically significant difference

between the subgroups (low-risk group < high-risk

group). The expression of ALDOA, ANGPTL4, CA9,

DCBLD1, ENO1, FOSL1, HK1, KCTD11, LDHA,

P4HA1, PDK1, PFKL, PGAM1, SDC1, and VEGFA

was significantly higher in the high-risk group (Fig. 4

A). The results showed that hypoxia-induced metabolic

rearrangement and angiogenesis were more common in

the high-risk group.

To further validate the results, qRT-PCR was per-

formed in the SYSUCC cohort (N = 30) to facilitate

the clinical application of the CIHI. Based on the rela-

tive Ct values of the ten selected signature genes

described above, the CIHI was estimated using our

previous formula. Previous studies addressed the

indicative function of Carbonic anhydrase IX (CA-IX)

in breast cancer and made it a reliable reflection of

hypoxia [49–51]. Therefore, the protein level of CA-IX

was examined in these patients using IF (Fig. 4B,C).

Patients with high CIHI values were prone to exhibit a

higher level of CA-IX protein in tumor cells. We also

detected the PD-L1 protein because PD-L1 is a crucial

target for immunotherapy and reflects a potential

immune response in tumors. Interestingly, patients

with low CIHI values exhibited a lower level of

hypoxia but a higher level of PD-L1, which was con-

sistent with the following results regarding immune

status. Moreover, a stromal PD-L1 expression was

more prevalent. Hence, the low-risk and high-risk

groups were more likely to exhibit hypoxialow/im-

munehigh and hypoxiahigh/immunelow phenotypes,

respectively.

3.4. Immune profiling

Further results showed a continuity feature of the CIHI

and its correlation with the TME and clinical prognosis
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Fig. 3. Construction of a predictive model and the CIHI. (A, B) The LASSO Cox regression model was constructed from 32 signature genes,

and the tuning parameter (λ) was calculated based on the partial likelihood deviance with ten-fold cross validation. An optimal log λ value

was defined at −3.37, as shown by the vertical black lines in the plots. The ten signature genes were identified according to the best fit

profile. (C–E) PCA based on the expression profile of the 10 selected signature genes according to different risk groups. (F) Correlation

between the CIHI and the selected signature genes in the METABRIC cohort. (G) Correlation network between the CIHI and its correlated

hypoxia-related genes in the METABRIC cohort. Data were analyzed using Spearman’s rank correlation analysis.
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in the METABRIC, TCGA, and GSE58812 cohorts

(Fig. 5A,D and G). The value of the CIHI was mapped

into a continuous scale, which indicated potential clini-

cal relevance in predicting the prognosis of patients.

For overall survival, patients with higher CIHI values

seemed to have a higher rate of death. Moreover, the

ESTIMATE method was employed to explore the over-

all TME status. A low immune score and stromal score

were more commonly observed in patients with a

higher CIHI. Further analysis indicated a significant

inverse correlation between the CIHI and immune

score in the METABRIC (r = −0.69, P < 0.01), TCGA

(r = −0.68, P < 0.01) and GSE58812 (r = −0.80,
P < 0.01) cohorts (Fig. 5B,E and H). Interestingly, the

CIHI was also negatively correlated with the stromal

score, indicating that the CIHI might also be associated

with stromal nonimmune components, such as fibrob-

lasts (Fig. 5C,F and I).

To further facilitate the indicative function of the

CIHI in the immune response, a panel of immune-re-

sponse signatures was also mapped into the hypox-

iahigh/immunelow and hypoxialow/immunehigh

phenotypes (Fig. 6A). Immune response-related signa-

tures were mostly differentially expressed: hypoxiahigh/
immunelow < hypoxialow/immunehigh. Our results

demonstrated a different pattern of immune response

between the phenotypes. Overall, patients with the

hypoxiahigh/immunelow phenotype exhibited a

Fig. 4. Hypoxia-related profiling and immunofluorescence in the CIHI-based groups. (A) Box and whisker plots showing the expression of

the selected hypoxia-related genes in the METABRIC cohort. The high-CIHI and low-CIHI phenotypes are represented as dark red and dark

blue, respectively. Student’s t-test was used for data analysis. (B, C) Representative images of hypoxia and PD-L1 in the tumor

microenvironment of the CIHI-based subgroup in the SYSUCC cohort using immunofluorescence. PD-L1 protein in stroma is shown in green

color, and red color in tumor cells indicates CA-IX protein. T, tumor; S, stroma. P values are shown as *P < 0.05, **P < 0.01, and

***P < 0.001.
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suppressive immune microenvironment compared with

patients with the hypoxialow/immunehigh phenotype.

This finding was consistent with the fact that these sig-

natures were responsible for mediating pro- or antitu-

moral activity. The phenotypic and functional markers

of T cells, namely, CD3E, CD4, CD8B, GZMB, PRF1

and TBX21, were expressed at higher levels in the

hypoxialow/immunehigh phenotype, although FOXP3

did not show a significant difference. For the myeloid

lineage phenotypic and functional markers, CD14 and

CD163 were highly expressed in the hypoxialow/im-

munehigh group, indicating a higher percentage of

monocytes and M2 macrophages. However, CD33, a

previously reported marker for M-MDSCs, was highly

expressed in the hypoxiahigh/immunelow group. Other

markers, including IFNγ signatures (CXCL10,

CXCL9, IDO1, IFNG, and STAT1) and immune

modulators (ENTPD1), also exhibited a higher expres-

sion level in the low-risk group (hypoxialow/im-

munehigh). Interestingly, a higher level of inhibitory

immune receptors or ligands (PD-L1, CTLA4, LAG3,

and PD-1) and activating immune receptors (CD27,

CD40, CD80, ICOS, TNFRSF4, and TNFRSF9) were

both observed in the hypoxialow/immunehigh

phenotype, indicating a complex immune response in

the low-risk group.

Then, we analyzed the tumor mutation burden

(TMB) and tumor heterogeneity based on genome-

wide methods. Although a distinct immune response

was observed in different phenotypes, the TMB did

not show a consistent result (Fig. 6B). However, the

MATH score, a quantified scale for genome hetero-

geneity, demonstrated a higher level of tumor hetero-

geneity in the high-risk group (P = 0.091) (Fig. 6C).

This result was consistent with that of a previous study

showing that the hypoxic microenvironment might

exert an effect on the genome.

3.5. The relevance of the CIHI and

hypoxia–immune markers

As described above, qRT-PCR of the ten-gene signa-

ture was performed, and the CIHI was calculated for

patients in the SYSUCC cohort. The hypoxia and

immune markers were then examined in tumor samples

by IF. CA-IX was previously reported to be a reliable

marker for hypoxia in breast cancer and was mainly

expressed in cancer cells instead of stromal cells. A

Fig. 5. Potential indicative value of the CIHI in the TME and clinical outcomes. (A, D, G) An overview of the association between OS event,

stromal score, immune score, and the CIHI in TNBC patients from three independent cohorts. Columns represent samples sorted by the

CIHI from low to high. Rows represent the coefficients of interest. (B, E, H) Correlation between the CIHI and immune score in the cohorts.

(C, F, I) Correlation between the CIHI and the stromal score in the cohorts. Data were analyzed using Spearman’s rank correlation analysis.
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Fig. 6. Immune-related profiling, tumor-infiltrating immune cells, and genomic heterogeneity in the CIHI-based groups. (A) Box and whisker

plots show the expression of selected immune-related genes in the METABRIC cohort. (B, C) TMB and the MATH score in the high-CIHI

and low-CIHI groups. (D) Comparison of infiltrating immune cells (CIBERSORT) between groups. The hypoxiahigh/immunelow and hypoxialow/
immunehigh phenotypes are represented as dark red and dark blue, respectively. Student’s t-test and Wilcox test were used for data

analysis. P values are shown as **P < 0.01 and ***P < 0.001.
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high level of CA-IX often indicates a hypoxic microen-

vironment in tissues. PD-L1 is widely recognized as a

potential immune marker and therapeutic target for

cancers. Patients with a higher CIHI were more likely

to exhibit positive CA-IX and negative stromal PD-L1

expression (Fig. 4B,C). However, due to the limited

number of patients, we did not find any convincing

evidence for the correlation between CA-IX and

tumoral PD-L1 expression.

To further facilitate our hypothesis in larger cohorts,

we first estimated the immune cell fractions in the

METABRIC cohort using the CIBERSORT algorithm

(Fig. 6D). Patients in the low-risk group exhibited a

higher percentage of antitumoral immune cells, includ-

ing naive B cells (P < 0.01), CD8 + T cells (P < 0.01),

activated memory CD4 + T cells (P < 0.01), activated

NK cells (P < 0.01), and activated dendritic cells

(P < 0.01), while patients in the high-risk group

showed a higher level of regulatory T cells (P = 0.08)

and M2 macrophages (P < 0.01). Moreover, the

CIBERSORT results for the TCGA and GSE58812

cohorts are shown in Fig. S3. The high-risk group pre-

sented with a higher percentage of M1 macrophages

and a lower percentage of M2 macrophages in both

cohorts. Infiltrating cell scores in TME were also esti-

mated by xCell, and similar results were shown in

Table S3.

We then applied GSEA to examine the relevant sig-

naling pathways involved in patients with a low CIHI.

Our results demonstrated that antigen processing and

presentation, B-cell activation, and T-cell activation

were significantly enriched in the hypoxialow/im-

munehigh group (Fig. 7A–C). Furthermore, more algo-

rithms were employed to validate the association

between the CIHI and infiltrating immune cells. Using

a previously reported ssGSEA method, the crucial sig-

nals regarding immune cells were estimated and scored

in the METABRIC, TCGA, and GSE58812 cohorts.

Significant reverse correlations between the CIHI and

activated B cells (r = −0.70, P < 0.01), activated

CD4 + T cells (r = −0.75, P < 0.01), and activated

CD8 + T cells (r = −0.74, P < 0.01) were observed in

the METABRIC cohort (Fig. 7D). The results were

further validated in the TCGA and GSE58812 cohorts

(Fig. 7E,F). The MCP-counter score demonstrated

that the CIHI was inversely correlated with cytotoxic

lymphocytes and NK cells in these cohorts (Fig. 7G–-
I).

3.6. Prognostic value of the CIHI

The development of convenient tools for the early

diagnosis of diseases and treatment guidance remains a

crucial clinical issue. Previous studies have demon-

strated that hypoxia and immune status are indicators

of malignant tumors. In our study, as shown above,

the CIHI exhibited a continuity feature, and remark-

ably heterogeneous characteristics of hypoxia and

immune status were observed between the hypoxiahigh/
immunelow and hypoxialow/immunehigh phenotypes.

More death events were observed in patients with

higher CIHI values. To further elucidate the predictive

and prognostic value of the CIHI in TNBC, ROC

analysis and the Kaplan–Meier method were used to

examine and validate prognosis in the cohorts.

Time-dependent ROC analysis was performed, and

the area under the curve (AUC) was calculated at dif-

ferent time points according to data availability

(Fig. 8A–C). Generally, the ROC analysis of the 5-

year follow-up in the METABRIC (AUC = 0.690),

TCGA (AUC = 0.757), and GSE58812 (AUC = 0.762)

cohorts indicated a favorable predictive value of the

CIHI in long-term follow-up. Moreover, the CIHI

seemed to present with an evidently better predictive

ability for OS in the TCGA cohort during short-term

follow-up (AUC = 0.887). These results indicated that

the CIHI could serve as a clinical biomarker. The deci-

sion curve analysis also confirmed the predictive value

of the CIHI in cohorts (Fig. S4).

Overall survival was compared in patients with dif-

ferent CIHI values. The patients in the hypoxialow/im-

munehigh group exhibited a better OS than those in the

high-risk group in the METABRIC cohort, the TCGA

cohort, and the GSE58812 cohort (Fig. 8D–F). More-

over, patients with higher CIHI values also showed a

poorer outcome for DFS in the TCGA cohort (Fig. 8

G). The online database KM plotter facilitated the

construction of predictive models and evaluation of

prognosis in breast cancer patients. The risk score was

calculated with the KM plotter, and progression-free

survival (PFS) and distant metastasis-free survival

(DMFS) were calculated as described above (Fig. 8H,

I). Patients with a low risk score had a better PFS

[hazard ratio (HR), 2.68; 95% confidence interval

(95% CI), 1.7–4.23; P < 0.01] and DMFS (HR, 3.91;

95% CI, 0.79–19.43; P = 0.072). The CIHI was calcu-

lated for patients in the SYSUCC cohort, and the

hypoxialow/immunehigh group showed significantly bet-

ter OS and DFS compared with the hypoxiahigh/im-

munelow group (Fig. S5).

We then performed univariate and multivariate Cox

regression analyses in the METABRIC cohort to sup-

port the clinical relevance of the CIHI. In the univari-

ate Cox regression model, the high-risk group (HR,

1.699; 95% CI, 1.176–2.455; P < 0.01), age > 65 years

(HR, 1.710; 95% CI, 1.176–2.485; P < 0.01), larger
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tumor size (HR, 1.481; 95% CI, 1.118–1.962;
P < 0.01), and TNM stage III-IV (HR, 1.538; 95%

CI, 1.130–2.095; P < 0.01) were risk factors for

TNBC. However, in the multivariate Cox regression

model, age> 65 years (HR, 1.675; 95% CI,

1.138–2.466; P < 0.01) and the high-risk group (HR,

1.491; 95% CI, 1.018–2.183; P < 0.05) were identified

as independent risk factors (Fig. S6). A larger tumor

volume might result in the intratumor hypoxic status,

and we analyzed the correlation between the CIHI and

tumor size (Fig. S7). A positive correlation between

the CIHI and tumor size was observed in the

METABRIC dataset (r = 0.21, P < 0.01), and in the

TCGA dataset, patients with T3-4 stage were signifi-

cantly characteristic of higher CIHI value (P = 0.019).

However, more evidence and larger cohorts are neces-

sary for further validation.

Furthermore, we sought to validate the indicative

role of the CIHI for hypoxia and immune characteris-

tics in a larger cohort. The data from FUSCCTNBC

Fig. 7. Associated immune processes and cells with the CIHI. (A–C) GSEA of enriched immune-related signaling in the CIHI-based groups.

(D–F) Associated ssGSEA-estimated immune cell activation with the CIHI. (G–I) Associated MCP-counter-estimated infiltrating cells with the

CIHI. Data were analyzed using Spearman’s rank correlation analysis.
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cohort were analyzed, and patients were divided into

groups according to the median value of CIHI. The

hypoxia markers were highly expressed in the high-

CIHI group (Fig. S8a). The ESTIMATE immune and

stromal scores were also inversely correlated with the

CIHI (Fig. S8b,c). MCP-counter and ssGSEA scores

indicated that patients with lower CIHI value were

characteristics of more tumor-infiltrating cytotoxic

immune cells (Fig. S8d,e). The CIHI value was com-

pared among the previously reported subtypes, and

patients with the IM (immunomodulatory) subtype

showed a significantly lower CIHI value, which further

supported our findings (Fig. S8f). Previously reported

hypoxia scores were significantly higher in CIHI-high

group (Fig. S9). Therefore, a lower CIHI might predict

relatively active immune response, and a relatively

Fig. 8. (A–C) Time-dependent ROC analysis of the CIHI regarding OS in patients with TNBC. (D–F) Kaplan–Meier plots of OS in the CIHI-

based groups. (G) Kaplan–Meier plot of DFS in the TCGA cohort. (H, I) Kaplan–Meier plot of PFS and DMFS in the KMplot database. Log-

rank test was used for data analysis.
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higher CIHI was more likely to predict a hypoxiahigh/
immunelow status (Fig. 9).

4. Discussion

Previous studies have addressed the important role of

hypoxia and immune status features in breast cancer

[52,53]. Recent studies have advanced our understand-

ing of the efficacy of immunotherapies in TNBC, and

promising results have emerged in several clinical trials

[7–9]. Researchers have focused on the effect of tar-

geted therapies on immune checkpoints in triple-nega-

tive breast cancer, and the effect of the combination of

PD-L1/PD-1 blockade with routine therapies has been

investigated.

As shown in previous studies, the hypoxic microenvi-

ronment drives the suppression of immune status in

breast cancer. The tumor microenvironment is repro-

grammed under the pressure of hypoxia, resulting from

the modulation of CD8 + cytotoxic T cells and macro-

phages [21,23,24,46,54]. Moreover, the metabolic repro-

gramming of tumor cells provides an adaptation under

hypoxia by increasing lactate production and glucose

uptake, contributing to the development of an immuno-

suppressive microenvironment [55,56]. Interestingly, cross-

talk from TAMs to breast cancer cells by exosomes

regulates HIF-1α-mediated aerobic glycolysis metabolism

and contributes to tumor progression in breast cancer [22].

Although clinical indicators regarding hypoxia or

immune status have been developed, few studies have

focused on their comprehensive effects and their

potential roles in clinically relevant classification and

therapy selection. Generally, patients with similar clini-

cal characteristics still present with great heterogeneity

in clinical outcomes, and integrated predictors from

single biomarkers could effectively improve the prog-

nostic value.

Given that hypoxia modifiers and immune check-

point inhibitors have been shown to exhibit a potential

effect on breast cancer, we explored the potential role

of a combined hypoxia and immune status classifier

for TNBC in this study [57,58]. The use of a combined

immune–hypoxia signature in a cross-cohort manner

helped to develop a continuous index for comprehen-

sive TME assessment. Subgroup classification divided

the population into the hypoxiahigh/immunelow and

hypoxialow/immunehigh groups, correlating with distinct

clinical prognosis, transcriptional hypoxia–immune

patterns, and activated pathways that could serve as

therapeutic targets. Therefore, we addressed the impor-

tance of separating them.

The key markers of hypoxia (CA9, ALDOA,

ENO1, LDHA, etc.) are highly expressed in the

hypoxiahigh/immunelow group compared with the

hypoxialow/immunehigh group, indicating heterogeneous

hypoxia statuses within the population. In addition,

immune cell infiltration was also investigated to fur-

ther validate our model. Infiltrating immune cells,

including cytotoxic T cells, macrophages and NK cells,

are widely recognized as crucial immune indicators in

Fig. 9. Proposed relatively indicative roles of the CIHI in the relative hypoxia and immune status of the tumor microenvironment. A lower

CIHI predicted relatively active immune response, and a relatively higher CIHI was more likely to predict a hypoxiahigh/immunelow status.
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cancers [59–61]. In our study, a higher percentage of

cytotoxic T cells, M2 macrophages, and NK cells were

observed in the hypoxialow/immunehigh group. PD-L1

expression, especially within stromal cells in the TME,

is correlated with clinical prognosis in breast cancer

and may reflect an adaptive immune response. Previ-

ous studies have revealed the distinct role of PD-L1

expression in stromal immune cells and tumor cells

[62,63]. The PD-L1 protein is always positive in tumor

cells when that in immune cells is positive [64]. More-

over, patients with positive PD-L1 expression are more

likely to exhibit better prognosis. Hence, it is more

reasonable and convenient to use the stromal PD-L1

as an indicator for detection [8]. In our study,

immunofluorescence showed a higher level of CA-IX,

a marker for hypoxia, and correspondingly a lower

level of PD-L1 in the hypoxiahigh/immunelow group.

Interestingly, both the activating and inhibitory

immune markers were highly expressed in the hypox-

ialow/immunehigh group, which seems contradictory in

common sense. This result may indicate a consuming

anticancer immune response in the hypoxialow/im-

munehigh group with an increased anti-immune reaction

in tumor cells. The active anticancer immune response

may be restored through immune checkpoint blockade.

As described above, myeloid-derived suppressor cells

(MDSCs) and TAMs may be regulated by the hypoxia

status and contribute to immunosuppression.

Overall, hypoxia exerts its function on tumor cells

and the TME, tipping the balance of the immune

response of chemokines, immune effector production,

and immune cell infiltration. For patients with a rela-

tively hypoxia-high/immune-low feature, hypoxic mod-

ifier combined with subsequent immunotherapies is

potentially applicable.

There are certain limitations to our study. First, this

is a cross-cohort and retrospective study, and further

prospective analysis in multicenter cohorts is necessary

due to the observed heterogeneity between different

populations. Second, although a prognostic continuous

index has been developed, further inclusion of clinical

factors (TNM stage, histological grade, age at diagno-

sis, and anatomic site) may minimize the potential of

bias. Third, this is a retrospective study, and the size

of the SYSUCC cohort was relatively small; only stro-

mal PD-L1 was analyzed. Finally, qRT-PCR analysis

of all selected signatures might be costly in clinical

practice, and more convenient methods could be fur-

ther applied, such as IHC using CA-IX and relevant

immune markers.

The development of a novel comprehensive hypox-

ia–immune status classifier in our study implies that

individual treatment should be applied in different

subgroups. For example, immunotherapies might be

more favorable in patients with hypoxialow/immunehigh

features. A higher CIHI was indicative of an active

immune response and potential benefit from immune

checkpoint blockade, such as anti-PD1/PD-L1 treat-

ment. For patients in the hypoxiahigh/immunelow group

with a poorer prognosis, a lower CIHI might imply a

hypoxic microenvironment and lower efficacy for

immunotherapy. However, hypoxia modifiers might

help to sensitize patients to further radiotherapy and

chemotherapy after surgery. The results demonstrated

that subsequent immunotherapy might work after

hypoxia modification. Further subsequent

immunotherapy might prevent the immunosuppressive

response after treatment. For those with an intermedi-

ate CIHI exhibiting a mixed status of hypoxia and

immune response, both anti-hypoxia and immunomod-

ulatory drugs may harbor certain effects on patients.

5. Conclusions

In conclusion, a novel prognostic index and classifier

based on hypoxia and immune expression profiles were

developed and cross-cohort validated. This classifier

could be used for prognostic prediction and selecting

patients for hypoxia modification and immunothera-

pies, such as PD-L1/PD-1 and CTLA-4 blockade. We

recommend further validating the efficacy of the CIHI

in prospective studies and developing a simplified ver-

sion using more convenient methods, such as IHC.
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Fig S8. (a) Box and whisker plots showing the expres-
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FUSCCTNBC cohort.

Fig S9. Correlation between the CIHI and previously

reported hypoxia scores in the TCGA-TNBC cohort.

Table S1. Primers used in this study.

Table S2. Reagents used in this study.

Table S3. Correlation between CIHI and xCell results.

Appendix S1. Cell cycle correlation.

Appendix S2. Cell proliferation correlation.

2833Molecular Oncology 14 (2020) 2814–2833 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

S. Zheng et al. Comprehensive hypoxia-immune index for TNBC


	Outline placeholder
	mol212747-aff-0001
	mol212747-aff-0002
	mol212747-aff-0003
	mol212747-aff-0004
	mol212747-aff-0005
	mol212747-aff-0006
	mol212747-aff-0007
	mol212747-fig-0001
	mol212747-fig-0002
	mol212747-fig-0003
	mol212747-fig-0004
	mol212747-fig-0005
	mol212747-fig-0006
	mol212747-fig-0007
	mol212747-fig-0008
	mol212747-fig-0009
	mol212747-bib-0001
	mol212747-bib-0002
	mol212747-bib-0003
	mol212747-bib-0004
	mol212747-bib-0005
	mol212747-bib-0006
	mol212747-bib-0007
	mol212747-bib-0008
	mol212747-bib-0009
	mol212747-bib-0010
	mol212747-bib-0011
	mol212747-bib-0012
	mol212747-bib-0013
	mol212747-bib-0014
	mol212747-bib-0015
	mol212747-bib-0016
	mol212747-bib-0017
	mol212747-bib-0018
	mol212747-bib-0019
	mol212747-bib-0020
	mol212747-bib-0021
	mol212747-bib-0022
	mol212747-bib-0023
	mol212747-bib-0024
	mol212747-bib-0025
	mol212747-bib-0026
	mol212747-bib-0027
	mol212747-bib-0028
	mol212747-bib-0029
	mol212747-bib-0030
	mol212747-bib-0031
	mol212747-bib-0032
	mol212747-bib-0033
	mol212747-bib-0034
	mol212747-bib-0035
	mol212747-bib-0036
	mol212747-bib-0037
	mol212747-bib-0038
	mol212747-bib-0039
	mol212747-bib-0040
	mol212747-bib-0041
	mol212747-bib-0042
	mol212747-bib-0043
	mol212747-bib-0044
	mol212747-bib-0045
	mol212747-bib-0046
	mol212747-bib-0047
	mol212747-bib-0048
	mol212747-bib-0049
	mol212747-bib-0050
	mol212747-bib-0051
	mol212747-bib-0052
	mol212747-bib-0053
	mol212747-bib-0054
	mol212747-bib-0055
	mol212747-bib-0056
	mol212747-bib-0057
	mol212747-bib-0058
	mol212747-bib-0059
	mol212747-bib-0060
	mol212747-bib-0061
	mol212747-bib-0062
	mol212747-bib-0063
	mol212747-bib-0064


