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Abstract

Reasons for the progressive age-related loss of skeletal muscle mass and function, namely sarcopenia, are complex. Few
studies describe sarcopenia in mice, although this species is the mammalian model of choice for genetic intervention and
development of pharmaceutical interventions for muscle degeneration. One factor, important to sarcopenia-associated
neuromuscular change, is myofibre denervation. Here we describe the morphology of the neuromuscular compartment in
young (3 month) compared to geriatric (29 month) old female C57Bl/6J mice. There was no significant difference in the size
or number of motoneuron cell bodies at the lumbar level (L1–L5) of the spinal cord at 3 and 29 months. However, in
geriatric mice, there was a striking increase (by ,2.5 fold) in the percentage of fully denervated neuromuscular junctions
(NMJs) and associated deterioration of Schwann cells in fast extensor digitorum longus (EDL), but not in slow soleus
muscles. There were also distinct changes in myofibre composition of lower limb muscles (tibialis anterior (TA) and soleus)
with a shift at 29 months to a faster phenotype in fast TA muscle and to a slower phenotype in slow soleus muscle. Overall,
we demonstrate complex changes at the NMJ and muscle levels in geriatric mice that occur despite the maintenance of
motoneuron cell bodies in the spinal cord. The challenge is to identify which components of the neuromuscular system are
primarily responsible for the marked changes within the NMJ and muscle, in order to selectively target future interventions
to reduce sarcopenia.

Citation: Chai RJ, Vukovic J, Dunlop S, Grounds MD, Shavlakadze T (2011) Striking Denervation of Neuromuscular Junctions without Lumbar Motoneuron Loss in
Geriatric Mouse Muscle. PLoS ONE 6(12): e28090. doi:10.1371/journal.pone.0028090

Editor: Stuart E. Dryer, University of Houston, United States of America

Received June 21, 2011; Accepted November 1, 2011; Published December 2, 2011

Copyright: � 2011 Chai et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by funding from the National Health and Medical Research Council of Australia (grant ID 572654 to TS and MG), Research
Collaboration Award from the University of Western Australia (MG, JV, TS) and the University of Western Australia Scholarships for International Research Fees and
University International Stipend postgraduate scholarship to RJC. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: tea.shavlakadze@uwa.edu.au

Introduction

The precise reasons for the age-related loss of muscle mass and

function, known as sarcopenia, are not well understood [1,2]. The

incidence of sarcopenia determined by dual-emission X-ray

absorptiometry to measure skeletal muscle mass is reported as

14% in humans aged 65–69 years and .50% in those 80 years or

older [3]. For specific muscles, the extent of mass loss may reach

,20–30% for the limb muscles and up to ,40% for the trunk

muscles between 68 and 100 years [4]. Similarly, in female mice, a

30% quadriceps muscle mass loss occurs between 15 to 29 months

[5] (corresponding roughly to 60–80+ years in humans) (http://

research.jax.org/faculty/harrison/ger1vLifespan1.html).

Age-related changes in skeletal muscles are complex with key

features being myofibre atrophy and death, disruption of the

contractile apparatus, changes in extracellular matrix composition

and deterioration of neuromuscular junctions (NMJs) leading to

functional denervation of the ageing muscle [1,4,6]. These

changes in ageing muscle involve interactions between many

systemic and local factors [7]. To date, most studies on sarcopenia

have focused on alterations in muscle protein turnover, anabolic

resistance to feeding [8,9,10] and stem cells [5,11], with vital

interactions between nerves and muscles being largely overlooked.

Neuromuscular changes contributing to myofibre denervation

occur within the central and peripheral nervous systems as well as

within skeletal muscle tissue. Changes include diminished function

or loss of neurons in the brain and spinal cord, demyelination of

nerves and progressive degeneration of NMJs [1,4,12,13]. The

vertebrate NMJ is composed of the presynaptic nerve terminal, the

postsynaptic specialised membrane of the myofibre, plus Schwann

cells (SC) that envelope nerve axons and terminal branches that

intermittently extend fingers into the synaptic cleft [14]. A number

of changes have been documented during ageing including (i) a

loss of motoneuron numbers in the central nervous system (CNS)

[13,15]; (ii) demyelination of axons [16]; (iii) withdrawal of nerve-

terminals from the NMJs [17]; and (iv) some axonal sprouting and

re-innervation of denervated myofibres by surviving motoneurons

[4]. However, it is not known whether the initial myofibre

denervation is related to deleterious changes in muscle cells

themselves or neurons or both components. However, it seems

that the maintenance of NMJs depends on the healthy state of

motoneurons, myofibres and other cells and the exchange of

trophic signals by these cells [1,18,19]. Morphological changes at

the NMJs are well described in old humans [20,21] and rats

[22,23], but only very recently in old mice [17,24]. The paucity of
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mouse data is largely due to the general absence of commercially

available geriatric mice. However, we were recently able to obtain

geriatric mice and here establish baseline data for sarcopenia.

We selected young 3 month and geriatric 29 month old C57Bl/

6J mice since these ages approximate to 20 and 80 years

respectively in humans [25]. Here we report on (i) motoneuron

cell bodies in the lumbar segment of the spinal cord; (ii)

neuromuscular junctions with pre- and postsynaptic endplates

and Schwann cells and (iii) myofibres in the lower limb muscles:

tibialis anterior (TA), extensor digitorum longus (EDL) and soleus.

Results

No loss of a-motoneurons
Analysis of the a-motoneurons (neurons with a diameter

$25 mm) in the lumbar region (L1–L5) of the spinal cord sampled

at 3 and 29 months showed no significant difference in the average

diameter or number of a-motoneuron profiles (Fig. 1).

Altered NMJs in aged EDL and soleus
Confocal images of presynaptic nerve terminals (detected with

synaptophysin) and postsynaptic endplates (detected with a-

bungarotoxin which is specific for acetylcholine receptors) enabled

visualisation of the morphology and innervation of NMJs in EDL

and soleus muscles.

At 3 months in the EDL, both presynaptic nerve terminals and

postsynaptic motor endplates were well organised, distinct and

compact (Fig. 2A–C). However, by 29 months, significant

remodelling had occurred, within both compartments of the NMJs

(Fig. 2D–F). At 29 months, presynaptic nerve terminals were

disorganised, with extensive sprouting, and some nerve terminals

had spherical, enlarged ends (Fig. 2D). Postsynaptic endplates

appeared diffuse, irregular and with granular fragmentation (Fig. 2E).

In addition, geriatric NMJs appeared larger in diameter and more

spread out compared to those in young mice. NMJs located in

different areas within the same muscle showed various degrees of

deterioration, with ‘healthy’ looking NMJs located in close proximity

to disorganised and partially or fully denervated ones. As an

example, we show a muscle area with severely disorganised NMJs in

the EDL of a 29 month old mouse (Fig. 2D–F). In addition, within

the same area, we identified some NMJs that were clearly denervated

since they stained only with BTX and lacked presynaptic staining

with synaptophysin (circled in Fig. 2D–F). Quantitation revealed a

,2.5 fold increase in completely denervated NMJs in 29 month old

EDL compared to 3 months (Fig. 3A).

The NMJs of soleus in geriatric mice (Figs. 2J–L) did not have

the same striking morphological changes observed in the geriatric

EDLs. Quantitation revealed no significant change in the number

of totally denervated NMJs in 29 month old soleus compared to 3

months (Fig. 3B).

Altered Schwann cells in old EDL muscles
Schwann cells (SCs) surround and insulate peripheral axons and

have close interactions with the nerves and endplates at the NMJs.

SCs in EDL muscles were visualised with S100 antibody in 3 and 29

month old mice. At 3 months, SCs were well structured, ‘plump’

and were in contact with the entire endplate (Fig. 4A,C,E,G). At 29

months, SCs were disorganised, thinner and only partially covered

the endplates (Fig. 4B,D,F,H).

Phenotypic characterisation of young and old mice and
their muscle weights

Tibial bone length increased with age, being significantly longer

at 29 months compared with 3 months (Table 1), indicating some

linear growth. Total body weight, and body weight standardised to

tibial length, increased respectively by 45% and by 25% between 3

and 29 months (Table 1). Total quadriceps weight was similar in

young and old mice. By contrast, quadriceps weight standardised

to tibial length decreased by 23% in old mice (Table 1). Total TA

weight was similar in young and old mice; however, TA weight

standardised to tibial length decreased by 22% between 3 and 29

months (Table 1). Total and standardised weights of EDL and

soleus muscles were similar in young and old mice (Table 1). There

was no significant difference in the amount of abdominal fat

between 3 and 29 month old mice, which may be due to large

variation within the aged group (Table 1).

Myofibre number and size in EDL and soleus muscles
There were approximately 900 myofibres in the cross-section

through the mid-belly of the EDL and soleus muscles at 3 months

(Fig. 5A,B). In the EDL, there was no change in the number of

myofibres between young and old mice (Fig. 5A). However, the

average myofibre cross sectional area was larger by 27.6% at 29

months compared to 3 months (Fig. 5C). In the soleus, myofibre

number was reduced by 16% at 29 months compared to 3 months

(Fig. 5B) whereas myofibre cross sectional area was not significantly

different (Fig. 5D).

Myofibre types and cross-sectional area in TA, EDL and
soleus muscle

The myofibre types in the inner portion (close to the bone) of

the TA, and the entire transverse section of EDL and soleus

Figure 1. Lumbar spinal cord a-motoneurons. a-motoneurons
stained with toluidine blue in the ventro-lateral quarter of the spinal
cord between the bold lines were counted (A). The maximum diameter
of a-motoneurons was obtained by measuring the longest axis through
the nucleolus (B). Motoneurons with no visible nucleolus (*) or with
diameters ,25 mm were not included. Total number of a-motoneuron
profiles (C) and average diameter (D) of a-motoneurons were analyzed
in 20 sections of a 1 in 20 series of the lumbar region (L1–L5) in spinal
cords for each mouse. There was no significant change in the average
number (C) and diameter (D) of a-motoneurons between mice aged 3
and 29 months. N = 4 mice per age group. Values are mean 6 s.e.m.
doi:10.1371/journal.pone.0028090.g001

Denervation and Sarcopenia in Geriatric Mice
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muscles were analysed using antibodies specific to the slow

(MHCI), fast 2A (MHCIIA) and fast 2B (MHCIIB) myosins

(Fig. 6). Unlabelled myofibres were presumed to contain fast 26
(MCHIIX) myosin [26]. Quantification of number and cross

sectional area of these different myofibre types in the TA, EDL

and soleus muscles are shown in Fig. 7. Note that the total

percentages of myofibre types do not always add up to 100% as

some myofibres co-express more than one MHC isoform.

TA (Inner portion). At 3 months, the inner portion of TA

muscles was composed of fast 2B (18%), 26 (27%) and 2A (50%),

and slow (7%) myofibres (Figs. 6A–D, 7A). At 29 months, there

was a 50% loss of fast 2A and 76% loss of slow myofibres, and a

38% increase of fast 26 myofibres (Figs. 6E–H, 7A). Cross

sectional area of fast 2B and fast 26myofibres was smaller by 30%

and 25% respectively at 29 months compared to 3 months, with

no change in the CSAs of the fast 2A or slow myofibres (Fig. 7B).

Figure 2. Whole mount immunohistochemical preparations of EDL (A–F) and soleus (G–L) muscles from 3 and 29 month old mice.
Muscles were stained with synaptophysin (A,D,G,J; red) to detect pre-synaptic neuronal compartments and with a-bungarotoxin (B,E,H,K; green) to
detect acetylcholine receptors at the muscle endplates. Overlays are shown in (C,F,I,L; yellow). Muscle endplates that are positive for only a-
bungarotoxin (green) are not innervated. One such endplate is indicated (white circle) in the 29 month old EDL (D,E,F). NMJs in the 3 month old EDL
appear compact and well defined (A–C), while many NMJs have a diffused, irregular and fragmented appearance in the 29 month old EDL (D–F). In
contrast, the NMJs in soleus of geriatric mice (J–L) did not show morphological changes when compared to 3 month old NMJs (G–I). Scale bars are
75 mm.
doi:10.1371/journal.pone.0028090.g002

Denervation and Sarcopenia in Geriatric Mice
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Figure 3. Percent of fully denervated NMJ in EDL (A) and soleus (B) muscles from 3 and 29 month old mice. There was a significantly
increased number of fully denervated endplates in geriatric EDL (A) but not soleus (B) muscles. N = 4 mice per age group. **P,0.005. Values are mean
6 s.e.m.
doi:10.1371/journal.pone.0028090.g003

Figure 4. Age-related changes in the Schwann cells (SCs) at the NMJs. Low (A,B) and high (C,D,E,F,G,H) power views. Confocal images
of NMJs and SCs in the EDLs of 3 (A,C,E,G) and 29 (B,D,F,H) month old mice. High power views show that SCs of young mice are structured and
completely overlay with the muscle endplates (C,E,G). SCs of old mice are disorganised, partially cover muscle endplates and have swollen endings
(white arrows) (D,F,H). Scale bars are 150 mm.
doi:10.1371/journal.pone.0028090.g004

Denervation and Sarcopenia in Geriatric Mice
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EDL. At 3 months, EDL muscles were composed of fast 2B

(56%), fast 26 (22%), fast 2A (31%) and occasional (less than 1%)

slow myofibres were also seen (Figs. 6I–L, 7C). There was no

significant change in the number and cross sectional area of

different myofibre types (Fig. 7C,D).

Soleus. At 3 months, the majority of myofibres in soleus were

fast 2A (58%) followed in number by slow (36%) and fast 26 (7%)

(Figs. 6Q–T, 7E). Slow myofibre type grouping was seen in 29

month old soleus muscles (Fig. 6W), which is indicative of

reoccurring denervation and reinnervation in the ageing muscle

[4]. There was a 24% loss of fast 2A and a 45% increase in slow

myofibres at 29 compared to 3 months (Fig. 7E). The cross

sectional area of fast 2A myofibres was larger by 32%, and there

was a trend towards larger slow myofibres at 29 months compared

to 3 months (Figs. 6U–X, 7F). The soleus muscle generally did not

have fast 2B myofibres (Fig. 6Q,U), but one of the 3 month old

soleus (out of 4 analysed) had a few fast 2B, while one 29 month

old soleus (out of 4 analysed) had a few fast 26myofibres.

Discussion

The major findings of this study are that, whereas a-

motoneurons in the spinal cord of mice do not change either

their size or number with ageing, profound changes are seen at the

neuromuscular junction. Disruptions are seen both within the pre-

and postsyanaptic compartments as well as in the terminal

Schwann cells in the EDL. By contrast, pre- and postsynaptic

compartments appear relatively intact in the soleus muscle. These

changes are mirrored by a striking increase in the number of

completely denervated NMJ in EDL, but not soleus. Despite the

fact that soleus muscles did not show an age-related response of the

NMJs, the myofibre composition of the soleus showed age-related

plasticity, as did the TA.

No loss of a-motoneurons in geriatric mice
In our study, the size and numbers of a-motoneurons were

determined in the lumbar region (L1–L5) of young and geriatric

mice. The lumbar area was selected since, in humans and rats,

sarcopenia is more dramatic in lower limb muscles compared to

the upper body muscles [23,27,28]. Also, studies in rats show that

age-related axon degeneration is more prevalent in ventral roots

and peripheral nerves initiating from the lumbar compared to the

cervical level of the spinal cord [29,30]. Our inclusion of L1–L5

reflects the fact that, in mice, the sciatic nerve originates from

motoneurons located in the L3–L5 region as determined by

retrograde labelling [31].

Some studies in mice suggest that there is a loss of motoneurons

in ageing [17,32], while others do not [33]. In our study, the

diameter and average number of a-motoneuron profiles in the

lumbar segment of the spinal cord did not differ between 3 and 29

months, indicating that a-motoneuron cell bodies do not die as a

result of ageing. Conflicting data reported by others for

motoneuron numbers in old mice may be due to the methods

used to quantify motorneurons, with some studies counting

myelinated axons only without counting motoneuron cell bodies

[17,33,34]. Indeed, it has been shown that cortical motorneurons

with disconnected axons can persist for as long as a year after

axotomy [35]. Another limitation to using myelinated motor-axon

counts to quantify motoneuron numbers is that aged motor-axons

frequently show extensive atrophy and demyelination, with such

degenerative changes being more severe in the distal compared to

the proximal part [36] and these demyelinated motor-axons will

be omitted from the total axonal count [37]. Similar to the mouse,

data regarding motoneuron loss in aged rats are also conflicting.

However, strain differences in rats may account for this disparity.

Although one study reported no change in the number of motor-

axons innervating the soleus in 24 month old rats (strain not

specified) [34], another revealed a 45% decrease in motoneuron

cell bodies in lumbar (L4/L5) region of 22 month male Fischer

Table 1. Phenotypic characterisation of 3 and 29 month old
mice: tibial bone length, body weight, limb muscle weights
and abdominal fat pad weight.

Age 3 months 29 months

Number of mice per group 6–20 7–13

Tibial length (TL)(cm) 1.6160.01 1.8360.02**

Body weight (g) 19.4360.24 28.2761.54**

Body weight/TL (g/cm) 12.2260.18 15.3360.96**

Quad weight (mg) 124.2363.95 114.0864.04

Quad weight/TL (mg/cm) 79.2963.22 61.1362.16**

TA weight (mg) 34.8361.38 31.5060.89

TA weight/TL (mg/cm) 21.8861.66 17.0360.49**

EDL weight (mg) 7.2560.50 7.8860.39

EDL weight/TL (mg/cm) 4.5560.48 4.2860.23

Soleus weight (mg) 5.4260.64 6.3660.37

Soleus weight/TL (mg/cm) 3.3960.40 3.4160.20

Abdominal Fat Pad (g) 0.1760.02 0.5460.14

For body and muscle weights absolute values as well as values standardised to
tibial bone length are shown.
**P,0.05. All values are mean 6 s.e.m.
doi:10.1371/journal.pone.0028090.t001

Figure 5. Total myofibre number (A,B) and average myofibre
cross-sectional area (CSA) (C,D) in EDL and soleus muscles. At
29 months, there was no significant loss of myofibres in the EDL (A), but
a significant loss in the soleus (B). The average myofibre CSA was larger
in 29 month old compared to 3 month old EDLs (C); whereas the
average myofibre CSA was similar in soleus muscles at 3 and 29 months
(D). N = 4 mice per age group. *P,0.05, **P,0.005. Values are mean 6
s.e.m.
doi:10.1371/journal.pone.0028090.g005

Denervation and Sarcopenia in Geriatric Mice
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344 rats [38]. In humans, based on motoneuron cell body counts

in the lumbosacral segment of the spinal cord, ,29% of

motoneurons are lost in the seventh decade [15]. This marked

loss of motoneuron cell bodies in humans may reflect the very long

absolute time, ,10–20 years, that the axon is disconnected from

the target myofibre, compared with only months in rodents. The

extent of age-related loss of motorneuron cell bodies remains

unclear for different species. Interestingly, in several species

including humans, stereological assessment of the neocortex and

hippocampus led to the somewhat surprising conclusion of

minimal age-related loss of neuron cell body number, indicating

that central neuronal degeneration is not significantly involved in

normal ageing even though the function of the ageing CNS is

compromised [39].

Although our data show no change in the size or number of a-

motoneuron profiles in ageing mice, the function of surviving a-

motoneurons may be deficient. A report on aged monkeys with

cognitive impairment but no neuron loss, suggested that

Figure 6. Fast 2B, Fast 2A and slow myofibres in the inner TA, EDL and soleus muscles. Antibodies for MHCIIB, MHCIIA and MHCI were
used to detect three different types of myosin respectively: fast 2B (A,E,I,M,Q,U), fast 2A (B,F,J,N,R,V) and slow (C,G,K,O,S,W). The overlay of these is
shown in D,H,L,P,T and X. Myofibres not detected with either of these antibodies were presumed to be fast 26 (MHCIIX) (a few are indicated by
asterisks * in D, H, X). Along with the slow type myofibres, antibody for MHCI also stains muscle spindles (arrow in O). Grouping of slow type 1
myofibres was seen in 29 month soleus muscles (outlined in W). Scale bars are 50 mm.
doi:10.1371/journal.pone.0028090.g006

Denervation and Sarcopenia in Geriatric Mice
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connections to and from the prefrontal cortex were intact but

functionally compromised [40]. Changes reported in the mor-

phology of dendritic arbors, spines, and synapses of rodents may

impact on the function of hippocampal circuits but would not be

reflected as neuron loss per se [39].

Altered NMJs in old EDL and soleus muscles
The ultimate indication of myofibre denervation in ageing

muscle is whether the nerve is connected to the myofibre. We

therefore counted the number of fully denervated NMJs, but did

not include partially denervated or morphologically altered NMJs.

We showed a ,2.5 fold increase (up to ,20%) of fully denervated

endplates in EDL muscles between 3 and 29 month, but no

change in the soleus. Only two other studies have examined

myofibre denervation in ageing mice, although they used different

techniques. In flexor digitorum brevis muscle of 21–24 month old

FVB mice, electrophysiological analysis of sodium current

combined with immunostaining for sodium channels revealed

that 13% of myofibres were fully denervated [41]. In another

study using Thy1-XFP transgenic mice that express green

fluorescent protein in motoneurons (C57BL/6J background),

15% of myofibres were denervated in TA muscles at 24 months

[17]. Similarly, in EDL muscles of 32 month old rats (WI/

HicksCar), ,17% of myofibres were denervated [22].

Although we did not include partially denervated myofibres in

our analysis, others have reported that ,35% of endplates are

partially denervated in the limb muscles of 21–24 month old mice

[17,41]. Taken together, these combined studies show that ,50%

of myofibres in some, but not all, limb muscles of ageing mice can

be partially or fully denervated by 24 months.

We found that although such denervation was pronounced in

the EDL it was not apparent in the soleus. Such marked variation

between muscles have also been described for aged rats [42].

Although we did not observe the increase in fully denervated

NMJs in old soleus muscles, the increased proportion of slow type

myofibres and myofibre type grouping in these muscles indicate

reoccurring myofibre denervation and re-innervation [4]. Since

soleus is a postural muscle in mice and is used more than EDL, the

denervated NMJs may be efficiently re-innervated. This activity-

related influence may be the reason for the sparing of NMJs in old

soleus muscles as shown in 21 month old rats [42].

Altered Schwann cell (SC) morphology with age
Although SCs are known to be important for the maintenance

of innervation and regulation of re-innervation at NMJ [43], the

role of SC degeneration in ageing muscles is not understood. We

do not know whether the disorganisation and loss of SCs we

observed is a cause or an outcome of myofibre denervation in

geriatric muscle. However, such changes in SCs will have an

adverse effect on the maintenance of the remaining NMJ and

possible re-innervation. Most studies have examined alterations in

SCs after nerve crush or transection [44], whereas very few have

Figure 7. Percentage (A,C,E) and average cross-sectional area (B,D,F) of different myofibre types in the TA, EDL and soleus muscles
of 3 and 29 month old mice. There are no error bars on some of the graphs (D,F) as the myofibre types were present in less than 3 animals (i.e.
variation in myofibre type distribution occurred in different animals within the same age group). N = 4 animals per age group. *P,0.05, **P,0.005.
Values are mean 6 s.e.m.
doi:10.1371/journal.pone.0028090.g007

Denervation and Sarcopenia in Geriatric Mice
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examined SCs in ageing muscles [45,46]. An electron microscopic

study of gastrocnemius muscles in mice showed no SC

degeneration in young adults (6 months) but degeneration of

SCs and their processes in 35% of the NMJs at 27 months [45].

Similarly, in biopsy samples taken from the external intercostal

muscles of 17 human patients aged .70 years [46], electron

microscopy showed abnormalities in SCs with their processes

intruding into the primary synaptic cleft (the gap between the

terminal axon membrane and the myofibre plasmalemma), while

this was absent in children (4–8 years).

Schwann cells contribute to the long-term stability of NMJs by

releasing neurotrophins such as nerve growth factor (NGF), brain-

derived neurotrophic factor (BDNF) and ciliary neurotrophic

factor (CNTF) [47]. In cases of partial muscle denervation,

relevant to ageing, SCs detect reduced synaptic activity and guide

nerve sprouts from innervated NMJs to denervated endplates [14].

Possible reasons for age-dependent changes in NMJ
morphology

The molecular changes that lead to age-related myofibre

denervation and problems with re-innervation of NMJs are not

known (discussed in [1]). Maintenance of NMJs depends on trophic

factors and signals from several cell types and these may be altered

by reduced electrical activity which destabilises the NMJ and results

in subsequent detachment of the axon terminal from the myofibre

surface. While microarray analyses reveal changed gene expression

at the motor unit level, this generally seems to be the result, rather

than the cause, of denervation [1,2,48]: a discussion of such

molecular changes is beyond the scope of this paper.

Other contributing factors to myofibre denervation include

oxidative stress that greatly accelerates age-related loss of NMJs

[24,43] and is strongly associated with muscle wasting in many

situations [49]. Exercise and caloric restriction have been shown to

reduce age-related muscle denervation in mice [17] and reduced

oxidative stress may be a common mechanism underpinning the

beneficial effect of these two interventions [50]. The benefits of

exercise extend beyond reduced oxidative stress and include

increased neurotrophic factors and growth hormones as well as

increased frequency of molecular signal transmission from nerve to

muscle, all of which may ameliorate the effects of ageing [1,30].

The extent of sarcopenia differs between various limb
muscles

We standardised muscle weights to tibial bone length in order to

determine age-related changes,, because linear growth (as indicated

by increased tibial length) occurs between 3 to 29 months [5]. We

previously described changes in quadriceps muscle mass and tibia

length in ageing C57Bl/6J females using four time points, 3, 15, 24

and 27–29 months. In these mice, standardised quadriceps muscle

weight was greater at 15 compared to 3 months, but decreased

thereafter and by 27–29 months sarcopenia was pronounced [5].

The current study compared only 3 and 29 month old mice and

showed that both quadriceps and TA muscle weights were

significantly reduced at 29 months, but that EDL and soleus

weights were similar at these ages. Therefore, although we might

have detected reduced muscle mass in EDL and soleus if

intermediate ages (e.g. 15 months) had been included, another

explanation is that sarcopenia affects some muscles more than

others as shown previously in 129/Re mice [51].

Age-related changes in myofibre number and CSA
We showed a ,16% decrease in myofibre numbers in soleus

muscles between 3 and 29 months but no change in EDL.

Similarly, a decrease in myofibre numbers has been reported in

some muscles of aged rats and humans [34,52]. Although we

found a trend for increased average myofibre CSA in soleus, the

trend was not significant, whereas myofibre CSA was significantly

larger in EDL muscles at 29 months. Whereas some studies show

decreased myofibre number and/or changes in the myofibre size

in old mouse EDL and soleus muscles, others do not and it seems

that these discrepancies are due to the use of different strains or

gender [51,53]. For instance, in contrast to our study, no myofibre

loss or changes in myofibre size were seen in EDL or soleus

muscles of male CBF mice aged 29 months [53], and a very recent

study in C57Bl mice aged 6 and 24 months showed age-related

myofibre loss in both EDL and soleus muscles with this being

greater for females (,20%) compared with males (,10%)

although myofibre numbers did not change in sternomastoid or

cleidomastoid muscles [54]. Similarly, although a 16–21% loss of

myofibres was reported in both EDL and soleus muscles of 24

month old female 129/Re mice, with increased size of remaining

myofibres, the loss or changes in myofibre size were not seen in the

same muscles of 24 month old males [51]. These data accord with

the impact of gender on many aspects of skeletal muscle biology

including age-related changes in skeletal muscles, with sarcopenia

being less pronounced in males [30].

In ageing, heterogeneous myofibre denervation occurs [32] and

this is very different to homogeneous myofibre denervation that

occurs after experimental nerve transaction [55]. In aged muscles,

the presence of many innervated myofibres may provide

mechanical (e.g. provide passive stretch) and molecular stimula-

tion/support to sustain adjacent denervated (‘passenger’ or ‘free-

loader’) myofibres embedded in their midst.

As discussed for motoneuron cell bodies in the spinal cord, the

greater reduction in myofibre numbers observed in humans

compared to mice may be due to the absolute length of time that

the muscles are denervated. In vastus lateralis muscles of men aged

70–73 years, myofibre number decreased by ,25% with a further

50% decrease by 80 years [52]. However, in humans, NMJ

degeneration is apparent by 50–60 years [46] and hence myofibres

may be denervated for 20–30+ years.

Variation in myofibre type composition between young
and old muscles

Our observation of variation in myofibre type composition in

TA, EDL and soleus at 3 months accords with the literature. Thus,

in young mice, the outer part of the TA is made up almost entirely

of fast 2B myofibres whereas in the inner region of the TA, fast 2B

myofibres make up only 20% and the dominant myofibre type is

fast 2A, with some slow myofibres [56]. The EDL is composed of

99% fast myofibres (with 60% fast 2B) with few to no slow

myofibres [57]. The soleus comprises 60% fast 2A and 40% slow

myofibres (Figs. 6R–T, 7E) [58] and in our 3 month mice, we saw

a few fast 2B myofibres in one, but not in 3 other young soleus

muscles.

In addition, we showed that the proportions of myofibre types

changed with age. At 29 months, myofibre types of the inner

region of the TA had shifted towards a faster phenotype, with an

increase in the content of fast 26myofibres, a decrease in fast 2A

myofibres and a near complete loss of slow myofibres. In terms of

size change for different myofibre types in the TA, fast 2B and fast

26myofibres showed significant atrophy. Since the TA is made up

of ,90% fast 2B myofibres in the superficial region and ,20% in

the inner region, this significant reduction in size of fast type

myofibres may account for the overall loss of TA muscle mass at

29 months. Despite our observations of a 2.5 fold increase in the
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number of fully denervated NMJs in EDL muscles of 29 month old

mice, we did not see changes in myofibre type composition.

In contrast to TA, in the soleus, a shift towards a slower

phenotype (i.e. increased proportion of slow myofibres and

decreased fast 2A and fast 26 myofibres) was observed at 29

months. Slow myofibre type groupings could also be clearly seen

which is an indication of reoccurring myofibre denervation and re-

innervation [4]. The shift to a slower phenotype is consistent with

an earlier report for aged rat soleus muscle, with a loss of fast 2A

myofibres and increased number of slow myofibres [32].

The conversion of myofibres from one histochemical type to

another is possibly due to re-innervation by a different

motoneuron type [59]. It is widely considered that fast type

myofibre denervation is prevalent and that these become re-

innervated by motoneuron axons that innervate slow type

myofibres, which would then shift muscle phenotype to a slow

oxidative profile [60]. However, our data suggest that the situation

is more complex. Changes in myofibre type composition do not

occur in a uniform pattern (e.g. shift from fast to slow) but rather

are specific to individual muscles.

Our results in geriatric mice support the role of muscle

denervation as a contributing factor to sarcopenia. We conclude

that denervation of muscles is not due to the loss of motoneuron

cell bodies, although it may result from degeneration or altered

function of motoneuron axons. Morphological changes were

observed in skeletal muscles of geriatric mice at the presynaptic

nerve terminal, postsynaptic endplates and Schwann cells. The

extent of age-related loss of muscle mass (sarcopenia) and

alteration in myofibre types is specific to individual muscles: thus,

results from one muscle type cannot be directly extrapolated to

another within the same species. Establishing age-related baseline

data in the neuromuscular compartment in mice provides a

foundation for the use of murine models, with the wealth of

genetically modified lines, to develop therapeutic interventions for

sarcopenia.

Methods

Animals and tissue collection
All animal experiments were conducted in strict accordance

with the guidelines of the National Health and Medical Research

Council of Australia Code of Practice for the Care and Use of

Animals for Scientific Purposes (2004) and the Animal Welfare Act

of Western Australia (2002) and were approved by the Animal

Ethics Committee at the University of Western Australia

(Approval number 10/100/930).

Age-related neuromuscular changes were studied in 3 and 29

month old female C57BL/6J mice. Three month old mice were

obtained from the Animal Resource Centre, Murdoch, Western

Australia, and 29 month old mice were obtained from the Royal

Brisbane hospital, Queensland, Australia. After transportation,

mice were acclimatised for 1 week before tissues were taken. Mice

were maintained in standard cages under pathogen-free conditions

with free access to water and standard mouse chow.

Mice were anesthetised with a gaseous mixture of 1.5%

Isoflurane (BioMac), N2O and O2, body weights recorded and

animals sacrificed by severing the spine below the skull (C1–C2).

Quadriceps, tibialis anterior (TA), extensor digitalis longus (EDL)

and soleus muscles were excised from the hind limbs and weighed.

TA muscles from both legs and EDL and soleus muscles from one

leg were cut transversely, mounted on cork pieces with tragacanth

gum (Sigma-Aldrich) and frozen in isopentane (BDH-AnalaR)

cooled in liquid nitrogen for histological and immuno-histochem-

ical analyses. EDL and soleus muscles from the other leg were

fixed in 4% paraformaldehyde (PFA) in 0.1 Sorenson’s phosphate

buffer (0.084M Na2HPO4 and 0.016M NaH2PO4.2H2O) for

30 minutes at room temperature, then stored in Tris buffered

saline (TBS) at 4uC until whole mount immuno-histochemistry

was performed.

The first lumbar process of the spinal cord was identified by

locating the first vertebra that lacked an articulation with a rib at

its rostral margin [31]. The lumbar region (L1–L5) was excised,

fixed in 4% PFA in phosphate buffer overnight, transferred to

30% sucrose, coated with Tissue-Trek O.C.T compound and

frozen in isopentane cooled in liquid nitrogen for further cryo-

sectioning.

Motoneuron staining and analysis
The entire lumbar region of the spinal cord (L1–L5) was cryo-

sectioned (Leica LM3050) at 20 mm (approximately 450 sections).

Sections were collected onto Superfrost glass slides and stained

with a solution of 0.05% Toluidine Blue and 0.005% Borax

(pH11). Every 20th section was analysed using Olympus BX50

microscope at 620 magnification, starting from L1. Only neurons

located in the ventro-lateral quarter of the spinal cord with a

maximum diameter of $25 mm and a visible nucleolus were

counted and measured and were presumed to be a-motoneurons

(Fig. 1) [38,61,62,63,64]. We checked motoneurons in up to 20

sections from different animals at 3 and 29 months and found that

all motoneurons examined had only one nucleolus. The maximum

diameter of each a-motoneuron (i.e. $25 mm) drawn through the

nucleolus was recorded and the total number of a-motoneurons

counted [64,65,66,67] (Fig. 1 A,B). Cell fragments, cells without

visible nucleoli and motoneurons ,25 mm in maximum diameter

were excluded. Errors in identifying a-motoneurons may occur

due to some overlap in sizes of a- and -motoneurons [15].

Although we may have overestimated the numbers of a-

motoneurons, our identification and counting criteria were

constant throughout our analyses. The a-motoneuron counts

obtained do not represent the total number of a-motoneurons

from L1–L5, but are the total number of motoneurons obtained

from the 20 sections that we analysed over a distance of ,450 mm.

Whole mount immunohistochemistry to detect
innervated and denervated NMJs and Schwann cells

To analyse the NMJs in EDL and soleus muscles, presynaptic

nerve terminals were detected with synaptophysin antibody (Dako)

and postsynaptic endplates with a-bungarotoxin (BTX: Invitro-

gen). Whole EDL and soleus muscles were blocked in 4% bovine

serum albumin (Sigma) and 0.1% Triton X-100 (Roche) overnight

at 4uC while rotating. Muscles were incubated with the primary

rabbit-anti-synaptophysin antibody (1:100 dilution) overnight at

4uC while rotating. Muscles were washed for 5 hours in TBS and

incubated with the secondary antibody donkey-anti-rabbit IgG

ALEXA 594 (Molecular Probes, 1:250 dilution) and a-bungaro-

toxin ALEXA 488 (1:1000 dilution) overnight at 4uC while

rotating. Muscles were washed overnight and stored in glycerol

until imaged. Prior to imaging, immunostained EDL and soleus

muscles were flattened between two glass plates and imaged with a

Leica TCS SP2 multiphoton confocal microscope. Nerve

terminals stained with synaptophysin 594 (red) were detected with

a 594 wavelength laser. Postsynaptic endplates on the myofibre

stained with a-bungarotoxin 488 (green) were detected with the

488 wavelength laser. NMJs that had both red (synaptophysin) and

green (BTX) staining were considered as innervated, while NMJs

stained with only BTX were considered as denervated. Each

selected field was imaged at 620 magnification, at 2 mm per step,

up to 100 mm and a Z-stacked image (,50 images stacked
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together) was generated for each field of view. Approximately 10

fields were imaged per one EDL muscle which corresponds to

100–150 NMJs examined per animal. Schwann cells were

identified with the rabbit anti-S100 (DakoCytomation, 1:500

dilution) subsequently detected with the donkey anti-rabbit IgG

ALEXA 594 secondary antibody (Invitrogen, 1:500 dilution). The

immunostaining procedure and the confocal imaging were the

same as above.

Muscle haematoxylin and eosin staining and imaging to
quantitate total myofibre numbers and size

Transverse cryosections (8 mm) through the mid-region of the

EDL and soleus muscles were stained with haematoxylin and

eosin. Non-overlapping images were taken at 610 magnification

and tiled to reconstruct the cross-section of the muscle using a

LEICA DMRBE microscope connected to a Nikon Digital

Camera DXM1200F and Vexta stage movement software. Images

were analysed with Image Pro Plus v4.5 (Microsoft) software.

Identification of different myofibre types and
morphometric analyses

Slow (MHCI) and fast 2A (MHCIIA) myofibres were identified

with mouse-IgG1 antibodies against slow type myosin (Millipore,

1:40 dilution) or fast MHCIIA type myosin (SC-71 supernatant,

Developmental Studies Hybridoma Bank, 1:5 dilution) that were

conjugated to Zenon (Invitrogen) reagents for mouse IgG1 Alexa

Fluor 594 (red) and Alexa Fluor 350 (blue) respectively. Fast 2B

(MHCIIB) myofibres were identified with the mouse-IgM

antibody against MHCIIB (BF-F3 supernatant, Developmental

Studies Hybridoma Bank, 1:5 dilution). The mouse anti-MHCIIB

primary antibody was detected with the secondary goat anti-

mouse IgM Alexa488 (Molecular Probes, 1:250 dilution). Some

myofibres were not stained with any of these antibodies and were

presumed to be fast 26 (MHCIIX) [26]. Images were captured

with a high resolution colour camera (Nikon digital camera

DXM1200F) and imaging software (Nikon ACT-1 v 2.70), then

analysed using ImagePro Plus v4.5 (Microsoft) software.

A single 610 image per TA muscle was taken at the deeper

region of the muscle closer to the tibial bone (inner portion) where

slow myofibres are normally present in young (3 month old) mice,

whereas the rest of the TA is predominantly fast [56]. In EDL and

soleus muscles, a single random image was taken per muscle in the

middle of the muscle cross-section. For images from each muscle,

the number of slow type 1(red), fast 2A (blue), 2B (green) and 26
(unstained) myofibres were counted and expressed as a percent of

total myofibre number. A total of approximately 150 to 300

myofibres were counted per muscle.

Statistical Analysis
All data were analysed using Students t-test, 2 tailed, type 2 and

expressed as mean 6 standard error (s.e.m). Differences with P

values,0.05 were considered significant.
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